
pyISC: A Bayesian Anomaly Detection Framework for Python

Blerim Emruli
RISE SICS Västerås

SE-722 13 Västerås, Sweden
blerim@sics.se

Tomas Olsson and Anders Holst
RISE SICS

SE-164 29 Kista, Sweden
tol@sics.se, aho@sics.se

Abstract

The pyISC is a Python API and extension to the C++ based
Incremental Stream Clustering (ISC) anomaly detection and
classification framework. The framework is based on para-
metric Bayesian statistical inference using the Bayesian Prin-
cipal Anomaly (BPA), which enables to combine the output
from several probability distributions. pyISC is designed to be
easy to use and integrated with other Python libraries, specif-
ically those used for data science. In this paper, we show how
to use the framework and we also compare its performance
to other well-known methods on 22 real-world datasets. The
simulation results show that the performance of pyISC is
comparable to the other methods. pyISC is part of the Stream
toolbox developed within the STREAM project.

1 Introduction

Anomaly detection usually refers to the automatic detec-
tion of events or behaviors, which substantially deviate from
those considered normal. Typically, anomaly detection is
an unsupervised process, since it makes use of unlabeled
data from previous instances in order to estimate a statis-
tical model of normal behavior, and then compares current
observations against that model. The key assumption is that
the non-anomalous data points are substantially more com-
mon than the anomalous ones, and thus it is possible to dis-
tinguish the anomalous data points from the non-anomalous
ones. Anomaly detection usually encompasses outlier detec-
tion and change detection, and it is closely related to cluster-
ing and forecasting methods (Papadimitriou 2009).

Identifying anomalies is important in a broad range of
disciplines, among others: industrial process monitoring;
condition-based monitoring; autonomic management of IT
services, systems, and infrastructure; surveillance; and med-
ical diagnosis and prognosis. Anomalies are generally cate-
gorized into three types: i) point anomalies where each data
point is analyzed individually compared to all data points, ii)
collective anomalies where data points are analyzed together
in groups, and iii) context anomalies where data points are
analyzed with respect to a context. The anomaly detector
presented in this paper is meant to be used for analyzing
point anomalies. Usually anomaly detectors either output an
anomaly score that measures the anomalousness of data or

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

classify into normal or anomalous data. Both approaches are
considered in this paper.

Since 2001, our institute during several basic and applied
research projects has applied, further developed, and fine-
tuned anomaly detection methods. The findings resulted in
a method called the Bayesian Principal Anomaly (BPA),
which for several years has been successfully used and eval-
uated in several real-world applications. For example, in-
trusion detection (Dey 2009), maritime domain awareness
(Holst et al. 2012a), condition-based monitoring (Holst et al.
2012b), and predictive policing (Holst and Bjurling 2013).
Initially, the BPA method was implemented in C++ and
the framework was coined Incremental Stream Clustering
(ISC), from which the name of the presented framework de-
rives, pyISC. pyISC is designed to be easy to use and easy
to integrate with other data-driven libraries in Python, which
currently is a very popular programming language for data
science.

In the rest of the paper, we first introduce some related
work on anomaly detection. Then, we present some theo-
retical perspective and necessary equations that motivate the
BPA method. Next, we systematically describe the pyISC
framework. Then, in the experiment section, we present
novel experimental results of BPA method through pyISC
on real-world datasets. The last section ends the paper with
a brief evaluation of the framework and the results obtained
from the experiments, and elicits some opportunities and
challenges for future work.

2 Related Work

Anomaly detection is an important problem that has been re-
searched within diverse areas, spanning from statistics and
machine learning to signal processing and information the-
ory. There are several ways how to categorize the anomaly
detection methods (Chandola, Banerjee, and Kumar 2009;
Lavin and Ahmad 2015).

