
Learning Slowly To Learn Better:
Curriculum Learning for Legal Ontology Population

Cristian Cardellino, Milagro Teruel,
Laura Alonso Alemany

Natural Language Processing Group
FaMAF-UNC, Cordoba, Argentina

{cardellino,teruel,alemany}@famaf.unc.edu.ar

Serena Villata
Université Côte d’Azur

CNRS, Inria, I3S, France
villata@i3s.unice.fr

Abstract

In this paper, we present an ontology population approach for
legal ontologies. We exploit Wikipedia as a source of man-
ually annotated examples of legal entities. We align YAGO,
a Wikipedia-based ontology, and LKIF, an ontology specif-
ically designed for the legal domain. Through this align-
ment, we can effectively populate the LKIF ontology, with
the aim to obtain examples to train a Named Entity Recog-
nizer and Classifier to be used for finding and classifying
entities in legal texts. Since examples of annotated data in
the legal domain are very few, we apply a machine learn-
ing strategy called curriculum learning aimed to overcome
problems of overfitting by learning increasingly more com-
plex concepts. We compare the performance of this method
to identify Named Entities with respect to batch learning as
well as two other baselines. Results are satisfying and foster
further research in this direction.

Introduction

Ontologies are the main mechanism for domain-specific
knowledge representation as they allow for an exhaustive
characterization of such domain. A special class of on-
tologies are the legal ones which specify legal concepts in
a formal way, such that reasoning mechanisms can then
be exploited over such information (Sartor et al. 2013).
Many legal ontologies have been proposed in the litera-
ture with different purposes, e.g., (Hoekstra et al. 2007;
Athan et al. 2015). However, their manual creation and
maintenance is a very time-consuming and challenging task:
domain-specific information needs to be created by legal ex-
perts to ensure compliance with the regulations we aim at
modeling and capture their full semantics. First of all, le-
gal ontologies need to specify carefully the legal concepts
highlighting possible conflicts among them and further sub-
tle issues specific of the legal domain, and second, such on-
tologies have little coverage, i.e., they have a small number
of entities and only very few annotated legal corpora exist
where entities can be gathered from. This lack of coverage
of legal ontologies makes it difficult to train legal Named
Entity Recognition (NER) systems, and to support Entity
Linking to mine legal documents.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we present an approach to legal ontology
population with the aim to find new entities to ease the next
Entity Linking step. We apply a learning strategy, called cur-
riculum learning (Bengio et al. 2009), that can deal with the
lack of examples that characterizes such kind of ontologies,
but that still produces few errors only. Roughly, curricu-
lum learning is a method that trains a model by presenting
increasingly more complex concepts. In our approach, we
implement curriculum learning to learn progressively finer
grained classes using a neural network classifier.

We choose Wikipedia, a source of manually annotated ex-
amples of legal entities, to create our legal domain Named
Entity Recognizer and Linker. However, this choice presents
the following caveats: (i) Wikipedia-linked ontologies (e.g.,
YAGO – Yet Another Great Ontology) are not specifically
targeted to represent the legal domain, (ii) Wikipedia as a
source of annotated examples has the peculiarity that not all
instances of a given entity are tagged as such, although all
that are tagged as such can be assumed to be tagged cor-
rectly, and (iii) Wikipedia does not belong to any genre of
legal document, even if some of its articles dwell in the le-
gal domain. To address these shortcomings, we align the the
YAGO ontology1, i.e., a huge semantic knowledge base, de-
rived from Wikipedia, WordNet and GeoNames, with the
LKIF (Legal Knowledge Interchange Format) ontology 2,
an ontology specifically designed for modeling legal knowl-
edge. In this way, we are not only transferring the semantics
of LKIF to Wikipedia entities, but also populating the as-
sertion components (i.e., A-Box) of the LKIF ontology with
Wikipedia entities and their mentions.

We compare the performance of curriculum learning in
the Named Entity Recognition and Classification (NERC)
task with respect to those obtained by applying batch learn-
ing, a method which generates the best predictor by learning
on the entire training data set at once. Results are promising,
and foster research in this direction.

