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Abstract 
The soil decomposer community is a primary driver of car-
bon cycling in forest ecosystems. Understanding the pro-
cesses that regulate this community is critical to our under-
standing of the global carbon cycle and fungal mediated im-
pact on climate change. Inadequate statistical strength in tra-
ditional soil food web studies has limited our capacity to dis-
entangle the cascading effect of top-level predators on the 
composition of complex fungal communities. We hypothe-
size that machine learning can help with this complex prob-
lem. This paper examines the opportunities for machine 
learning in this domain, presents initial results from such 
analysis, identifies challenges encountered with initial effort, 
and charts a path forward. 

Introduction   
The soil decomposer community is a primary driver of car-
bon cycling in forest ecosystems (Crowther et al. 2013). Un-
derstanding the processes that regulate this community is 
critical to our understanding of the global carbon cycle and 
fungal mediated impact on climate change (Wardle et al. 
2004; Bardgett 2005; Van der Heijden et al. 2008). 
 To improve our understanding of the decomposer com-
munity, we performed a study in which an upland deciduous 
forest in West Virginia, USA, was simulated within a con-
trolled laboratory experiment. Using this mesocosm envi-
ronment, we measured how the removal of a top predator 
species (the red-backed salamander) affects the soil decom-
poser community. Specifically, the red-backed salamander 
has been described as a keystone species, due to its capacity 
to feed on soil invertebrate communities that regulate the 
activity of primary decomposers (fungi) in soil (Burton and 
Likens 1975). 
 Populations of red-backed salamanders are increasingly 
threatened by habitat fragmentation and land use change in 
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temperate US forests. Generating a mechanistic understand-
ing of how salamander removal affects decomposer commu-
nities is, therefore, critical for us to comprehend the impacts 
of future biodiversity loss on the functioning of temperate 
forest ecosystems. Yet inadequate statistical strength in tra-
ditional soil food web studies has limited our capacity to dis-
entangle the cascading effect of salamanders on the compo-
sition of complex fungal communities. 
 Our hypothesis is that machine learning, specifically clas-
sification models, can help us (1) determine the strength of 
the relationship between the keystone species and other 
members of the decomposer community and (2) identify the 
nature of the relationship between community members (if 
a relationship does exist).  

Background 

Soil Decomposer Food Web 
 The structure of the soil decomposer community can be 
thought of as a pyramid with a small number of top-preda-
tors (salamanders) at the pyramid tip, invertebrates (insects) 
in the center, and a huge biomass of soil microbes (bacteria 
and fungi) at the base. The flow of energy within an ecosys-
tem can be considered either top-down, where predators in-
fluence consumers, or bottom-up, where producers influ-
ence consumers (Pace et al. 1999; Shurin et al. 2002). 
 Fungi represent a critical food source for fungus-consum-
ing invertebrates, while invertebrates mix soil and shred leaf 
litter, allowing nutrients to be cycled through the microbial 
food web (Crowther et al. 2013). The red-backed salaman-
der is a terrestrial keystone predator of the decomposer food 
web that feeds on invertebrates within the forest ecosystem 
(Burton and Likens 1975). 
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 Given a salamander’s capacity to govern the composition 
of invertebrates via predation, it is likely that this top-down 
control will alter the structure of fungal communities, and 
therefore, the functioning (carbon and nutrient cycling) of 
temperate forest ecosystems. 
 To test this, we investigated the impact of the removal of 
the red-backed salamander on the decomposer food web in 
a mesocosm study simulating an upland deciduous forest in 
West Virginia, USA.  

Data Collection Methodology 
A total of 14 salamanders were captured and a block of soil 
including a cover object and all associated leaf litter was ex-
cavated from the exact point of salamander capture and 
placed into a plastic Tupperware box (mesocosm). All mes-
ocosms were treated in a standardized fashion with respect 
to abiotic conditions (temperature, moisture, light) through-
out the duration of the study. Each mesocosm contained one 
salamander at the beginning of the experiment. 
 On day 1 of the experiment, four mesocosms were ran-
domly assigned to the ‘absence’ treatment, and salamanders 
were evicted from these mesocosms. On day 42 of the ex-
periment, an additional five salamanders were randomly 
chosen and evicted from their respective mesocosms (‘evic-
tion’ treatment). Salamanders were allowed to remain in the 
last five mesocosms for the duration of the 84-day (12-
week) experiment (‘presence’ treatment). Table 1 summa-
rizes the three experimental treatment groups. 