For sake of brevity, here we identify two key categories:
the ones that assume that the data follow some particular
statistical distribution, and the ones that do not hold any as-
sumptions regarding the statistical distribution. The methods
embracing the later are often presented as non-parametric
(Subramaniam et al. 2006). These methods are general and
flexible, since they do not assume or require a prior knowl-
edge about the input data. However, when a parametric form

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

514

is known, the correct parametric method will require much
less data than the non-parametric methods in order to be
useful and applicable to real-world scenarios (Holst et al.
2012b). This is key for many industrial scenarios and appli-
cations where obtaining, recording, and continuously com-
municating a large amount of data (Big Data) are true chal-
lenges. Moreover, event-based data approximately follow a
Poisson distribution. Following this assumption, a paramet-
ric approach is certainly best suited for anomaly detection in
several industrial applications (Dey 2009; Holst et al. 2012a;
2012b; Holst and Bjurling 2013).

For completeness, we include below some open-source
frameworks for anomaly detection in time series. Etsy,
a peer-to-peer e-commerce website, received critical ac-
claim by releasing the Skyline framework as an open-source
project for detecting anomalies in streaming data (Skylin-
eAD 2013). Skyline is written in Python and is no longer
actively maintained. In 2015, Yahoo! and Twitter released
their own open-source frameworks for anomaly detection.
Yahoo’s EGADS was built as a framework to be easily in-
tegrated into an existing monitoring infrastructure and that
is completely written in Java (Laptev, Amizadeh, and Flint
2015). On the other hand, Twitter’s framework monitors user
engagement and aims to perform robust anomaly detection
during breaking news, tweets, sporting events, holiday sea-
sons, and so forth. Twitter’s framework has been also used in
commercial settings and it is written in R (Kejariwal 2013).

The focus of this paper is to briefly introduce the pyISC
framework and present some novel experimental results us-
ing it. A deeper theoretical motivation and experimental
demonstration of pyISC in comparison to other open source
frameworks is outside the scope of this paper.

3 Bayesian Principal Anomaly
The main idea is to build a statistical model over normal in-
stances (assumed to be substantially more), and then com-
pare each incoming instance against that model. The as-
sumption is that the parametric form of the normal instances
is known, but we need to estimate its parameters from the
observed data. Thus, we use Bayesian statistics to find the
predictive distribution of the normal instances, and then,
for a new observation, calculate the probability of getting
something at least as unusual from that distribution. If the
probability is sufficiently low, the observation is considered
anomalous, or at least worth to pay extra attention.

The initial assumption is that the normal instances are
generated by a known probability density p(x|θ) for a set
of parameters θ. By definition, the smaller the probability
of generating a new observation z from the distribution,
the more anomalous is it considered. Thus, the principal
anomaly of a new observation z is the probability of gener-
ating more common instances than z from the distribution:

A(z|θ) =
∫
x∈Ω

p(x|θ),
Ω = {x : p(x|θ) > p(z|θ)}.

(1)

Figure 1 illustrates the principal anomaly. A desirable
property of the principal anomaly is that it is directly con-

nected to the rate of false alarms. For example, if we set a
threshold on the principal anomaly of 1−ε over which an ob-
servation is judged anomalous, the probability that a normal
sample is wrongly detected as anomalous is then simply ε.
In the example show in Figure 1, new observation z’s proba-
bility p(z|θ) is low, therefore A(z|θ) would be considered as
potential anomaly if a threshold for A(z|θ) is low enough.

The principal anomaly, although suitable in the formal
sense, is not so convenient to work with since its anomaly
values are most of the time very close to 1. Thus, a more
useful and intuitive measure to work with, is the negative
logarithm of the complement of the principal anomaly:

Λ(z|θ) = −log(1−A(z|θ)), (2)

which ranges from 0 to ∞ and increases with higher
anomaly, such that each constant step higher represents a
factor lower probability.

Figure 1: The shaded area refers to the principal anomaly
A(z|θ), and the horizontal line refers to p(z|θ).

