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Abstract

A valuable tool for analyzing social networks is partition-
ing the complex graphs based on dense sub-networks, usu-
ally referred to as communities. This partitioning can dis-
cover groups who have similar attributes or behaviors. Using
apreviously developed method for creating hierarchical fuzzy
communities using spectral clustering, these communities are
evaluated in a temporal network and tracked through time to
evaluate community change. This method is tested on a real
world political network based on campaign finance contribu-
tions, and it is shown how communities change over time at
multiple levels of the hierarchy.

Introduction

There are numerous real world social networks that can be
partitioned into dense subnetworks. Referred to as commu-
nities, these subnetworks should contain elements that have
properties in common with one another. Considerable work
has been performed in developing methods for finding com-
munities in social networks. Much of the early work fo-
cused on splitting the nodes into distinct and separate com-
munities (Blondel et al. 2008), (Newman 2006), (Newman
and Girvan 2004), (Pons and Latapy 2004). Due to its per-
formance on more complex clusters, spectral clustering has
proven popular (Ng, Jordan, and Weiss 2001), (Pothen, Si-
mon, and Liou 1990). A limitation with those early ap-
proaches is that they do not reflect individuals belonging
to multiple communities. An additional issue is that many
networks contain hierarchical structure where communities
combine to form larger groups at different levels. More re-
cent approaches attempt to handle this by allowing fuzzy
clusters as well as creating a hierarchical structure for the
communities (Bandyopadhyay 2005), (Devillez, Billaudel,
and Lecolier 2002), (Liu 2010), (Palla et al. 2005), (Torra
2005), (Xie, Szymanski, and Liu 2011).

There are a number of real world sources for networks
that exhibit community structure. Prior research has yielded
such structure in genetics (Zhang and Horvath 2005), neuro-
science (Power et al. 2011), and Internet communities (Flake
et al. 2002) as a small sample. The focus of this paper is on
networks created by political donations. Of particular note,
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there has been some prior research focusing on political so-
cial networks. Much of this research is on social interaction
and its effect on political participation (Aldrich et al. 2015),
(La Due Lake and Huckfeldt 1998), (Quintelier, Stolle, and
Harell 2012). Other work focuses on elitism and the behav-
ior of corporations in politics (Mizruchi 1989). Specifically
related to campaign finance, the geography of donations has
been shown to be an indicator useful for predicting dona-
tions (Gimpel, Lee, and Kaminski 2006).

In order to effectively test the the community results of
campaign finance data, a useful comparison tool is required.
An estimate of political ideology, called the campaign fi-
nance score (CFScore), is used within this paper to vali-
date the discovered communities since political ideology has
been shown to be a significant factor in political outcomes
in a variety of topics. Prior research has studied how candi-
dates fall ideologically when compared to national parties
(Stephen Ansolabehere 2001). Ideology also impacts the
legislative process (Jenkins 2006). Recent work has been
performed in estimating ideology directly from campaign fi-
nance datasets (Bonica 2014). This CFScore has the benefit
of being applied to a broader spectrum of political entities,
including donors. The idea behind this approach is that an
entity would prefer to donate to a candidate or group who
shares similar ideology. Through that model, CFscores can
be calculated and were shown to provide similar ideological
measures to prior work, from which accurate voting records
for legislators could be predicted. By comparing this metric
with community assignments through time, new insight can
possibly be gained in the donation patterns within the cam-
paign finance dataset. Such analysis can help identify groups
of candidates with similar donors that otherwise may not
stand out. Additionally, analyzing such data through time
and in different states can hopefully provide new tools for
assessing the impact of campaign finance legislation.

Using the prior work for estimating ideologies, we use a
hierarchical fuzzy spectral clustering scheme previously de-
veloped by us (Anonymous and Anonymous 2015) on the
political contribution networks in order to find communities
within campaign finance. These communities are validated
against community metrics as well as their relationship with
ideological scores. New to this work, the communities are
analyzed through time with respect to their ideology mea-
sures.