Table 1. Experimental design. 

Treatment Label Size Description 

1 absence 4 Salamanders removed on day 1 
2 eviction 5 Salamanders removed on day 42 
3 presence 5 Salamanders not removed 

 
 Soil cores were taken on a weekly basis. Once at the start 
of the experiment (week 0), and once at the end of each week 
for the duration of the 12-week experiment (weeks 1-12). 
Thus, for each of the 14 mesocosms, we took 13 soil cores, 
for a total of 182 samples.  
 DNA was extracted (n=182 total samples) using a fungal-
specific polymerase chain reaction (PCR), and sequencing 
completed on the Illumina MiSeq platform (2 × 250 bp 
reads). Fungal sequences (14,247,564 total DNA sequences) 
were analyzed and quality controlled with the software 
package mothur (Schloss et al. 2009) and clustered into op-
erational taxonomic units (OTUs – e.g. molecular species) 
using VSEARCH (Rognes et al. 2016). A total of 7,860 fun-
gal OTUs were identified and used in subsequent machine 
learning analyses.  

Machine Learning 
Machine learning occurs when a system is able to use expe-
rience, E, to improve its performance at a task, T, as meas-
ured by performance metric, P (Mitchell 1997). 
 For the task of predicting discrete classes (the task in 
which we are interested) a learning system is given experi-
ence in the form of example instances, each labeled with the 
correct corresponding class. From this experience, the learn-
ing system constructs a model that is capable of predicting 
the class for previously unseen instances. This is called clas-
sification.  
 Specific classification techniques include decision tree in-
duction (Quinlan 1986), artificial neural networks (Bishop 
1995), k-nearest neighbor classifiers (Cover, Hart 1967), 
RIPPER (Cohen 1995), support vector machines (Cortes, 
Vapnik 1995), and random forests (Breiman 2001). 

Related Work 

Analysis of Microbial Communities and the Top-
Down Effect 
The use of metabarcoding and high-throughput sequencing 
of microbial communities is a cutting-edge approach to aid 
in the understanding of complex microbial systems that can-
not be studied using traditional microbiological approaches. 
A typical discovery pipeline consists of collecting samples 
(e.g., soil cores), extracting DNA, using high-throughput se-
quencing, and bioinformatics tools to describe and compare 
microbial community composition and diversity between 
samples. 
 The standard approach to data analysis utilizes multivari-
ate statistics to infer patterns between samples. The limita-
tion of multivariate statistics when compared to machine 
learning techniques is the relatively low predictive power 
and limited mechanistic understanding of observed trends. 
In contrast, the capacity of machine learning techniques to 
learn, predict, and model complex biological systems means 
that they have the chance to revolutionize our understanding 
of community and ecosystem ecology. 
 The top-down effect of the red-backed salamander on in-
vertebrate communities has been extensively investigated 
and verified in field and lab studies (Burton and Likens 
1975; Hairston 1987; Petranka 1998; Davic and Welsh 
2004). Crowther et al. (2011, 2013) provide conclusive evi-
dence that these invertebrate communities exert a strong 
top-down control on fungal communities. As such, we ex-
pect that the top-down control by salamanders should cas-
cade to observable effects on the structure of the fungal 
community. 
 Similar to this study, Walker et al. (2014) investigated the 
direct top-down effect of red-backed salamanders on fungal 
communities in a field (i.e., not mesocosm) experiment and 
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concluded that salamanders do not have an overall effect on 
fungal communities but do impact specific groups of fungi. 
However, it is likely that the precise mechanisms of this top-
down control were obscured by the abiotic variability under 
natural field conditions. As such, a controlled lab-based 
study may be necessary to isolate and describe the impacts 
of this top-down salamander control on the composition of 
fungi in soil. 