In the above example, it is assumed that the parameters θ
of the statistical model are known. In practice, however, we
usually do not know the parameter values of the model in
advance, but all we have is a number of observations that is
assumed to be generated by the model. Thus, let us now con-
sider the case when the parameters θ are unknown and we
have to estimate the distribution from a number of samples.
More formally, the Bayesian approach finds the posterior
distribution over the parameters θ given the set of training
samples X:

P (θ|X) ∝ P (X|θ)P (θ) =
∏
i

P (xi|θ)P (θ). (3)

Here, P (θ) is the prior distribution over the parameters.
In general, we use a standard non-informative prior. Using
this reasoning, we can now obtain the principal anomaly by
integration over all possible parameter values:

A(z|X) =

∫
θ

A(z|X)P (θ|X), (4)

which is defined as the Bayesian Principal Anomaly (Holst
and Ekman 2011).

4 The pyISC Framework

The pyISC framework is a Python extension and wrapper of
the ISC Framework that is implemented in C++ (Holst and
Ekman 2011). The framework is available as open source at
http://github.com/stream3/pyisc.

515

By linking the ISC framework to Python a wide set of
advantages are gained. First, the ISC framework becomes
much more accessible to the growing data science commu-
nity that uses Python. Specifically, we have made an ef-
fort to make it compatible with the scikit-learn, which is
widely regarded as the most used open source Python li-
brary for machine learning (Pedregosa et al. 2011). Simi-
lar to scikit-learn, the fundamental data structure for pyISC
is the NumPy array, which underlies almost all numerical
scientific computation in Python. Thus, as a consequence,
many other great data science tools are also made available
to use with ISC. One example is the Pandas library for man-
aging and analyzing data (McKinney 2010). Next, Python
has a less steep learning curve than C++. Third, through
the dependency management systems, such as pypi and the
Anaconda1 or Enthought distributions2, Python libraries are
easier to distribute to many different platforms compared to
C++ software. Fifth, and lastly, Python makes it easier to
add new functionality using the ISC components as building
blocks, which, if needed, can be transferred into C++. Thus,
pyISC may develop towards the direction of adding more
complex functionality, while we focus on keeping the ISC
framework more lightweight and self-contained in order to
target (resource constrained) embedded systems.

There are currently two type of detections supported in
the latest version of pyISC: (1) anomaly detection, where
the output is an anomaly score for each data point, and (2)
outlier detection where a fraction of outliers (contamina-
tions) are known beforehand and the output is a prediction
of whether a data point is an outlier or not.

Besides being based on Bayesian inference, what sets
pyISC apart from other toolkits and libraries is the easiness
to combine different probability distributions to model mul-
tivariate data of different types. For example, instead of us-
ing only a multivariate Gaussian distribution, we can eas-
ily combine one multivariate Gaussian distribution, a simple
Gaussian distribution and a Poisson distribution, depending
on the variable types. Currently, pyISC supports the Gaus-
sian distribution, multivariate Gaussian distribution, two-
sided and one-sided Poisson distributions and an approxi-
mation to the Gamma distribution.

In the following sections, first we show how to create and
use an anomaly detector, then an outlier detector, and in the
final section, we briefly outline the logic of combining more
than one type of probability distribution.

Anomaly Detection

An anomaly detector is constructed from a set of component
distributions that defines the models used by the anomaly
detector. Then, to train the anomaly detector, the fit method
is called with some training data, and anomaly scores are
computed with the anomaly score method. Below, we show
how to create and train a bivariate Gaussian distribution and
how to compute anomaly scores:

import numpy as np
import p y i s c

1https://www.continuum.io
2https://www.enthought.com

Get some da ta :
X = [[2 0 , 4] , [1 2 0 0 , 1 3 0] , [1 2 , 8] , [2 7 , 8] , [−9 ,

1 3] , [2 , −6]]

Cre a t e an anomaly d e t e c t o r where t h e numbers are
column i n d i c e s o f t h e da ta :

a n o m a l y d e t e c t o r = p y i s c . leftmarginAnomalyDetec to r (
p y i s c . leftmargin P G a u s s i a n ([0 , 1])

