
tions, the focus typically remains on the algorithm’s overall 

mender’s output characteristics –
–

user’s rating profile

reflect a user’s preference for diversity or novelty

’s 

in users’ profiles has little impact on the recommen-

user’s 

ommender’s

mender’s overall perfor

recommender’s 

may influence the recommender’s output

Does the users’ input profile change the recom-

change in users’ input profile differently?

–
–
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form the recommender’s training data. 

comparing each algorithm’s recommendations for each user 
with that user’s 

relation (Pearson’s 

popular than those in the user’s profile
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ularity’s relatively high correlation can be disregarded be-

s’ propensity to recommend obscure 

sity than users’ input profiles; these difference
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tion between individual users’ input profile diversity and the

their recommendations were CBF (Pearson’s 

— —
of the users’ 

user’s 

For example, this obliviousness to the user’s breadth 
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