The rest of the paper is as follows. First, we discuss the
related literature with respect to the proposed approach, and
second, we describe our approach to ontology population
via curriculum learning. Finally, the evaluation is reported,
together with the error analysis.

1http://bit.ly/1mgcWhJ
2http://www.estrellaproject.org/lkif-core/

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

252



Related work

The task of Named Entity Recognition and Linking has
gained a lot of popularity since the ’90es, and several bench-
mark datasets to test, adapt, and improve entity recognition
and linking have been proposed in the literature. The main
topical domains considered to construct these benchmarks
have been for instance science, sports, politics, music, catas-
trophic events, leading to the development of corpora ex-
tracted from news articles (Hoffart et al. 2011), tweets (Der-
czynski et al. 2015), blog articles (Waitelonis, Exeler, and
Sack 2015), scientific articles (Finkel et al. 2004). However,
up to our knowledge, no corpus has been built to test, adapt,
and improve entity recognition and linking over legal texts.

In the literature, only few approaches addressed the
problem of legal ontology population. More precisely,
(Bruckschen et al. 2010) describes an ontology population
approach to legal data, whose experimental evaluation is
run over a corpus of legal and normative documents for
privacy. Ontology population is then obtained through the
task of NER. (Lenci et al. 2009) report an experiment on an
ontology learning system called T2K. They use NLP and
Machine Learning methods to extract terms and relations
from free text. The experimental evaluation is conducted
on Italian legal texts, and it is able to identify the classes
of the ontology, as well as many hyponymy relations. Re-
lated approaches are presented by (Humphreys et al. 2015)
and (Boella et al. 2014). The former discusses the results
of the classification and extraction task of norm elements
in European Directives using dependency parsing and se-
mantic role labeling. This approach focuses on how to ex-
tract prescriptions (i.e., norms) and other concepts (e.g., rea-
son, power, obligation, nested norms) from legislation, and
how to automate ontology construction. Similarly, (Boella
et al. 2014) propose an approach that provides POS tags and
syntactic relations as input of a SVM to classify textual in-
stances to be associated to legal concepts.

The main difference with all the above mentioned ap-
proaches is the generality of the approach we propose in
this paper, that can be easily adapted to any legal ontol-
ogy and that shows good performance via curriculum learn-
ing. Moreover, the goal of our approach, i.e., Named Entity
Recognition and Entity Linking, and the populated ontolo-
gies respectively, are different.

Ontology population via curriculum learning

One of the main issues in learning Named Entity Recog-
nition and Classification with very few examples is that of
data sparseness (i.e., small coverage and lack of generaliza-
tion), normally expressed as overfitting models. Ontologies
are a valuable resource to overcome this limitation. They
represent concepts organized in different ways, and one of
them in particular, the is-a relation, can be considered as a
representation of abstraction. Therefore, we can exploit this
relation to introduce abstraction and avoid overfitting.

Curriculum learning (CL) is a continuation method (All-
gower and Georg 2012), i.e., an optimization strategy for
dealing with minimizing non-convex criteria, like neural
network classifiers. The basic idea of this method is to first

optimize a smoothed objective, and then gradually consider
less smoothing, with the intuition that “a smooth version of
the problem reveals the global picture” (Bengio et al. 2009).
This method allows us to take advantage of the abstractions
provided by ontologies, as more general categories serve as
smoothed objective, to guide the learning process into more
concrete concepts, serving as less smoothed objectives.

Wikipedia has been used as a corpus for NERC because
it provides a fair amount of naturally occurring text where
(part of the) entities are tagged and linked to an ontology,
i.e., the DBpedia (Hahm et al. 2014) ontology. One of the
shortcomings of such approach is that not all entity mentions
are tagged in Wikipedia, but it is a starting point to learn a
first version of a NERC tagger, which can then be used to
tag further corpora and alleviate the human annotation task.

