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Abstract

With the advent of big data, there is a growing demand for
smart algorithms that can extract relevant information from
high-dimensional large data sets, potentially corrupted by
faulty measurements (outliers). In this context, we present a
novel line of research that utilizes the robust nature of L1-
norm subspaces for data dimensionality reduction and outlier
processing. Specifically, (i) we use the euclidean-distance be-
tween original and L1-norm-subspace projected samples as
a metric to assign weight to each sample point, (ii) perform
(K=2)-means clustering over the one-dimensional weights
discarding samples corresponding to the outlier cluster, and
(iii) compute the robust L1-norm principal subspaces over the
reduced “clean” data set for further applications. Numerical
studies included in this paper from the fields of (i) data dimes-
nionality reduction, (ii) direction-of-arrival estimation, (iii)
image fusion, and (iv) video foreground extarction demon-
strate the efficacy of the proposed outlier processing algo-
rithm in designing robust low-dimensional subspaces from
faulty high-dimensional data.

Introduction
In big-data applications, high-dimensional large datasets de-
mand robust algorithms designed to extract meaningful in-
formation in the presence of potentially faulty/corrupted
data entries. Traditionally, dimensionality reduction and out-
lier detection are treated separately. In this work, we provide
a novel unified approach to effectively deal with outliers and
high dimensionality simultaneously.

There is a wide range of applications engaging outlier
detection approaches, for example cyber intrusion, video
surveillance, and signal processing for wireless networks
applications (Kumar 2005; Markou and Singh 2006; Sun,
Xiao, and Wang 2007). Numerous techniques exist to ad-
dress the outlier detection and processing challenges in-
cluding statistical distance-based learning and clustering ap-
proaches (Knox and Ng 1998; Ramaswamy, Rastogi, and
Shim 2000; Torr and Murray 1993) to name a few. Here,
we focus on principal component analysis (PCA) (Pearson
1901), the celebrated unsupervised linear dimensionality re-
duction technique. The objective of PCA is to find orthonor-
mal basis vectors/subspaces that capture the maximum pos-
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sible variation of the original data. The prominent PCA al-
gorithmic solution comes from the well known L2-norm
based singular value decomposition (SVD) of the data ma-
trix or equivalently, eigen-value decomposition of the data
covariance matrix. However, it is widely known that L2-
norm guided processing is highly sensitive to the presence
of outliers. Recently, preferred solutions focus on pursu-
ing L1-norm based principal components design involving
absolute-value analysis that imparts significantly less em-
phasis on the extreme outliers as compared to squared-value
L2-based solutions. A few algorithms involving L1-norm
calculations have been proposed for robust subspace design
(Ding et al. 2006; Kundu, Markopoulos, and Pados 2014;
Kwak 2008; Markopoulos, Karystinos, and Pados 2014;
Markopoulos et al. 2016). (Markopoulos, Karystinos, and
Pados 2014) presented the first known exact algorithms for
the computation of L1-norm principal components of data.

In this work, we propose a new outlier processing ap-
proach by utilizing the robust L1-norm subspace designs.
In particular, (i) we compute L1-principal subspaces of the
given data set, (ii) assign a weight to each sample using
L1-subspace distance metrics, (iii) implement traditional K-
means clustering over the one-dimensional weight space to
discard samples corresponding to the outlier cluster, and (iv)
finally, over the reduced cleaned dataset recompute robust
L1 subspaces for applications thereafter. Detailed numeri-
cal studies involving applications in dimensionality reduc-
tion, direction-of-arrival estimation of an unknown signal in
the presence of heavy intermittent jammers, image restora-
tion from corrupted copies (image fusion), and online video
foreground tracking presented in this paper demonstrate the
effectiveness of the proposed robust L1-norm integrated out-
lier processing algorithm.