)

The anomaly d e t e c t o r i s t r a i n e d
a n o m a l y d e t e c t o r . leftmargin f i t (np . a r r a y (X))

Then , we can compute t h e anomaly s c o r e s f o r t h e
da ta :

a n o m a l y d e t e c t o r . leftmargin a n o m a l y s c o r e (np . a r r a y (X))

The r e s u l t i s anomaly s c o r e s (w i t h two d e c i m a l
p r e c i s i o n) :

a r r a y ([0 . 1 0 , 1 . 0 8 , 0 . 1 0 , 0 . 0 5 , 0 . 6 7 , 0 . 7 7])

By comparing the values in the list, the second elements eas-
ily stands out as the “most anomalous”.

Similarly, we can create an anomaly detector with the
Gamma or Poisson distributions where the numbers are the
column indices into the input data:

p y i s c . leftmarginP Gamma (f r e q u e n c y c o l u m n =0 ,
p e r i o d c o l u m n =1)

p y i s c . leftmargin P P o i s s o n (f r e q u e n c y c o l u m n =0 ,
p e r i o d c o l u m n =1)

In case we have more than one known class of data points,
it is also possible to train the detector to make a separate
model for each class. In this case, if y is an array with two or
more class labels, the anomaly detector can still be similarly
trained and likewise compute the anomaly scores:

a n o m a l y d e t e c t o r . leftmargin f i t (X, y)

a n o m a l y d e t e c t o r . leftmargin a n o m a l y s c o r e (X, y)

Outlier Detection

In a similar fashion as when we create an anomaly detector,
we can create an outlier detector. The outlier detector dif-
fers from the anomaly detector in that a fraction of outliers
(contaminations) are known beforehand and the output is a
prediction of whether a new data point is an outlier or not.
Consequently, the outlier detector can dynamically select a
threshold to decide when a data point is an outlier or inlier
from the training data. Below, we use the same data set as in
previous section but now we know that there is one anoma-
lous data point “an outlier” and five inliers in the data set:

import numpy as np
import p y i s c

Data w i t h an o u t l i e r i n e l e m e n t 2 :
X = [[2 0 , 4] , [1 2 0 0 , 1 3 0] , [1 2 , 8] , [2 7 , 8] , [−9 ,

1 3] , [2 , −6]]

516

Cre a t e an o u t l i e r d e t e c t o r w i t h t h e known f r a c t i o n
o f o u t l i e r s : 1 o f 6 :

o u t l i e r d e t e c t o r = p y i s c .
leftmargin S k l e a r n O u t l i e r D e t e c t o r (

c o n t a m i n a t i o n = 1 . 0 / l e n (X) ,
component models = p y i s c . leftmargin P G a u s s i a n ([0 , 1])

)

The o u t l i e r d e t e c t o r i s t r a i n e d
o u t l i e r d e t e c t o r . leftmargin f i t (np . a r r a y (X))

Then , t h e da t a i s c l a s s i f i e d i n t o b e i n g o u t l i e r s
or n o t :

o u t l i e r d e t e c t o r . leftmargin p r e d i c t (np . a r r a y (X))

The r e s u l t i s c l a s s i f i c a t i o n o f o u t l i e r s (−1) and
i n l i e r s (1) :

a r r a y ([1 , −1, 1 , 1 , 1 , 1 , 1])

Thus, we are able to detect the second element as an outlier.
The outlier detector follows the API used in scikit-learn for
outlier detection with known contamination.3

Combining Distributions

A feature that makes pyISC different from other machine
learning libraries is the possibility to combine different dis-
tributions when creating a detector. This is achieved by pro-
viding a list of distributions instead of only providing a sin-
gle distribution to the constructor.