Background

There has been a lot of interest in detecting communities in
social networks, and a wide variety of techniques have been
proposed. In analyzing these partitions, one very popular
function for determining the quality of any partitioning of
nodes is modularity (Newman and Girvan 2004). The gen-
eral idea behind this measure is to compare the fraction of
links that connect any nodes in a community, C; to any other
community, C';. This ratio of edges is compared against a
null model. This null model is a graph where each individual
node maintains the same degree, but each edge is reassigned
randomly. For a community partitioning to be considered
a good partition, the fraction of links within a community
should be higher than the fraction of links leaving the com-
munity. However, it should be noted that simply putting all
nodes into a single community would satisfy this constraint,
so more must be done.

For this, first define a k x k matrix E where k represents
the number of communities. Within this matrix, the ele-
ment [E;; represents the fraction of the edges that connect
any node in community Cj; to a node in community C';. De-
termining the value of a partitioning of the graph into com-
munities relies on the trace of the previously defined sym-
metric matrix Tr (E) = >, E;;. This diagonal represents
the fraction of all edges that connect any node in community
C; to any other node within itself. Furthermore, we define
the value a; = 3 j E;;, which gives the ratio of edges within
the graph that connect to all the vertices within C;. Using all
of this, the modularity is then given by

Q:Z(Eii—a?) =Tr (E) - ||E?||.

This can be written alternatively as
1 kik;
“om [Az‘j T om ] Oc(i) ()

where m is the number of edges in A and d.(;) (;) is 1 when
i and 7 are in the same community and O otherwise.

In order to validate the communities discovered with
fuzzy spectral clustering, a generalization of modularity is
used that was created independently by Nepusz et al. (2008)

and Shen et al. (2009).
kik;
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where s;; = > cec QicQje and ay, is the fuzzy community

assignment of ¢ to community c.

Spectral Characterization

One of the limitations of creating a fuzzy hierarchical com-
munity assignment for large networks is storage space. As
each node has a fuzzy community assignment for each com-
munity, as the number of communities grows, the storage
space requirements increase exponentially. Due to this,
spectral characterization is used to limit the size of the re-
sulting hierarchy. Since the adjacency matrix for the defined
social networks have no negative entries, the matrix satisfies
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the requirements for the Perron-Frobenius theorem, indicat-
ing the largest magnitude eigenvalue of the matrix will be
real and positive.

As regards social networks and communities, what is im-
portant are the properties of the eigenvalues with respect to
the number of communities. From other work, it has been
shown that community structure in a network has a certain
effect on the eigenvalues. More specifically, it has been
found that a network with £ communities will have k large
eigenvalues (Chauhan, Girvan, and Ott 2009), (Sarkar and
Dong 2011), (Sarkar, Henderson, and Robinson 2013). To
illustrate this, consider a network consisting of 1000 nodes
where edges in the network are added randomly between
any pair of nodes n; and n; with probability p = 0.04. With
this construction, the network as a whole can be considered
to be its own community since there are no special defin-
ing characteristics separating any of the nodes. Calculating
the eigenvalues of this network reveals a single eigenvalue
outside the main cluster of smaller eigenvalues.

As predicted by prior work, the largest eigenvalue here is
approximately the average degree of the nodes in A (Farkas
et al. 2001). Because of the random construction of the test
network, this is approximately the product of the probabil-
ity of connection between nodes and the number of nodes,
Amaz &= N X p, or in this case, Apq &~ 1000 x 0.04 = 40.
There is additional work on Erdos-Renyi uncorrelated ran-
dom graphs showing the edge of the large cluster of eigen-
values is approximately defined by o1/n where ¢ is the stan-
dard deviation of the values A;;. However, some analysis on
the real-world campaign finance networks shows that using
that as a threshold to determine the k large eigenvalues for
those networks, and thus the number of communities, can
yield poor results.