Ontology alignment

Our target domain is formally represented by the well-
known LKIF ontology (Hoekstra et al. 2007), which pro-
vides a model for core legal concepts. The LKIF core legal
ontology consists of 15 modules, each of which describes a
set of closely related concepts from both legal and common-
sense domains. In order to align the semantics of LKIF to the
relevant annotated entities in Wikipedia, we manually define
a matching from the three modules that form the LKIF legal
ontology, namely legal action (i.e., a number of legal con-
cepts related to action and agent, such as public acts, public
bodies, legal person), legal role (i.e., a small number of legal
concepts related to roles, legal professions) and norm (i.e.,
the expression module where norms are defined as qualifica-
tions), and YAGO (Suchanek, Kasneci, and Weikum 2007),
a Wikipedia-based principled ontology.

We do not match relations but only classes. The align-
ment is from a node in one ontology to another node in
the other ontology. All children nodes of a connected node
are connected by their most immediate parent. Therefore,
all children nodes of the aligned YAGO nodes are effec-
tively connected to LKIF through this matching. There is
a total of 69 classes in this portion of the LKIF ontology,
of which 30 could be mapped to a YAGO node. Addi-
tionally, 9 YAGO nodes are mapped as children of 5 LKIF
classes. 55% of the classes of LKIF could not be mapped to
a YAGO node, because they were too abstract (i.e., Norma-
tively Qualified), there was no corresponding YAGO node
circumscribed to the legal domain (i.e., Mandate), there was
no specific YAGO node (i.e., Mandatory Precedent) or the
YAGO concept was overlapping but not roughly equivalent
(as for “agreement” or “liability”)3.

Training corpus

To build our corpus, we downloaded a XML dump of the En-
glish Wikipedia4 from March 2016, and we processed it via
the WikiExtractor (of Pisa 2015) to remove all the XML tags
and Wikipedia markdown tags, but leaving the links. We
extracted all those articles that contained a link to an entity

3The alignment is available at http://bit.ly/2lqPgdr.
4https://dumps.wikimedia.org/

253



of YAGO that we aligned to LKIF. We considered as tagged
entities only the spans of text that are an anchor for a hyper-
link whose URI is one of the mapped entities. We obtained a
total of 4,5 million mentions, spanning a total of 10 million
words, corresponding to 102,000 unique entities. Then, we
extracted sentences in each document that contained at least
one named entity.

We consider the problem of NERC as a word-based rep-
resentation, i.e., each word represents a training instance.
Words within the anchor span belong to the I class (Inside
a Named Entity), others to the O class (Outside a Named
Entity). The O class made more than 90% of the instances.
This imbalance in the classes results in largely biased classi-
fiers, so we randomly subsampled non-named entity words
to make it at most 50% of the corpus.

The corpus was divided into three parts: 80% of the cor-
pus was selected for training, 10% was selected for testing,
and finally 10% was left for validation. The elements on
each part were randomly selected to preserve the proportion
of each class in the original corpus, with a minimum of one
instance of each class appearing in each part.

Features

We represented examples with a subset of the features pro-
posed by (Finkel, Grenager, and Manning 2005) for the
Stanford Parser CRF-model. For each instance (each word)
we used: current word, current word PoS-tag, all the n-
grams (1 <= n <= 6) of characters forming the prefixes and
suffixes of the word, the previous and next word, the bag of
words (up to 4) at left and right, the tags of the surround-
ing sequence with a symmetric window of 2 words and the
occurrence of a word in a full or part of a gazetteer. The fi-
nal vector characterizing each instance had more than 1.5e6
features, too large to be handled due to memory limitations.
In addition, the matrix was largely sparse. As a solution, we
applied a simple feature selection technique using Variance
Threshold. We filtered out all features with variance less
than 2e-4, reducing the amount of features to 10854.

Experimental setting
Curriculum learning is based on the idea of learning grad-
ually by taking the model learnt for simpler (abstract) con-
cepts as starting point for a model with more complex (con-
crete) concepts, using a Multilayer Perceptron (MLP).

As a comparison ground, we also trained a linear classi-
fier, namely a Support Vector Machine (SVM) with a linear
kernel, and the Stanford CRFClassifier model for NER. De-
cision trees and Naive Bayes (NB) classifiers were discarded
because the cardinality of the classes was too large for those
methods to handle.