For example, we can create an anomaly detector that com-
bines a one-sided Poisson distribution, a two-sided Poisson
distribution, and a Gaussian distribution like this:

a n o m a l y d e t e c t o r = p y i s c . leftmarginAnomalyDetec to r (
component models =[

leftmargin P P o i s s o n O n e s i d e d (1 , 0) ,
leftmargin P P o i s s o n (2 , 0) ,
leftmargin P G a u s s i a n (3)

] ,
o u t p u t c o m b i n a t i o n r u l e = p y i s c . leftmargincr max

)

Moreover, there are available combination methods, such as:
cr max, cr min, and cr plus; where cr max returns the max-
imum of the anomaly scores from each probability distri-
bution, cr min returns the minimum, while cr plus adds all
anomaly scores together.

5 Experiments

In the following sections, we will compare the pyISC frame-
work with the standard methods for anomaly detection and
outlier detection on real-world datasets.

Anomaly Detection

For testing the anomaly detection performance we used the
same experimental setup described previously (Quinn and
Sugiyama 2014), where the authors present the least-square
anomaly detection algorithm (LSAD) and compares it with
the one-class SVM (OCSVM) (Schölkopf et al. 1999), the

3http://scikit-learn.org/stable/modules/outlier detection.html

distance of the k-nearest neighbor (KNN) (Chandola, Baner-
jee, and Kumar 2009) and the distance to the closest cluster
center using k-means (KM) (Chandola, Banerjee, and Ku-
mar 2009). We also add the isolation forest detector (IF)
(Liu, Ting, and Zhou 2012) and the pyISC anomaly detec-
tor (PAD) to the compared anomaly detectors. The imple-
mentations (except LSAD and PAD) are the taken from the
scikit-learn library (Pedregosa et al. 2011).

We have followed same initialization as in a previous
study (Quinn and Sugiyama 2014), by using the default val-
ues from the LSAD implementation, OCSVM had its de-
fault values except for gamma (the kernel width) that was
set to the same as the gamma parameter of the LSAD (au-
tomatically set), KNN used k=10 nearest neighbors (or the
number of data points if less than 10), and KM used 20
clusters (or the number of data points if less than 20). For
IF we also used the provided default values, while for the
PAD, we used a simple, but scalable, set up with a single
Gaussian distribution for each data feature and the combi-
nation rule was set to adding the resulting anomaly scores
(cr plus). Note that pyISC supports multivariate Gaussian
distributions, however, since high-dimensional data will re-
sult in large covariance matrices, we decided to use only
univariate distributions in the experiments and despite this
impediment achieved acceptable results.

We also used 22 real-world datasets from the libsvm web-
site4 for evaluation (Quinn and Sugiyama 2014). For each
dataset, we used the first class (class labels are numerically
ordered from small to large values) as inliers and we used the
second class as outliers, while the remaining classes were
ignored. We evaluated the methods using stratified five-fold
cross-validation that keeps the number of inliers and outliers
equal in each fold. For each fold, we first trained the meth-
ods using only the inliers from the training set, and then we
computed the anomaly scores on the test set.

The area under the curve (AUC) scores were then aver-
aged over the five folds for each dataset and method. For
LSAD, OCSVM, KNN and KM, the data was normalized
using the training data to have mean 0.0 and standard devia-
tion 1.0. Normalization did not affect the performance of IF
or PAD.

The resulting mean AUC scores are shown in Table 1,
where the bold indicates when there is a maximum AUC
score and cursive indicates that there is a significant dif-
ference between a score and the maximum score across the
methods. As significance test, we used the paired t-test with
significance level p = 0.05. As can be seen, the performance
of the methods varies a lot over the datasets, so there is no
single best method for all datasets. Table 2 shows a sum-
mary of the performance of the anomaly detectors in terms
of the number of datasets where they have the highest mean
AUC and the number of instances where there is no statis-
tical significance between the performance and the highest
AUC. Obviously, OCSVM is a clear winner. OCSVM has
the 7 highest mean AUC, followed by KM with 6 and KNN
and PAD with 5 highest mean AUC. The OCSVM total is
20 followed by LSAD and KM that have 17, while KNN

4https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

517

Table 1: The mean AUC for each tested anomaly detection
method.