Similar principles apply to networks with community
structure. Assuming k& communities in a random network,
two nodes are connected with some probability p if they
belong to the same community. Otherwise, the two nodes
are connected with probability ¢ where ¢ < p. Prior work
shows that there are eigenvalues corresponding to s (p — ¢)
where s is the size of the community. Consider another
network of 1000 nodes created with four communities of
equal size, p = 0.1, and ¢ = 0.01. For this network, there
are four large eigenvalues, three of which are approximately
250 x (0.1 — 0.01) = 22.5. These principles form the basis
for estimating the number of communities among the con-
tributors and candidates. Based on these results, the gap in
eigenvalues is used to determine an appropriate maximum
number of communities.

Datasets and Approach

The political contribution network data used here is provided
by Bonica and Stanford’s Social Science Data Collection
(Bonica 2013), (Bonica 2014) !. This dataset combines data
from the Federal Election Commission, the Center for Re-
sponsive Politics, the National Institute on Money in State
Politics, as well as other reporting agencies and the Sunlight

"URL: http://data.stanford.edu/dime/



Foundation. Contained within are a set of records indicat-
ing how much and when a donor gave money to a candidate
or political group. This creates a set of transactions provid-
ing associations between a donor and a recipient. Additional
work performed by Bonica assigns a unique identifier to the
candidates and donors across states and years, facilitating
the temporal analysis.

Preparing the data for the fuzzy spectral analysis, simi-
lar restrictions as those applied by Bonica are used for each
breakdown of state and year. For an entity to be included
in a network, it must have donated or received (combined)
at least twice. Additionally, only records for direct or in-
kind contributions were included for the state data. Loans
and similar records are removed as they do not necessar-
ily indicate support of a candidate. Furthermore, due to the
poorer quality of data in early years for states and that the
earliest available information for the states vary consider-
ably, the following analysis relies on data for the election
cycles 2004 through 2012. This ensures that each state has
the same number of years. Another requirement is that there
must exist a path between any two nodes in the network. It is
possible for a small set of candidates and donors to be com-
pletely disjoint from the rest of the community and those
small groups are removed from the analysis as they are nat-
urally their own communities and hamper the analysis of the
remaining network.

Data Analysis

For any dataset D and time periods ¢ and ¢ + 1, the retention
rate of entities is defined as the percentage of entities that

are in both sets: ret (Dy, Diy1) = %. Using the

individual state-year data sets where those who only gave
once are removed, the average retention rate of entities in
those networks is 20.90% with a median of 21.66%. There is
one notable outlier with Alabama where the rate is markedly
lower than the other states at 6.52%.

Estimating the Number of Communities

As shown earlier, it is possible to estimate the number of
communities in a social network using characteristics of its
eigenvalues. To do so requires finding the eigenvalues con-
sidered to be large. Unfortunately, directly calculating the
predicted edge of the primary cloud of eigenvalues based on
the principles of Erdds-Renyi uncorrelated random graphs
can yield poor performance in determining the number of
clusters. In prior work, a sample of contributors to candi-
dates in Alaska for the 2012 elections showed splitting the
network into four communities provided logical groups of
contributors and donors (Wahl and Sheppard 2015). How-
ever, using o+/n as the cutoff for the number of clusters gave
22 clusters and a modularity of only 0.1776. Instead, here
we use the concept of eigen-gap where the large clusters are
defined by having a gap between eigenvalues greater than
some threshold. With A being a set of eigenvalues, the full
procedure for this is as follows:

1. Given adjacency matrix A, find the set of eigenvalues A

of A.
2. Given eigenvalues A, create set A’ = {\; : A\; > 1}.

3. Sort the values of A’ in ascending order.

4. For each \; and A;41 of the sorted values, calculate the
eigen-gap §; = ;411 — Ad.

5. Calculate the average absolute deviation aad (A) for
the set A = {§|]1 <i<n-—1} with aad(A) =
L S8 — average (A))

6. Find the first ¢ such that §; > 6 x aad (A) where ¢ must
be in the larger half of the eigenvalues. This prevents
outliers in the early gaps being from being used.

7. Determine the number of communities k =n — i — 1.

For small datasets, it is necessary to use all non-negative
eigenvalues to obtain accurate results. For the political net-
works, however, using only those greater than one provides
a useful estimate and speeds up the analysis as fewer eigen-
values need to be calculated. The average absolute deviation
over the eigen-gap was chosen over other outlier detection
methods as it was more consistent across all the different
datasets. During these tests, the value § = 1.4826 performed
well and attempts to vary that threshold did not improve re-
sults.

