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Abstract

In this paper, we present a prototype for an online interac-
tive visualization tool for analyzing the semantic proximities
of US patent documents that are related to cancer treatments.
This tool allows the user to perform keyword searches and
then presents visualizations of sets of relevant patent docu-
ments clustered by semantic similarity. Semantic similarity is
calculated using a combination of word embeddings obtained
using the skip-gram algorithm and the t-SNE dimensional-
ity reduction algorithm. The user may then select individual
points in the cluster to view more detailed patent informa-
tion. This process allows the user to explore the connections
between related patents and see more general trends in the
semantic shape of the technological space. It is our hope that
this tool may serve as one of the starting points for data anal-
ysis leading to future innovative approaches to cancer treat-
ment.

Introduction

The US Patent and Trademark Office (USPTO) typically
grants several thousand new patents per week. This pace
of innovation leads to many exciting inventions and discov-
eries, but the sheer quantity of grants can make navigating
the patent landscape daunting. To be successful, inventors
must understand how and where their inventions fit in the
patent universe in order to ensure that their patent applica-
tions eventually end in granted patents that do not pose high
risks of future litigation.

In this work, we present a patent data visualization and
analysis tool that we hope will increase a user’s understand-
ing of the existing patents and how they relate to one another.
In particular, we are interested in US patents relating to can-
cer therapies and our system uses this subset of patents as
a prototype dataset. It is our hope that researchers, inven-
tors, policymakers, funding agents, and the general public
may be able to use our visualization tool to find unexpected
connections between existing cancer-related patents and that
these connections may lead to greater innovation and faster
progress in this important domain. Visualization tools cre-
ated with similar goals in mind for web-based searches are
described in (Turetken and Sharda 2005).
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Our visualization tool is based on building semantic doc-
ument vector embeddings that are formed using word em-
beddings from the skip-gram algorithm, which is com-
monly used in many natural language processing applica-
tions. Since these embeddings have been shown to store
some semantic word content, they allow our system to group
together meaningfully related documents as is commonly
done in information retrieval systems. We then use the t-
distributed stochastic neighbor embedding (t-SNE) algo-
rithm to reduce the dimensionality of our document embed-
dings to produce visually appealing representations of the
sets of related documents. We make our system interactive
by allowing the user to click and select individual documents
from within the presented cluster to show patent metadata
for further exploration.

By investigating patents both in close proximity to one an-
other and patents that are separated by greater distances, the
user is then able to gain some insight into how the technolo-
gies and inventions related to the chosen aspect of cancer
research are grouped together or spread out over the seman-
tic embedding space. Widely spread clusters of points may
signal that there are opportunities for further innovation to
fill in the gaps. Tightly packed groups of patents may show
that there is a great level of activity surrounding a particu-
lar research idea or cancer therapy, perhaps leading funding
agents to determine that more resources are required to be
devoted to this trending direction of innovation. On the other
hand, an individual inventor may see tightly packed clusters
of patents as an indication that a particular research direc-
tion is crowded, highly competitive, and could possibly lead
to litigation risk.

Throughout the rest of this paper, we describe the details
of constructing our system. We also present several example
visualizations and a short example usage case. Finally, since
our tool is currently a prototype and limited in several impor-
tant ways, we end with a discussion on future improvements
and how they might be implemented.

System Description

Our visualization tool produces patent document clusterings
when the user searches for keywords. This section describes
the process used to build the system including the following:

1. Obtaining raw datasets
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2. Preprocessing and cleaning datasets to remove metadata
and unwanted characters

3. Generating word embeddings for all words in the lexicon

4. Using word embeddings to generate patent document em-
beddings

5. Precomputing search results for cancer-related keywords

6. Performing t-SNE dimensionality reductions on each set
of search results

7. Generating PNG images for each of the t-SNE clusterings

8. Creating a simple user interface allowing for user interac-
tivity to explore the t-SNE clusterings by use of keyword
search and selection of individual patents

The following subsections describe each of these steps in
more detail.

Dataset

Our system uses two datasets from the USPTO (USPTO
2016b). The first is a collection of full-text patent docu-
ments and associated XML metadata. These documents are
available as bulk downloads from the USPTO website with
each archive file containing all patents granted within a sin-
gle week period. We downloaded all patents from January
5, 2010 to March 17, 2015. This produced a collection of
1,337,682 patent documents. Using a larger dataset is possi-
ble, of course, but our prototype uses this limited collection
in the interest of reducing computational time and storage
resources. As discussed below, word embeddings using the
skip-gram algorithm continue to improve in quality as more
data is processed, so a larger system indexing all US patents
would hopefully have even more accurate word embeddings.