Dataset Method

d N LSAD OCSVM KNN KM IF PAD

australian 14 690 0.815 0.839 0.845 0.816 0.877 0.848
breast-cancer 10 683 0.982 0.987 0.987 0.988 0.995 0.992
cod-rna 8 59535 0.792 0.838 0.841 0.821 0.685 0.654
colon-cancer 2000 62 0.719 0.812 0.750 0.812 0.700 0.700
diabetes 8 768 0.530 0.533 0.439 0.532 0.568 0.528
dna 180 1532 0.941 0.944 0.970 0.962 0.649 0.942
duke 7129 44 0.800 0.750 0.680 0.812 0.688 0.688
gisette 5000 7000 0.791 0.804 0.814 0.827 0.498 0.828
glass 9 146 0.805 0.838 0.648 0.848 0.714 0.671
heart 13 270 0.773 0.836 0.824 0.782 0.800 0.829
ijcnn1 22 49990 0.727 0.730 0.732 0.628 0.582 0.576
ionosphere 34 351 0.221 0.321 0.339 0.240 0.378 0.401
letter 16 1161 0.999 0.999 0.993 0.996 0.960 0.917
leu 7129 72 0.940 0.933 0.940 0.933 0.533 0.880
mnist 780 14780 0.946 0.955 0.959 0.949 0.965 0.969
mushrooms 112 8124 0.985 0.999 0.981 0.986 0.908 0.971
pendigits 16 1559 1.000 1.000 0.999 0.999 0.996 1.000
satimage 36 1551 1.000 1.000 1.000 1.000 0.999 0.996
sonar 60 208 0.699 0.591 0.525 0.668 0.618 0.658
usps 256 2199 0.991 0.991 0.994 0.994 0.988 0.995
vowel 10 180 0.997 1.000 0.741 1.000 0.639 0.435
wine 13 130 1.000 1.000 1.000 1.000 0.964 1.000

Table 2: The table shows the number of datasets that had the
highest mean AUC for each method and number of times its
AUC was not significantly different (at p = 0.05). The last
row shows the total number of datasets with highest or not
significantly different value.

LSAD OCSVM KNN KM IF PAD

Highest AUC 4 7 5 6 3 5
Not significant 13 13 11 11 7 11

Total 17 20 16 17 10 16

and PAD have 16. It would not be surprising that the non-
parametric methods perform better than PAD because of its
stronger assumptions of independent Gaussian distributed
data. However, we can conclude that PAD performs rather
well despite that the “true” data distribution is not modeled.

Outlier Detection

For the outlier detection evaluation, we again compared a
set of methods on the same datasets as for the anomaly
detection. However, this time we assume that the training
data contains up to 25% outliers, but depending on the
number of actual outliers in the training data, it can be a
smaller fraction. The compared methods are the one-class
SVM (OCSVM) (Schölkopf et al. 1999), isolation forest (IF)
(Liu, Ting, and Zhou 2012), robust covariance estimation for
robust elliptical Gaussian fitting (ELLIP) (Rousseeuw and
Driessen 1999) and the pyISC outlier detector (POD). All
outlier detectors are from the scikit-learn library (Pedregosa
et al. 2011), except POD.

The OCSVM was initialized with default parameters
and by setting nu = 0.95 ∗ outlier fraction + outlier
fraction/5.0. For the IF and ELLIP, the contamination pa-
rameter was set to the outlier fraction while the remaining
parameters had their default values. Similar to the anomaly
detector, the POD was initialized with a single Gaussian
distribution for each feature in the dataset and the rule of

Table 3: The mean classification accuracy for each tested
outlier detection method.