The goal of this procedure is to find a useful cutoff for
analyzing the communities. It is possible for community
structure to exist below this limit. In the case of the political
contribution networks, this structure is not abnormal due to
the nature of candidate nodes having a higher ratio of con-
nections when compared to donors. Obtaining communities
centered around each individual candidate does not provide
much in the way of useful new information, however.

Algorithm

Our approach used for finding fuzzy clusters is based on the

spectral clustering work of Ng, Jordan, and Weiss (Ng, Jor-

dan, and Weiss 2001) and Zhang, Wang, and Zhang (Zhang,

Wang, and Zhang 2007). After determining the cutoff for the

number of clusters, fuzzy spectral clustering is performed on

network A for cluster numbers K = 2,3,... . k—1, k as fol-
lows:

e Let D be a diagonal matrix where D, ; is the sum of the
i-th row of A. This is equivalent to the weighted degree
of each node.

e Construct the Laplacian matrix L = D~/2AD~1/2,

e Determine the k largest eigenvectors, z1, To, ..., Tx of the
Laplacian L and create the matrix X = (z1, 22, ..., Tk
X is then normalized such that each row has unit length.

e Using X, perform fuzzy c-means clustering on the data to
obtain U, a n x k matrix where k is the number of clusters
and n is the number of data points in A.

To obtain hierarchical structure, the process is repeated with

a varying k corresponding to the number of clusters in each

hierarchical level. Each level is connected to its previous

level by calculating the fuzzy Jaccard similarity of the com-
munities given by

min (Cl,ia CQ,i)

sim (O, )= 3, G

1€C1UC

Connections between two time steps are made in a similar
fashion. Beginning with k; = 2 for time step ¢, connections
are made to time step ¢ + 1 by comparing the communities



Cycle | AK WI NY
2004 | 0.898 | 0.920 | 0.121
2006 | 0.916 | 0.946 | 0.614
2008 | 0.913 | 0.923 | 0.017
2010 | 0.923 | 0.943 | 0.121
2012 | 0.906 | 0.981 | 0.058

Table 1: Correlation of CFScore and Communities at &k = 2

at the same level across the two hierarchies. To do so, for
each community in data set ¢ at kg = 2, iterate through the
communities of data set 7+ 1 at k; = 2 to find the best match
based on the fuzzy Jaccard similarity.

Results

The results presented below focus on three different states:
Alaska, New York, and Wisconsin. Given Alaska’s high re-
tention rate across years, it provides many opportunities for
analyzing how behavior of specific individuals change over
the years. While this paper focuses on these three states, all
50 states have been analyzed with the same procedure. For
most of those datasets, splitting into two communities at the
top level has very high correlation. However, in some state
and years, splitting into two communities does not result in a
high correlation. This is because there exists a group within
the dataset that is more separate from the rest of the net-
work than those with opposing ideologies. New York is one
such state. Wisconsin was also selected because of the rapid
growth in the data set due to the increase in contributions
surrounding recall and gubernatorial races.

Alaska

For the state databases, Alaska showed the highest retention
rate of entities from year to year at 29.67% on average. First,
communities are found for the entirety of the state, regard-
less of the year in which a donation was made. For this
dataset, eliminating all single donors and redundant links
across all years in the state gives 12,417 entities and 66,629
edges.

At the top level, it is easy to check the communities
against CFScore for validity. CFScores represent a range
centered on zero where negative values are associated with
liberal ideology and positive with conservative. For Alaska,
at the top level, comparing with the CFScore estimation of
ideology, the community assignment values show a Pear-
son correlation coefficient of p = 0.9133. Restricting the
comparison to just the recipients in Alaska, the correlation
coefficient for this limited set is p = 0.8715. This indicates
that, for Alaska, the CFScore ideology estimation is highly
correlated with the community assignments.