Problem Formulation & Motivation
Consider N real-valued measurements, each of dimension
D that form the data matrix X = [x1 x2 · · ·xN ] ∈ R

D×N .
The classical L2-norm-based PCA problem can be mathe-
matically formulated as

QL2
= argmax

Q∈RD×P , QTQ=IP

‖XTQ‖2 (1)

where QL2
represents the P -rank orthonormal subspace

(P≤ rank (X) L2-norm principal components) and ‖A‖2 =

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

508



−20 −15 −10 −5 0 5 10 15 20
−30

−15

0

15

30
L2-principal component

L1-principal component

Max. variance direction

Nominal data

(a)

−20 −15 −10 −5 0 5 10 15 20
−30

−15

0

15

30

ΔθL1

ΔθL2

L2-principal component

L1-principal component

Max. variance direction

Nominal data

Outlying data

(b)

Figure 1: (a) Principal component over the original clean data matrix X2×40 ( ). (b) Principal component over data matrix
X2×40 corrupted by 4 appended outliers ( ) (angular deviation ΔθL2

=95◦ and ΔθL1
=63◦). As a benchmark, in both figures

we plot the ideal maximum-variance direction of the clean-data distribution (dominant eigenvector of true nominal-data auto-
covariance matrix).

√∑
i,j |Ai,j |2 is the L2-norm (Frobenius norm) of matrix

A with elements Ai,j . The optimal solution to (1) is well
known to be given by the P dominant left-singular vectors
of the data matrix X or equivalently the P dominant eigen-
vectors of XTX.

Regrettably, L2-norm based process by (1) is highly sen-
sitive to the presence of faulty measurements (outliers). One
natural approach to overcome this drawback is to pursue
L1-norm based principal-component analysis which modi-
fies the problem in (1) to the new problem

QL1
= argmax

Q∈RD×P , QTQ=IP

‖XTQ‖1 (2)

where QL1 represents the P (≤ rank (X)) orthonormal L1-
principal components of X and ‖A‖1 =

∑
i,j |Ai,j | for any

matrix A. Due to the non-convex nature of the problem in
(2), it is challenging to calculate the optimal L1-principal
components. The literature serves us with a few sub-optimal
(Ding et al. 2006; Kundu, Markopoulos, and Pados 2014;
Kwak 2008; Markopoulos et al. 2016) and recently proposed
optimal (Markopoulos, Karystinos, and Pados 2014) algo-
rithms to design the L1-principal subspaces.

To illustrate the importance of solving (2) and mo-
tivate the need for further research on the robustness
of L1-subspaces, we consider the following simple ex-
ample. We generate a 2D-data matrix X2×40 whose 40
data points ( ) are drawn from the Gaussian distribution

N
(
02,

[
15 12
12 29

])
. We calculate and plot the optimal L2

(SVD) and optimal L1 (Markopoulos, Karystinos, and Pa-
dos 2014) principal component of X in Figure 1(a). For ref-
erence, we also plot the ideal maximum-variance direction,
i.e., the direction of the dominant eigenvector of the auto-

covariance matrix
[
15 12
12 29

]
. Next, we add 4 outlier points

( ) to X and recalculate the L2 and L1 principal component

as shown in Figure 1(b). It can be observed that under the
nominal data scenario in Figure 1(a), both the L1 and L2

principal components follow a close line along the ideal di-
rection. However, in the presence of the outlying data points
in Figure 1(b), the L2 principal direction steers almost or-
thogonally to the true direction, i.e. ΔθL2=95◦, and the L1-
principal direction shifts by ΔθL1

=63◦. This visual analysis
clearly exhibits the limitation of L2-PCA (and to some lesser
extent of direct L1-PCA) in combating outlying data. In the
following section, we explain how L1-PCA can be used to
excise outlying data and lead to a most robust subspace de-
sign.

Proposed Algorithm
In this section, we discuss step by step the proposed
integrated outlier processing and robust subspace design
approach via L1-principal component analysis. No prior
information about the data statistics or the number of
outliers is assumed. For the benefit of the readers, we also
outline the pseudo-code of the proposed scheme in Figure
2.

Step 1: Obtain L1-principal components (QL1
)D×P of

data matrix X ∈ R
D×N

Given a real-valued data matrix X ∈ R
D×N (possi-

bly corrupted), we calculate P (≤ min(D,N)) L1-principal
components by

QL1 = argmax
Q∈RD×P , QTQ=IP

‖XTQ‖1.