Dataset Method

d N OCSVM ELLIP IF POD

australian 14 690 0.446 – 0.681 0.716
breast-cancer 10 683 0.351 0.697 0.963 0.927
cod-rna 8 59535 0.646 0.589 0.599 0.574
colon-cancer 2000 62 0.485 0.390 0.645 0.613
diabetes 8 768 0.651 0.359 0.370 0.361
dna 180 1532 0.514 – 0.514 0.806
duke 7129 44 0.539 0.378 0.567 0.679
gisette 5000 7000 0.505 – 0.470 0.654
glass 9 146 0.629 – 0.554 0.473
heart 13 270 0.444 – 0.656 0.700
ijcnn1 22 49990 0.820 – 0.829 0.829
ionosphere 34 351 0.245 – 0.308 0.253
letter 16 1161 0.566 0.793 0.633 0.745
leukemia 7129 72 0.583 0.223 0.515 0.582
mnist 780 14780 0.533 – 0.340 0.344
mushrooms 112 8124 0.657 – 0.780 0.844
pendigits 16 1559 0.500 0.960 0.747 0.992
satimage 36 1551 0.756 0.990 0.923 0.959
sonar 60 208 0.564 0.505 0.466 0.448
usps 256 2199 0.572 – 0.365 0.307
vowel 10 180 0.500 0.550 0.489 0.550
wine 13 130 0.768 0.732 0.830 0.922

combination was set to adding the resulting anomaly scores,
while the contamination parameter was again set to the out-
lier fraction. Similarly to the anomaly detection evaluation,
we use stratified five-fold cross-validation. For each fold, we
trained the method using all the inliers in the training set but
this time we also added outliers from the training set up to
25% of the used training data, and then, we evaluated the
method on the test set. Each method was trained knowing
the true fraction of outliers in the training data. As evaluation
metric, we have used the accuracy of classifying the test set
into inliers and outliers. Table 3 shows the mean classifica-
tion accuracy from the evaluation. As before, bold indicates
single maximum scores and cursive indicates that there is a
significant difference between the score and the maximum
score.

We used the paired t-test for testing statistical significance
with significance level p = 0.05. The ELLIP method ran
into problems with several datasets where it did not man-
age to fit the data, which is indicated with “–”. Similar to
the evaluation of anomaly detection, Table 4 shows a sum-
mary of the results by counting the number of highest mean
accuracy scores, the number of scores not significantly dif-
ferent from the highest score, and their total. This time we
have a clear winner in the POD that has the highest score
for 10 datasets and non-significantly different for 5, thus in
total 15. The closest IF with a total of 11 and OCSVM with
10. Thus, we can conclude that POD is best among the com-
pared outlier detectors.

6 Summary and Conclusions

This paper has presented an open source Bayesian anomaly
detection framework called pyISC.

pyISC is a Python API and extension to the C++ based
Incremental Stream Clustering (ISC) anomaly detection and

518

Table 4: The table shows the number of datasets where each
method had the highest mean accuracy value and number of
times the accuracy value was not significantly different (at
p = 0.05). The last row shows the total number of datasets
with highest or not significantly different values.

OCSVM ELLIP IF POD

Highest AUC 7 3 3 10
Not significant 3 2 8 5

Total 10 5 11 15

classification framework (Holst and Ekman 2011). For com-
pleteness, we briefly included some related work. Next, we
described the Bayesian Principal Anomaly (BPA) method
that underlies pyISC and uses Bayesian statistical inference
to provide a probability-based anomaly score. Third, we
compared the pyISC anomaly detector to a set of standard
methods and other available methods as Python implemen-
tations. We concluded that pyISC detectors had compara-
ble performance to most of the other methods when doing
anomaly detection using the AUC performance metric and
better performance doing outlier detection when a fraction
of outliers is known in the training data. The results are
rather surprising since the other methods do not assume any
particular probability distribution for the data and we did
not select a statistical model that would fit the data well. In-
stead, we used a naive assumption of a univariate Gaussian
distribution for each attribute, and thereby, the attributes are
independent. This indicates that there is a great potential in
improving the performance by selecting distributions that fit
the data well. Thus, a potential future work would be to au-
tomatically select probability distributions for a dataset and
thereby improve the performance of pyISC.