We applied curriculum learning with the following ratio-
nale. First, a neural network with randomly set weights is
trained to distinguish NE vs. non-NE. Once this classifier
has converged, the weights obtained are used as the starting
point of a classifier with a similar architecture (in number
of layers and number of neurons per layer), but with more
specific classes. In our case, the classification divides the ex-
amples in person/non-person/non-NE. Again when this clas-
sifier converges, its weights are used for the next level of

classification, advancing until reaching the last step where
classes are the most specific ones.

Let us consider the following example: we start with the
text “Treaty of Rome”, then in the first iteration we train the
classifier to learn it as a NE; the second iteration classifies
it as a non-person; in the third iteration it falls in the Treaty
class, and finally, in the last iteration, it is linked to the URI
Treaty of Rome.

In this paper, we use 4 levels of generalization of classes:

1. Named Entity / non Named Entity
2. Named Entities Person / Non-Person
3. Named Entities LKIF Classification (NEL): this iteration

classifies into classes of the LKIF ontology, comparable
to classical Named Entity Classification.

4. Named Entities URIs Classification (NEU): Each mention
of a Named Entity is classified as its most specific YAGO
node, comparable to Entity Linking.

These four levels are not based on the structure of the under-
lying ontologies, but they represent a coarse-grained stratifi-
cation of the concepts by their generality.

Figure 1 shows the two neural networks architectures we
implemented. In a first approach to curriculum learning, we
take a neural network, and each iteration of CL only modi-
fies the output layer to suit the abstraction of the classes to
the corresponding step of the CL iteration, leaving the hid-
den layers exactly the same. For the first iteration of CL
(NER), the output layer has two neurons (NE and non-NE),
the next CL iteration replaces it with a new output layer with
3 neurons (Person, Non-Person and Non-NE), and so on, re-
placing the output layer according to the classification task
(NEL, NEU).All the layers prior to the last one are

Our second approach to curriculum learning consists of
gradually removing extra layers of the network. The first
iteration (NER) has a hidden layer with a number of neurons
equal to the number of classes of YAGO URIs, the following
layer has as many neurons as the number of classes of the
NEL iteration, the following layer represents the classes of
the NEP iteration and the output layer has the two neurons
of the NER iteration. When the classifier converges the NER
layer is removed and the NEP layer is used as output layer
for the next iteration, and so on until the last iteration, that
uses the biggest and innest layer, NEU, as the output layer.

We carried out experiments with one, two and three hid-
den layers, but a single hidden layer, smaller than the input
layer, performed better, so we decided for this configuration.

Evaluation

In order to assess the goodness of the Curriculum Learning
approach, we evaluated the accuracy in the test portion of the
corpus of different approaches with respect to the tasks of
NERC (classifying entity mentions into LKIF classes) and
NE Linking (classifying mentions into YAGO URIs).

We evaluated a neural network classifier with the config-
uration described in the previous section, and we consid-
ered three settings: batch learning, curriculum learning by
changing the output layer, and curriculum learning by re-
moving layers. We also evaluated a Support Vector Machine

254



Figure 1: Architectures of neural networks used in Curriculum Learning.

to compare a linear classifier against the neural network ap-
proach. As an additional baseline, we obtained the perfor-
mance of the Stanford NER system (Stanford NLP Group
2016), training it with our corpus with Wikipedia annota-
tions for the LKIF classes. We did not apply it for Entity
Linking to YAGO URIs because this tool is not intended for
Entity Linking. For the Stanford NERC, we use the same
features as the MLP classifiers, except the features of pres-
ence in gazetteers and the PoS tags of surrounding words.

To evaluate the performance, we computed accuracy, pre-
cision and recall in a word-to-word basis in the test portion
of our corpus. That is, we calculated if each word has been
correctly or incorrectly tagged. For precision and recall, we
calculated the weighted average e of the precision and recall
for each class excluding the non-Named Entity class, to get
a better insight of performance.