A computationally light-weight approach to approximate
QL1

would be, for instance, the fast iterative suboptimal
algorithm of (Kundu, Markopoulos, and Pados 2014) to
evaluate the first L1-principal component of the data and
design the rest P−1 principal components via sequentially
replacing X by its projection onto the nullspace of the
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Input: data matrix X ∈ R
(D×N), # of PCs. = P

1: QL1 = L1-PCs (X, P )
2: wi = ‖xi −QL1

QT
L1
xi‖22 , ∀ i ∈ {1, 2, . . . , N}

wi =
wi∑N
i=1 wi

, w = [w1, w2, · · · , wN ]

3: K-means cluster(w) = [μh, μl]
I = {i} : i ∈ extract_indices(w, μh)
X (:, I) = φ and Xclean ← X

4: Qclean
L1

= L1-PCs (Xclean, P )

Output: P robust L1-subspace Qclean
L1

Function: L1-PCs(X, P )
Input: XD×N , P

for p = 1 : P
qL1

= argmax
q∈RD , ‖q‖2=1

‖XTq‖1, using (Kundu, et al. 2014)

X = X− qL1q
T
L1
X

QL1
(:, p) = qL1

end
Output: QL1

Figure 2: Algorithm to detect/remove outliers and compute
P≤min(D,N) robust L1-principal components for a real
data matrix XD×N .

previously calculated components. Figure 2, function:
L1-PCs presents the details.

Step 2: Evaluate reliability weight
We calculate the reliability weight corresponding to each

sample using the previously designed L1-principal compo-
nents as

wn = ‖xn −QL1
QT

L1
xn‖22 ∀ n ∈ {1, 2, . . . , N}. (3)

In signal processing terminology, the weight wn is often re-
ferred to as the rank-P reconstruction error for the nth sam-
ple. We further normalize each weight wn in (3) by

wn =
wn∑N
i=1 wn

(4)

and collect the normalized weights in a single reliability
weight vector w

w � [w1, w2, · · · , wN ]. (5)

The normalized weights will be used as a metric to judge
the quality of each available sample. Ideally, a corrupted
sample will lie far away from the L1-principal directions
exhibiting a high relative reconstruction error value wn.

Step 3: Outlier removal via clustering

Figure 3: Average representation error versus percentage of
outlying data (total number of samples N=300, P = 2 prin-
cipal components).

There are many ways to detect and remove the outlying
samples. For instance, if the algorithm has a priori knowl-
edge of the number of corrupted samples, say t, we can
simply look for the t-highest weights in (5) and remove the
corresponding samples. However, in real-world applications
it is quite rare to have such a priori knowledge about the
number of existing outliers, especially in high-dimensional
datasets. Therefore, we design an intuitive clustering method
for separating the nominal samples from likely outliers. In
particular, we implement conventional (K=2)-means clus-
tering over the weight space which will furnish two clusters
and their corresponding means as

K-means cluster(w) = [μh, μl]. (6)

The cluster having lower mean value (μl) would retain the
true data samples whereas the cluster with higher mean (μh)
is expected to contain outlier samples which would be sub-
sequently discarded. In this context, we define the function
extract_indices (w, μh) that inputs the weight vector
w and the higher cluster mean μh and outputs the indices of
the weights that are contained in the cluster with mean (μh),

I = {i : i ∈ extract_indices(w, μh)}.
The samples corresponding to indices contained in index set
I are collected and removed from the original corrupted data
X to obtain the “clean” data set Xclean,

X (:, I) = ∅ and Xclean ← X.

It is important to highlight that to separate nominal from
outlier data, K-means clustering (K=2) is performed over
the N scalar weights and not over the original high D-
dimensional data which would be computationally very
expensive.

Step 4: Recalculate L1-principal components
(
Qclean

L1

)
over outlier processed/removed data Xclean

The final step involves recalculating the L1-principal
components (repeating Step 1 only) over the obtained
“cleaned” data set Xclean by

Qclean
L1

= argmax
Q∈RD×P , QTQ=IP

‖XT
cleanQ‖1.

It is expected that the so designed Qclean
L1

principal sub-
spaces reveal a deeper insight into the given data matrix than
the original QL1

(or QL2
) principal subspaces.