To make sure the resulting communities still represent
ideology well after being split into individual 2-year cy-
cles, a similar test is performed on the temporal datasets for
Alaska. As before, checking for two communities results
in splits where the fuzzy community assignment is highly
correlated with the CFScore for that entity. Table 1 shows
the correlations for each of the cycles for all entities. For
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k=2 k=3
Year Cl CQ 01 02 03
2004 | -0.839 | 0.287 || -0.924 — 0.387
2006 | -0.851 | 0.346 || -0.847 | -0.790 | 0.363
2008 | -0.885 | 0.334 || -0.899 | -0.318 | 0.293
2010 | -0.895 | 0.373 || -0.913 | -0.492 | 0.391
2012 | -0.872 | 0.391 || -0.897 | -0.223 | 0.357

Table 2: CFScore of Alaska Communities

Alaska, these fuzzy memberships are highly correlated with
the CFscore.

Additionally, it is possible to connect the communities in
one time step to communities in the next based on the best
fuzzy Jaccard similarity. Table 2 shows the average CF-
Score of entities for each community with a membership
value greater than 0.3. As shown, the averages shift fairly
consistently away from zero for both of these communities.
The results of this correspond to prior political science work
indicating an increase in partisanship over the years.

Moving down the hierarchy, similar results are obtained
for £k = 3, also shown in Table 2. For all but one year,
every community at ¢; continued into ¢;4;. At this break-
down, the average CFScore of C; and C'5 does not deviate
from zero as in the previous breakdown, despite having simi-
larly high Jaccard similarity measures as the communities in
k = 2. Additionally, the average estimated ideology of Cs
shifts considerably more than the other two. Viewing addi-
tional data about the recipients in this group, community Co
corresponds to a specific geographic area, Fairbanks, AK.

Wisconsin

For Wisconsin, creating the network of contributions across
all years as before results in one that contained 123,396
nodes and 592,407 edges. Part of the reason for this network
being larger are the circumstances surrounded the 2012 re-
call and regular elections. As in Alaska, the correlation co-
efficient for CFScore and fuzzy community assignment at
the top level hierarchy is quite high at p = 0.9745 for all
entities and p = 0.9408 for recipients.

Wisconsin also shows high correlation at the top hierar-
chy when comparing community assignments and CFScore,
shown in Table 1. As can be seen, when the upswing in do-
nations occurred in 2012, the correlation between ideology
and communities is exceptionally high. This seems reason-
able given the apparent polarizing nature of the elections.

Analyzing these communities over time yields similar re-
sults to that in Alaska. At the top level hierarchy, there are
two communities corresponding to left and right ideologies,
shown in Table 3. Additionally, as time passes, the over-
all trend is for both communities to deviate from the center,
corresponding with the increase in partisanship.

With k = 3, the resulting communities look similar again
to AK as shown in Table 3. However, community C5 in
this case does not appear to be isolated to a single geo-
graphic area, but has recipients from districts all over the
state. Given the overall average CFScore, WI appears to
have a considerable, and consistent, set of moderates.



k=2 k=3
Year Cl 02 Cl CQ 03
2004 | -0.935 | 0.759 || -0.950 | 0.229 | 0.872
2006 | -0.990 | 0.853 || -1.117 | -0.019 | 0.916
2008 | -0.986 | 0.728 || -1.084 | -0.134 | 0.780
2010 | -0.865 | 0.977 || -1.084 | 0.255 | 1.075
2012 | -1.353 | 1.079 || -1.370 | -0.029 | 1.113

Table 3: CFScore of Wisconsin Communities

New York

In order to highlight different behavior of donors in different
states, New York was also analyzed in a similar manner. As
before, communities were found for the entirety of the state,
regardless of the year in which a donation was made. This
resulted in a network of 69,369 entities and 264,223 edges.
Unlike Alaska, when splitting the network into two com-
munities, the resulting fuzzy assignment values do not have
a high Pearson correlation coefficient when compared with
the CFScore. This is even true if the same analysis is per-
formed with weighted edges where the weights correspond
to the amount of the contributions to an entity. Calculating
the correlation coefficient for all entities within New York at
the top hierarchy gives a value of p = 0.4451. For just the
recipients within NY, p = 0.2921. As seen, CFScore is not
as well correlated with the communities.