It is worth noticing that this evaluation is partial because
not all entity mentions are tagged in our test corpus. Indeed,
since this test corpus is part of Wikipedia, there are many
mentions that are not effectively tagged in the corpus. To
effectively assess recall, we manually tagged 10 randomly
selected Wikipedia articles for a total of 6,000 words. In
those articles, we tagged all mentions of Named Entities in
the LKIF domain, and evaluated the performance of our ap-
proaches for this corpus. This evaluation also provides in-
sights for the use of automatic classifications as input for
manual annotation.

Analysis of results

The results on the test portion of our Wikipedia corpus are
reported in Table 1 for Named Entity Recognition and Clas-
sification with LKIF classes, and in Table 2 for Named En-
tity Linking to YAGO URIs. We show overall accuracy, and

the mean recall and precision across classes other than the O
class (no Named Entity).

It can be seen that neural network classifiers perform bet-
ter than both SVM and the Stanford NER. Differences are
more noticeable in precision and recall figures, where the
good performance in the O class does not obscure the re-
sults. It can also be observed that curriculum learning does
introduce an improvement in accuracy over batch learning
in a neural network, although very slight. To assess the sta-
tistical significance of this slight difference, we applied a
Student’s t-test with paired samples comparing all pairs of
classifiers for both approaches. We divided the Wikipedia
corpus in five disjunct sub-corpora, then divided those in
train/validation/test, and compared the results of the neural
network experiments in each of them. In average, two out of
five of the obtained results were not significant (p < 0.05).
Therefore, the different neural network approaches were not
very different, but still some differences arise. For the pur-
pose of using these classifiers as a starting point for manual
annotation of legal texts, even a slight improvement is use-
ful, as it implies an important reduction in annotation cost.

Even with such a performance in the CL learning and
batch methods, the CL approach of changing the last layer
of the MLP obtains better precision than the batch learning
method, and better recall than both alternatives. Recall is
most important for our purposes of using this classifier as a
starting point for manual annotation.

Results for LKIF classes classification

If we examine the results for NERC with LKIF classes, we
can see that all the neural network approaches have a much
higher performance than the two baseline methods, with a
relative improvement of 7% in precision and 11% in recall.

255



approach acc prec rec fscore

Baselines

SVM .971 .950 .777 .855

Stanford NER .982 .909 .866 .886

MLP .991 .972 .961 .966

Curriculum Learning

change layer .992 .978 .965 .971

remove layer .990 .978 .950 .964

Table 1: Comparison of the results of different approaches
in assigning entity mentions to their correct LKIF class.

If we examine the confusion matrix5, we can see that the CL
classifier that removes layers presents more errors in the less
populated classes, that are confused with the other classes
(a total of 9% against 5% for the other two approaches).
Also, the CL classifier that changes layers is slightly better
than the neural network without CL at the “most” populated
classes. This higher recall in classes other than O (see Ta-
ble 1) is useful to help humans label NEs.

The accuracy of the Support Vector Machine classifier
and the Stanford CRF classifier are visually lower than any
neural network approach. Particularly, we see a clear pattern
where most of misclassified classes are mostly classified as
Non NE for the Stanford system. This does not happen with
the neural networks, where non NE are distinguished from
NE and misclassification occurs within the NE, most likely
a result of better internal representations the neural networks
have.

Results for YAGO Entity Linking

approach acc prec rec fscore

Baselines

SVM .897 .451 .342 .389

MLP .932 .471 .446 .458

Curriculum Learning

change layer .933 .475 .450 .462

remove layer .933 .472 .448 .460

Table 2: Comparison of the results of different approaches
in assigning entity mentions to their correct YAGO URI.

The task of assigning each word its correct YAGO node
is more difficult than the task of assigning LKIF classes, be-
cause there are more than 10,000 classes for this task, in
contrast with the potential 35 classes in LKIF. As can be
expected, results are worse. Whereas the overall accuracy

5Available here: https://dl.dropboxusercontent.com/u/
15116330/CMatrix.pdf

figures do not drop because of the dominance of the O class
(which represents the non entities), average precision and re-
call are much lower. Stanford NER could not be applied to
this task because it cannot handle that number of classes.