Experimental Studies
In this section, we carry out experimental studies drawn
from the research fields of data dimensionality reduction,
direction-of-arrival estimation, robust image fusion, and
video foreground modeling. Here, we compare (i) con-
ventional L2 subspaces (SVD), (ii) L1 subspaces (Kundu,
Markopoulos, and Pados 2014), (iii) the proposed outlier-
processed robust subspace denoted by L1 + L1 (the term
is motivated by the computation of L1 subspaces twice),
and (iv) the analogous L2 version of (iii) denoted by L2+L2.

Experiment 1: Data dimensionality reduction
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Figure 4: MUSIC analysis: (a) Instantaneous spectrum with jammers located at θjammer = {−60◦,−30◦, 5◦} and signal of interest
at θsource = 60◦ (b) Root-mean-square-error (RMSE) versus jammer SNR.

We generate a real-valued data matrix X ∈ R
25×300

whose 300 observation points have independent, identically
distributed coordinates drawn from the Gaussian distribution
N (0, 4). We then arbitrarily select and contaminate a cer-
tain percentage of samples by adding an independent addi-
tive white Gaussian noise outlier vector v ∈ R

300×1 whose
entries are drawn from the high variance Gaussian distribu-
tion N (0,35). We denote the corrupted data matrix by Xcrpt.
Our performance metric is the true data representation error

RE = ‖X−QQTX‖22
averaged over M = 214 independent experiments. In each
experiment, we seek P=2 principal components of Xcrpt by
the competing algorithms.

In Figure 3, we plot RE as a function of the percentage
of outlying data. As expected, the proposed L1 + L1 outlier
processing scheme exhibits lowest reconstruction error over
the whole range of corruption percentage.

Experiment 2: Direction-of-Arrival (DoA) estimation
We consider a uniform linear antenna array of D = 7

elements. The array collects N = 30 observations of a bi-
nary phase-shift-keying (BPSK) signal arriving at an angle
θ1=60◦ in the presence of additive white complex Gaussian
noise v ∈ C

7×1,

xn = A1bnsθ1 + vn, n = 1, 2, . . . , 30, (7)

where sθ1 is the array response vector, bn ∈ {±1} is the
Bernoulli equiprobable information bit, A1 > 0, and the
signal-to-noise ratio (SNR) is set at SNR1 = 3 dB . We fur-
ther assume that any 3 observations (out of 30) are corrupted
by 3 jammers having SNRj = 9 dB and angle of arrival
−60◦,−30◦ and 5◦. We call the resulting corrupted observa-
tion data matrix Xcrpt ∈ C

7×30 and transform Xcrpt by con-

catenation to its real-domain version X′
crpt=

[
real(Xcrpt)
imag(Xcrpt)

]
∈

R
14×30.

We then calculate and plot in Figure ??, the MUSIC-type
DoA estimation spectrum function (Schmidt 1986)

Pq (θ) =
1

sTθ (I− qqT ) sθ
, θ ∈

(
−π

2
,
π

2

)
,

where q ∈ R
14×1 represents the single principal compo-

nent of X′
crpt produced by the competing algorithms and

sθ ∈ R
14×1 is the concatenated real-valued version of the

array response scanning vector. As observed, the L2-based
schemes completely steer toward the jammers, whereas the
proposed L1 + L1 scheme is virtually unaffected indicating
the true active signal direction of arrival.

In Figure ??, for the same experiment, we plot the root-

mean-squared-error RMSE =

√
1
M

M∑
m=1

(
θ1 − θ̂(m)

)2

as

a function of the jammer SNR. Here, θ̂(m) is the estimated
angle (highest peak of Pq (θ)) in the mth experiment and
θ1= 60◦ is the true fixed source angle. The jammers’
location θj is chosen independently and uniformly in
θj ∈ (−π

2 ,
π
2

)
. M = 214 independent experiments are

conducted. It is again interesting to observe the superiority
of the proposed L1+L1 scheme in estimating the true angle
of arrival.