7 Acknowledgements

This work is funded by VINNOVA, grant number 2012-
01277, together with Atlas Copco, Örebro and ABB Crane
Systems, Västerås. Authors would like to thank the personal
at Atlas Copco and ABB Ports for their help during the re-
search.

References

Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly
detection: A survey. ACM computing surveys (CSUR) 41(3):15.
Dey, C. 2009. Reducing IDS False Positives Using Incremental
Stream Clustering (ISC) Algorithm. MSc thesis, Department
of Computer and Systems Sciences, Royal Institute of Technol-
ogy, Sweden.
Holst, A., and Bjurling, B. 2013. A bayesian parametric statis-
tical anomaly detection method for finding trends and patterns
in criminal behavior. In Intelligence and Security Informatics
Conference (EISIC), 2013 European, 83–88. IEEE.
Holst, A., and Ekman, J. 2011. Incremental stream clustering
for anomaly detection and classification. In Proceedings of the
11th Scandinavian Conference on Artificial Intelligence, 100–
107. IOS Press.

Holst, A.; Bjurling, B.; Ekman, J.; Rudström, Å.; Walle-
nius, K.; Björkman, M.; Fooladvandi, F.; Laxhammar, R.; and
Trönninger, J. 2012a. A joint statistical and symbolic anomaly
detection system: Increasing performance in maritime surveil-
lance. In Information Fusion (FUSION), 2012 15th Interna-
tional Conference on, 1919–1926. IEEE.
Holst, A.; Bohlin, M.; Ekman, J.; Sellin, O.; Lindström, B.; and
Larsen, S. 2012b. Statistical anomaly detection for train fleets.
AI Magazine 34(1):33.
Kejariwal, A. 2013. Twitter anomaly detection. https://
github.com/twitter/AnomalyDetection. [Online; accessed 15-
11-2016].
Laptev, N.; Amizadeh, S.; and Flint, I. 2015. Generic and scal-
able framework for automated time-series anomaly detection.
In Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 1939–1947.
ACM.
Lavin, A., and Ahmad, S. 2015. Evaluating real-time anomaly
detection algorithms–the numenta anomaly benchmark. In
2015 IEEE 14th International Conference on Machine Learn-
ing and Applications (ICMLA), 38–44. IEEE.
Liu, F. T.; Ting, K. M.; and Zhou, Z.-H. 2012. Isolation-based
anomaly detection. ACM Transactions on Knowledge Discov-
ery from Data (TKDD) 6(1):3.
McKinney, W. 2010. Data structures for statistical computing
in python. In Proceedings of the 9th Python in Science Confer-
ence, 51 – 56.
Papadimitriou, S. 2009. Anomaly detection on streams. In
Encyclopedia of Database Systems. Springer. 88–90.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Re-
search 12:2825–2830.
Quinn, J. A., and Sugiyama, M. 2014. A least-squares ap-
proach to anomaly detection in static and sequential data. Pat-
tern Recognition Letters 40:36–40.
Rousseeuw, P. J., and Driessen, K. V. 1999. A fast algorithm for
the minimum covariance determinant estimator. Technometrics
41(3):212–223.
Schölkopf, B.; Williamson, R.; Smola, A.; and Shawe-Taylor,
J. 1999. Sv estimation of a distribution’s support. Advances in
neural information processing systems 12.
SkylineAD. 2013. Etsy Skyline. https://github.com/etsy/
skyline. [Online; accessed 15-11-2016].
Subramaniam, S.; Palpanas, T.; Papadopoulos, D.; Kalogeraki,
V.; and Gunopulos, D. 2006. Online outlier detection in sensor
data using non-parametric models. In Proceedings of the 32nd
international conference on very large data bases VLDB, 187–
198.

519