In an attempt to better understand the composition of the
communities at the top level, we first look at a strict parti-
tioning of the two top communities where the fuzzy com-
munity assignment value must be greater than 0.5. Analyz-
ing the candidate information within these communities, it
shows all of the New York city candidates are within Cs.
While not composed solely of city candidates, the dominat-
ing factor for this breakdown appears to be geography and
not ideology.

This poor performance on correlation continues when
looking at each individual year, as shown in Table 1. In-
terestingly, the two worst performers 2008 and 2012, have
almost no data for New York City candidates. This seems
counter intuitive since those years would not have extra data
highly centralized in a single geographic location.

Across all years but 2006, viewing the communities at the
top hierarchy, what has happened is that a small set of can-
didates were separated from the rest of the network by hav-
ing similar donor groups, but being considerably different
than the rest of the candidates. In years with local elec-
tions reported, the general trend is for this smaller group
to include more Republicans and third-party candidates. In
the other years, the party distribution is nearly even, very
slightly favoring Democrats (58%). For both 2004 and 2012,
this smaller community had only a single winning candidate
between them and nearly equal numbers of Democrats and
Republicans. This indicates that, for New York, ideology
is not actually the most dominant factor in determining the
pattern of donations. This holds true even when adjusting
the weights of the network based on the size of the contribu-
tions. This shows community detection methods can provide
additional insight into the donation patterns.
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Discussion

Using the described algorithm to separate the network into
communities manages to group individuals into logical
groups that can be tracked through time and provide addi-
tional insight into the area of focus. Communities at the top
of the hierarchy arising from campaign finance have ideo-
logical estimates that move away from the center as time
progresses, matching known partisanship phenomena. How-
ever, further breakdowns in the data can yield communities
that are not deviating from the center, as shown in Wiscon-
sin. Additional information can be drawn from the results
at a smaller view. As an example, for Alaska, analyzing
the individuals who change communities at the highest level
highlights how their donating behavior changes from year to
year. For many of those who have moderate CFscores, it can
be seen that the CFScores of the candidates to whom they
donate may vary considerably, but of which the average CF-
Score is moderate. In individual years, the fuzzy clustering
scheme highlights how they may donate primarily to a sin-
gle ideology in a single year. As an example, consider one
of the entities present in Alaska 2004 and 2006 (Bonica ID
52297646020). The CFscore for this entity is -0.54. View-
ing the target party and CFscore of this entity’s donations
shows most of the targets are Democrats and have a lower
CFscore. This holds true in 2004 where the donor is solidly
in the lower CFscore community. In 2006, however, even
though the entity donated primarily to Democrats, only one
of those Democrats was not moderate. The others had near
zero CFscores. Adding the Republican recipients to that to-
tal results in the donor being primarily in the Republican
community. Comparing to the full dataset for Alaska, that
same entity is mostly within the low CFscore community,
but also a small assignment within the high CFscore group,
which follows closely with its ideological estimate.

Conclusion

As shown, fuzzy hierarchical spectral clustering is able to
group entities logically within political contribution net-
works. By splitting networks into two communities, the re-
sulting groupings closely follow previous estimates of ide-
ology. Splitting the network into more communities high-
lights differing patterns of donations beyond the ideological
scores, both within a state and in different election cycles.
By using those prior estimates and the communities, it is
possible to analyze entities who either shift ideologies over
time as well as view groups who differ in their type of dona-
tions beyond ideology.

Future work includes analyzing how replacing simple
connections within the database with weighted connections
based on the donation amount will affect the communities.
Additional work will make use of the temporal data sets to
attempt to perform predictions in a couple of ways: law-
maker votes, and donations. Much more work can be per-
formed in researching the various communities and their
trends in order to gain more insight into the political pro-
cess. Furthermore, similar analysis for other countries could
provide useful comparisons if it is possible to obtain relevant
datasets.
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