Neural network classifiers perform far better than the
SVM baseline, but different approaches, with and without
Curriculum Learning are fairly indistinguishable. Table 2
shows slightly better results for the CL approach changing
the last layer in precision, but we can also see that the CL
approach that removes layers is slightly better than the other
two approaches in the less populated classes. We cannot
conclude that one approach is clearly better than another.

It is worth noticing that the high accuracy figures and the
low precision and recall figures are due to the fact that the
majority class is very dominant and high accuracy in that
class obscures low accuracy in the rest. Moreover, the pro-
vided precision and recall figures are an average of the fig-
ures for each class, so classes with lower figures throw down
the average for all classes.

Results for the manually annotated testbed

As said before, in the Wikipedia not all mentions of an en-
tity are annotated. Our classifiers were trained and evaluated
with this partially annotated corpus, and therefore both per-
formance and evaluation are bound to be partial. That is why
we annotated ten randomly selected Wikipedia articles with
at least one outgoing link to an entity mapped to a LKIF
class, where we manually tagged all mentions of entities.

We evaluated the performance of classifiers in this cor-
pus and found that overall accuracy was comparable to eval-
uation in the Wikipedia corpus, even if somehow smaller:
around .92 for all approaches. However, we observed that
98% of errors were words that had been tagged as non-
entities when they were entities. This is to be expected
as most mentions of entities in Wikipedia are not tagged,
and therefore automatic classifiers cannot learn their pattern
of behavior. For example, in the following excerpt of the
Wikipedia article on Paul K. Holmes III, the annotation pro-
vided by Wikipedia is:

Paul Kinloch Holmes III (born November
10, 1951) is the chief district
judge for the [United States District
Court for the Western District of
Arkansas]PublicBody.

Classifiers tend to recognize exactly what the Wikipedia
tags as a Named Entity, but the ground truth in this case is:

Paul Kinloch Holmes III (born November
10, 1951) is the [chief district
judge]ProfessionalLegalRole for the [United
States District Court for the Western
District of Arkansas]PublicBody.

So while this example would give 100% accuracy if we
compared the output of classifiers with the annotation of
Wikipedia, it gives very good precision but 50% recall when
compared to the specifically annotated ground truth. This
confirms the intuition that we have to prioritize classifiers
that have higher recall.

256



Conclusions and Future Work

We have presented an approach to ontology population in the
legal domain by exploiting annotations from Wikipedia, and
mapping them to the LKIF ontology in the legal domain via
an alignment to the YAGO ontology. We have thus obtained
a Named Entity Recognizer and Classifier and Entity Linker
for the legal domain and we have populated the LKIF on-
tology. We have evaluated classification in the LKIF classes
and Entity Linking to the YAGO classes, and have obtained
promising results in both. The main shortcoming of our
approach is the kind of annotation available in Wikipedia,
where not all mentions of Named Entities are tagged. As
can be expected, the learned classifier also fails to iden-
tify many mentions of entities, as we have seen in a small
manual evaluation. To address this shortcoming, we are cur-
rently manually annotating a corpus of judgments from the
European Court on Human Rights using these classifiers as
pre-annotation, in combination with the Stanford NERC.

We have shown that curriculum learning produces slightly
better classifiers for coarse-grained NEC, but not for the En-
tity Linking task. This learning technique is specially suited
for scenarios where classifications can be organized from
most general to most specific, and learners are trained taking
advantage of this organization. However, for Entity Linking
we suffered from data sparseness in Wikipedia documents,
so the technique did not effectively show improvements over
a comparable neural network classifier without curriculum
learning. However, we expect that this technique will be
specially useful to progressively learn classifiers from our
future annotated corpus as it is being annotated.

Acknowledgement

The authors have received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Skodowska-Curie grant agreement No
690974 for the project MIREL: MIning and REasoning with
Legal texts.