Experiment 3: Robust image fusion
We consider N = 10 copies of the grayscale Lenna image

(256 × 256) in Figure 5(a), each of which is corrupted per
pixel by i.i.d. zero mean AWGN noise of variance σ2 = 50
and further 8-bit quantized (Figure 5(b) example). Next, we
arbitrarily choose 8 (out of the 10) noisy images and over-
write 40% of pixels by salt-and-pepper corruption as in Fig-
ure 5(c). Finally, to make image recovery even more chal-
lenging, we append to the data set the 256 × 256 grayscale
baboon image in Figure 5(d) as an extreme outlier. It is im-
portant to note that none of the tested algorithms has knowl-
edge of the type of corruption or the presence of a mislabeled
(baboon) image.
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Figure 5: The image restoration via single principal component over reconstruction block size (32 × 32). (a) original Lenna
image (256× 256); (b) noisy instance; (c) instance corrupted (40% pixels) by “salt and pepper” corruption; (d) original baboon
image (outlier); (e) optimal L1 fused (Markopoulos, Kundu, and Pados 2015); (f) optimal L2 fused; (g) L2 + L2 fused; (h)
proposed L1 + L1 fused.

We analyze the resulting set of 11 images patch-wise, i.e.
divide each image into squared patches of dimension d × d
(d = 32, 256×256

32×32 = 64 patches per image) and form the
data matrix Xp as

Xp = [ip1, i
p
2, . . . , i

p
11](1024×11) (8)

where ipn = vec (Ipn) with Ipn being the pth-patch of nth-
image. We extract the single principal component qp of Xp

and use it to evaluate the normalized reliability weight rpn
corresponding to each vectorized patch sample

rpn = ‖ipn − qp (qp)
T
ipn‖−2

2

and then normalize
rpn =

rpn∑11
n=1 r

p
n

. (9)

Finally, via weighting, we fuse the 11 patches to restore Îp

as (Markopoulos, Kundu, and Pados 2015)

Îp =

11∑
n=1

rpnI
p
n. (10)

Figure 5(e) shows an instance of the restored image.
Figure 5(f) shows the outcome when the L2 principal
component is used instead. Figures 5(g) and (h) show
the outcome upon outlier excision by the L2 + L2 and
the proposed L1 + L1 procedure. The visual comparative
success of L1 + L1 is striking. In Figure 6, we also plot the
peak signal-to-noise ratio (PSNR) of the restored image as
a function of the percentage of corrupted pixels.

Experiment 4 - Online foreground tracing over surveil-
lance video
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Figure 6: lPSNR of restored Lenna image with varying per-
centage of corrupted pixels.

Detection of anomalies and moving objects in a frame
is the essence of surveillance video processing. Here, we
consider the popular dataset “Hall of a business building”
(grayscale 144×176 frames) often used for foreground mod-
eling. We begin from frame number 1000 and collect and
vectorize the next 150 frames for training purpose. Pursuing
online background processing (Pierantozzi et al. 2016), we
add 1 incoming frame to our previous frame set and discard
frames1 which are more likely to contain moving objects by
implementing our proposed scheme with 2 principal com-
ponents. To render foreground moving objects, we subtract
frames from their low dimensional subspace representation

1At any realization, frame excision is performed only if the
number of frames is greater than 10.
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Figure 7: Hallway sequence : (a) original frames; (b) L2+L2

reconstructed foreground; (c) proposed L1 + L1 recon-
structed foreground.

(background) using the extracted principal components.
In Figure. 7, we show the extracted foreground by L2+L2

and L1 + L1; L1 + L1 is significantly superior.

Conclusion
In this paper, we developed a simple, yet effective unsu-
pervised outlier processing algorithm for robust feature ex-
traction from faulty high-dimensional data. Motivated by
the robust nature of the L1-subspace, we integrated L1-
subspace design with sample weighting and (K=2)-means
cluster sample excision over the scalar weights domain
to discard “corrupted” samples and design a robust low-
dimensional subspace over the “cleaned” dataset. Extensive
numerical studies were carried out to compare the proposed
robust subspace design against conventional L2 and L1-
based schemes. The proposed algorithm showed excellent
performance in designing robust subspaces over heavily cor-
rupted data sets with end applications in data dimensionality
reduction, direction-of-arrival estimation, image fusion, and
video foreground extraction.
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