Machine Learning/Fungal Community and Eco-
system/Food Web Research  
Machine learning is a developing bioinformatics tool for bi-
ologists and ecologists. Despite the clear advantages for 
comprehending complex datasets, machine learning has 
rarely been applied to study terrestrial microbial communi-
ties and food web dynamics. Of the relevant machine learn-
ing studies that have been conducted, Kampichler et al. 
(2000) applied neural network and tree-based models to re-
late the abundance and species composition of Collembola 
(invertebrates) to habitat characteristics (e.g., carbon and ni-
trogen content, microbial biomass, respiration). These ap-
proaches were compared to the predictive power of simple 
statistical models (e.g., regression). They found that neural 
networks and tree-based models outperformed traditional 
statistical models and that invertebrate communities can be 
predicted by total carbon content using these techniques 
(Kampichler et al. 2000). 
 Leckberg et al (2014) employed machine learning to un-
derstand the effects of using differing thresholds to partition 
fungal samples into OTUs. For example, a threshold of 97% 
would mean that two microbes must have at least 97% DNA 
sequence similarity to be considered the same ‘molecular’ 
species. There is debate over the appropriate threshold. 
Their experiments tested the impact that varying the thresh-
old from 90% to 99% had on a classification accuracy of a 
machine learning algorithm. Results showed that the accu-
racy was similar regardless of the threshold used to differ-
entiate the samples. The authors claim that these machine 
learning experiments suggest that microbial community pat-
tern differences are deeply phylogenetically rooted. 

Research Questions 
To examine the role of machine learning in helping under-
stand relationships in this ecosystem, we posed two research 
questions: 
 

Research Question 1: 
Does the presence or absence of a salamander in the mes-
ocosm environment impact the community of fungal spe-
cies? 

 
 

Research Question 2: 
If so, what are the patterns of change in the OTU read 
counts that are associated with the presence or absence of 
the salamander? 

 
We address these questions using machine learning algo-

rithms for classification. Before discussing the experiments, 
however, we describe the data and data preparation process. 

Data Descriptions and Preparation 
The data describes the fungal communities found in 182 soil 
samples. Recall that there were 14 mesocosms from three 
different treatments (presence, eviction, and absence) each 
sampled 13 times over the course of the 12-week study. The 
data description for each sample consisted of 7,860 integers, 
each one indicating the number of times the corresponding 
OTU (molecular species) was detected in the sample. 

Each sample was then augmented with a label to support 
classification. Each sample was labeled as either PR (sala-
mander present) or AB (salamander absent). Table 2 de-
scribes the labeling scheme for each treatment, and Table 3 
shows the number of samples assigned to each class. 

Table 2. Labeling process by treatment 

 Presence 
5 mesocosms 
65 samples 

Eviction 
5 mesocosms 
65 samples 

Absence 
4 mesocosms 
52 samples 

 Class Class Class 
Wk 0 PR PR PR 
Wk 1 PR PR AB 
Wk 2 PR PR AB 
Wk 3 PR PR AB 
Wk 4 PR PR AB 
Wk 5 PR PR AB 
Wk 6 PR PR AB 
Wk 7 PR AB AB 
Wk 8 PR AB AB 
Wk 9 PR AB AB 
Wk 10 PR AB AB 
Wk 11 PR AB AB 
Wk 12 PR AB AB 

Table 3. Sample size for each label 

Label 
Sample 
count 

PR 104 
AB 78 

 
After labeling, a classification file was generated contain-

ing the 7,860 OTU features and the categorical label for each 
of the 182 samples. 

Initial Experimental Methodology 
Our research questions focus on patterns related to either the 
presence or absence of the salamander in the environment. 
‘Present’ or ‘absent’ represents two distinct situations in our 
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data. Thus, from a machine learning perspective, it lends it-
self to analysis through classification algorithms. 

To that end, we performed nine classification experiments 
(Table 4) to build and evaluate models that search for pat-
terns among the fungi that can be leveraged to predict 
whether or not a salamander is present in the mesocosm at 
the time the fungal sample was collected.  

Table 4. Experiments for research questions 

Exp. Induction Algorithm Feature Set 

1 Decision tree induction 
Full set 
 

2 Artificial neural network  
3 RIPPER  
4 Random Forests  

5 Artificial neural network Selected by deci-
sion tree induction 

6 Decision tree induction Selected by wrap-
per method with 
decision tree in-
duction 

7 Artificial neural network 
8 RIPPER 
9 Random Forests 

 
 Evaluation on all nine experiments was performed using 
10-fold cross validation (Kohavi 1995). 