References

Allgower, E. L., and Georg, K. 2012. Numerical continua-
tion methods: an introduction, volume 13. Springer Science
& Business Media.
Athan, T.; Governatori, G.; Palmirani, M.; Paschke, A.; and
Wyner, A. 2015. LegalRuleML: Design principles and foun-
dations. In The 11th Reasoning Web Summer School, 151–
188. Springer.
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In Proceedings of the 26th An-
nual International Conference on Machine Learning, ICML
’09, 41–48. ACM.
Boella, G.; Caro, L. D.; Ruggeri, A.; and Robaldo, L. 2014.
Learning from syntax generalizations for automatic seman-
tic annotation. J. Intell. Inf. Syst. 43(2):231–246.
Bruckschen, M.; Northfleet, C.; da Silva, D.; Bridi, P.;
Granada, R.; Vieira, R.; Rao, P.; and Sander, T. 2010.
Named entity recognition in the legal domain for ontology

population. In 3rd Workshop on Semantic Processing of Le-
gal Texts (SPLeT 2010).
Derczynski, L.; Maynard, D.; Rizzo, G.; van Erp, M.; Gor-
rell, G.; Troncy, R.; Petrak, J.; and Bontcheva, K. 2015.
Analysis of named entity recognition and linking for tweets.
Inf. Process. Manage. 51(2):32–49.
Finkel, J.; Dingare, S.; Nguyen, H.; Nissim, M.; Manning,
C.; and Sinclair, G. 2004. Exploiting context for biomedical
entity recognition: from syntax to the web. In Proceedings
of the International Joint Workshop on Natural Language
Processing in Biomedicine and its Applications.
Finkel, J. R.; Grenager, T.; and Manning, C. 2005. Incor-
porating non-local information into information extraction
systems by gibbs sampling. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Linguistics,
ACL ’05, 363–370. ACL.
Hahm, Y.; Park, J.; Lim, K.; Kim, Y.; Hwang, D.; and
Choi, K.-S. 2014. Named entity corpus construction us-
ing wikipedia and dbpedia ontology. In Proceedings of the
Ninth International Conference on Language Resources and
Evaluation (LREC’14). ELRA.
Hoekstra, R.; Breuker, J.; Bello, M. D.; and Boer, A. 2007.
The lkif core ontology of basic legal concepts. In Proceed-
ings of the Workshop on Legal Ontologies and Artificial In-
telligence Techniques (LOAIT 2007).
Hoffart, J.; Yosef, M. A.; Bordino, I.; Fürstenau, H.; Pinkal,
M.; Spaniol, M.; Taneva, B.; Thater, S.; and Weikum, G.
2011. Robust disambiguation of named entities in text. In
Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2011, 782–792.
Humphreys, L.; Boella, G.; Robaldo, L.; di Caro, L.; Cupi,
L.; Ghanavati, S.; Muthuri, R.; and van der Torre, L. 2015.
Classifying and extracting elements of norms for ontology
population using semantic role labelling. In Proceedings of
the Workshop on Automated Detection, Extraction and Anal-
ysis of Semantic Information in Legal Texts.
Lenci, A.; Montemagni, S.; Pirrelli, V.; and Venturi, G.
2009. Ontology learning from italian legal texts. In Pro-
ceeding of the 2009 Conference on Law, ontologies and the
Semantic Web: Channelling the Legal information Flood.
of Pisa, M. U. 2015. Wikiextractor. http://medialab.di.unipi.
it/wiki/Wikipedia Extractor.
Sartor, G.; Casanovas, P.; Biasiotti, M.; and Fernndez-
Barrera, M. 2013. Approaches to Legal Ontologies: The-
ories, Domains, Methodologies. Springer.
Stanford NLP Group. 2016. Stanford named en-
tity recognizer (ner). http://nlp.stanford.edu/software/CRF-
NER.shtml.
Suchanek, F. M.; Kasneci, G.; and Weikum, G. 2007. Yago:
A core of semantic knowledge. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07,
697–706. New York, NY, USA: ACM.
Waitelonis, J.; Exeler, C.; and Sack, H. 2015. Enabled gen-
eralized vector space model to improve document retrieval.
In Proceedings of the Third NLP&DBpedia Workshop (NLP
& DBpedia 2015), 33–44.

257