For experiment 5, we used decision tree induction as a 
feature selector. In this experiment, decision tree induction 
was first run using the full feature set. The features used in 
the decision tree were selected as the subset of features to 
use in learning an artificial neural network. 

For experiments 6-9, we used Kohavi and John’s Wrap-
per Feature Selection technique (Kohavi and John 1997). 
This feature selection technique embeds classification 
within the feature selection process to explicitly evaluate the 
utility of a feature subset to support the learning task. The 
classification algorithm we embedded in the wrapper was 
decision tree induction. 

Research Question 1 
To assess our first research question, we examined whether 
or not a classification algorithm could learn a model that ac-
curately predicts whether or not a salamander is present in 
the environment. The intuition behind this is that the accu-
racy of such a model should be directly proportional to the 
extent of the difference in the fungal community between 
environments with a salamander and those without.  

Research Question 2 
To address our second research question, we examined the 
details of the models themselves rather than just the perfor-
mance of those models. The intuition behind this approach 
is that patterns identified and used by the models should pro-
vide the scientific researcher with valuable insight regarding 
which fungi are impacted by the presence or absence of the 
salamander. 
 Not all nine experiments in Table 4 are conducive to this 
analysis. The algorithm must produce a model that the re-
searcher can understand. Of the algorithms explored, only 

decision tree induction and RIPPER produce human-under-
standable models. Thus, this research question is only ad-
dressed by experiments 1, 3, 6 and 8. 

Initial Results 

Research Question 1 
The results for the nine experiments in Table 4 are listed in 
Table 5 below. 

Table 5. Classification results 

Exp. Accuracy AUROC F-Measure 
1 67.22% 0.68 0.71 
2 69.20% 0.73 0.71 
3 68.61% 0.69 0.71 
4 69.20% 0.85 0.78 
5 83.69% 0.92 0.86 
6 79.68% 0.80 0.82 
7 79.97% 0.88 0.83 
8 78.21% 0.79 0.81 
9 78.04% 0.84 0.82 

Research Question 2 
We extracted the rules generated by the decision tree exper-
iments (1 and 6) and the rule induction experiments (3 and 
8). 
 Table 6 illustrates the rules generated during experiment 
8 and is indicative of all the extracted rules. 

Table 6. Rules from experiment 8 

Rule Definition 

1 
(Otu00028 <= 1) and (Otu00224 <= 0) and (Otu00146 <= 0) 
and (Otu00149 <= 2) => State=ABSENT 

2 (Otu00614 >= 1) => State=ABSENT 
3 (Otu00416 >= 2) => State=ABSENT 
4 (Otu00972 >= 1) => State=ABSENT 
5 (Otu00675 >= 3) => State=ABSENT 
6 => State=PRESENT [DEFAULT RULE]  

 
The rules listed in Table 6 are executed in order, proceed-

ing from rule 1 down to rule 6. The first rule satisfied by the 
instance is the one used to classify the instance. If none of 
the first five rules are satisfied by the instance, the default 
rule (rule 6, in this case) is used. 

Observations 
While the accuracies in Table 5 appear to support the exist-
ence of a relationship between the presence (or absence) of 
a salamander and patterns in the fungal communities, the 
discovered rules raised questions about the nature of the pat-
terns. 
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 The rules appear to rely on essentially the presence or ab-
sence of particular OTUs (presence/absence of fungal spe-
cies). This caused us to question whether the patterns are 
due to the response of the fungal community to the presence 
or absence of the salamander or are due to random initial 
differences (noise) in the mesocosm’s fungal communities.  
 Two factors lent weight to this suspicion. First, our data 
set is small compared to the number of features. This in-
creases the chance of overfitting (fitting noise in the training 
data). Second, we realized that our use of standard 10-fold 
cross validation was inappropriate given that multiple sam-
ples are drawn from each mesocosm.  
 The random distribution of samples across the 10-fold 
cross validation experiment would likely result in samples 
from the same mesocosm appearing in both the training set 
and test set. This raises the possibility that the results in Ta-
ble 5 are from the algorithms leveraging differences in the 
initial random conditions of the mesocosms to recognize the 
mesocosms rather that finding differences relating to the 
presence (or absence) of a salamander. 
 We examined this new hypothesis through a series of ex-
periences described in the next section. 

Revised Methodology and Results 
To ensure that idiosyncratic mesocosm patterns in the train-
ing sets do not give the learned model an unfair advantage, 
we must make sure no samples from the mesocosm(s) in the 
test data are present in the training data. 
 To accomplish this, we designed a 14-fold cross valida-
tion approach (14-fold cv) in which each fold consists of the 
13 soil samples from one of the 14 mesocosms. This isolates 
mesocosm-specific patterns in the test set from those in the 
training set. This approach comprised a set of 14 tests. Each 
one using all 169 samples from 13 of the mesocosms to learn 
a classification model that is evaluated using the 13 samples 
from the remaining mesocosm. For this series of experi-
ments, we used decision tree induction. 
 Table 7 includes the both the aggregate error rate on the 
training sets as well as the aggregate error rate on the test 
sets for our three 14-fold cv experiments. The first of these 
experiments was run using the full feature set and appears to 
confirm our suspicions. The low training error coupled with 
the high test error indicate that patterns were found that 
matched the training set but did not generalize to the test set 
– suggesting that the patterns fit the noise in the training set. 

Table 7. Training and test errors from first 14-fold cv experiment 

Exp. # Description Training error Test error 
1 Full set of instances; 

full set of features 4.14% 46.7% 

2 Full set of instances; 
reduced set of features 9.7% 39% 

3 “Balanced” set of in-
stance; reduced set of 
features 

8% 42.9% 

 
 In an effort to reduce the presence of OTUs that are 
unique to specific mesocosms, we ran experiments using 
only the OTUs that are present in the majority of the sam-
ples. Table 7 shows improved performance with this re-
duced feature set, but a deeper look at the results (Table 8 – 
row 1 ‘Imbalanced data’) suggest a bias toward predicting 
“present.” 
 Attempting to test this, our third experiment under-sam-
pled the “present” instances in each training set to create an 
equal balance between the two classes. The overall results 
are slightly worse, but the treatments are more balanced (Ta-
ble 8 – row 2 ‘Balanced data’). 

Table 8. Test error by treatment 

Description 
Presence 
treatment 

Absence 
treatment 

Eviction 
treatment 

Imbalanced 
data 30.8% 46.2% 41.5% 

Balanced 
data 46.2% 46.2% 36.9% 

Conclusion 
We proposed, described, and evaluated a methodology for 
using machine learning to assist in the analysis of a complex 
biological domain that has implications for the global car-
bon cycle and climate change. This is a novel domain for 
machine learning, and one that we believe can benefit from 
the powerful predictive modeling tools it enables. Although 
we did not achieve the accuracies that might be expected in 
other fields, the strength of our predictions were stronger 
than many commonly observed in such complex ecological 
systems using traditional statistical tools (Crowther et al. 
2013). More importantly, we have gained considerable in-
sights into how machine learning can be used to help with 
this important research question. 

The hyper-diverse and complex nature of natural ecolog-
ical communities calls for the use of machine learning ap-
proaches to generate meaningful predictions about the func-
tioning of natural ecosystems under current and future 
global change scenarios. Given the importance of con-
trolled, laboratory-based mesocosm experiments for disen-
tangling the complex relationships in ecosystems, it is im-
portant that we develop a machine learning methodology 
that can be applied to such experiments. We have shown that 
traditional 10-fold cross validation does not work appropri-
ately for our mesocosm-based data, and we have proposed, 
evaluated, and demonstrated the appropriateness of our mes-
ocosm-based N-fold cross validation method. 

Limitations 
The small number of samples in the data is one limitation of 
our study. Unfortunately, the cost and labor-intensive nature 
of the data collection process makes a large sample size 
nearly impossible. 

144



 Another limitation is that the current research ignores the 
biological taxonomy that groups species into higher order-
ranks (i.e., genus, family, order, class, phylum, kingdom). 
This is a limitation because the actual top-down effect might 
be more clearly seen when the data is aggregated at higher 
levels in the taxonomy. The reported research only looked 
for patterns at the OTU (species) level.  

Future Work 
The testing method we established will serve as the basis for 
future machine learning explorations with this and other 
similar data. Additional future work includes similar ma-
chine learning analyses in other related ecosystem studies as 
well as following up on the biological implications of pat-
terns our machine learning work uncovers. We will also 
continue to explore various techniques in our effort to deter-
mine the best methodology for analyzing this domain. 
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