The second dataset is a list of 269,354 cancer-related
patents offered by the USPTO to support its Cancer Moon-
shot Challenge (USPTO 2016a), which is part of the larger
Cancer Moonshot program (Moonshot 2016) introduced by
President Obama in his 2016 State of Union address. The
goal of the Cancer Moonshot program is to invest in and ac-
celerate cancer research. We use this dataset to guide user
searches and to reduce the number of returned results so
that the resulting visualization will be more targeted and al-
low for easier user interaction. We use the 32,611 patents in
this set that fall within the time-frame of our full-text patent
dataset described above.

Dataset Preprocessing

The bulk, full-text patent archives contain XML files for
each of the granted patents for one week. We preprocessed
these files so that their content could be easily used in sub-
sequent parts of the system. First, we extracted each of
the patent descriptions from their XML markups. We then
converted all the text to lowercase and stripped any non-
alphabetic characters with the exception of space characters.
Each cleaned document was then concatenated together into
a single file. This final file is 47GB in size.

The Cancer Moonshot Challenge dataset contains only
metadata about cancer-related patents, so the preprocessing

step only worked with patent titles. These titles were con-
verted to lowercase and non-alphabetic characters were re-
moved.

Word and Document Embeddings

Our system uses words embeddings to help find meaning-
ful relationships between cancer-related patent documents.
Word embeddings are vector representations of words that
can capture meanings in numeric ways. These representa-
tions can then provide direct comparisons of the semantic
relationships between individual words, and more impor-
tantly for the current application, between full documents.
Word embeddings are obtained from large corpora of plain-
text data by finding patterns in existing written language,
and then extracting those patterns in a compressed way as
numeric semantic features.

There are many common ways to perform this type of
feature extraction including latent semantic analysis (Deer-
wester et al. 1990), neural-probabilistic language models
(Bengio et al. 2003), deep learning models (Collobert and
Weston 2008), and the skip-gram algorithm with negative
sampling (Mikolov et al. 2013). Since the skip-gram model
has been shown to have state-of-the-art performance on a
number of prominent natural language processing tasks, we
use it for this work.

The skip-gram algorithm generates word embeddings by
using artificial neural networks to process words along with
their surrounding context. Skip-gram models are trained by
processing large volumes of text data and then adjusting
their parameters to minimize context prediction error. Once
the model is trained, word embeddings are obtained by cap-
turing the model’s internal activations in its projection layer
when the model is given as input a single, encoded word.
Since word context prediction is the goal during training, the
activations become semantically meaningful in order to per-
form better predictions, given the assumption that semanti-
cally related words co-occur more frequently than unrelated
words. Figure 1 shows a diagram of the model with the pro-
jection layer representing the internal network activations.

Figure 1: Diagram of the skip-gram model.

For this work, we use the word2vec implementation
(Word2Vec 2016) of the skip-gram algorithm. We generated
word embedding vectors of length 300 by training on the
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entire patent dataset that we gathered, including patents un-
related to cancer therapies.

We use patent document embeddings in order to group to-
gether semantically related documents. The document em-
beddings attempt to capture the combined semantic infor-
mation contained within each patent document. Embedding
documents in a space based on the word embeddings allows
us to directly compare not only documents to other docu-
ments, but also documents directly to words. Our method for
creating document embeddings is simple: use the centroid of
all the word embeddings vectors for all the words contained
in the document. Other methods for creating more meaning-
ful document embeddings have been proposed, such as in
(Le and Mikolov 2014), so this is one aspect of our tool that
could be upgraded on the next iteration.

Dimensionality Reduction with t-SNE

After generating document embeddings for each of the
patent documents in our dataset, we then produced cluster
images for possible cancer-related keyword searches. These
images are shown to the user when searches are performed.

We formed the clustering images using the t-distributed
stochastic neighbor embedding (t-SNE) algorithm (van der
Maaten and Hinton 2008). The t-SNE algorithm creates
probability distributions for pairs of datapoints in both the
original high-dimensional space and the low-dimensional
space of the mapping. These distributions contain higher
probabilities for pairs of datapoints that are more similar
and lower probabilities for pairs of points that are less sim-
ilar. The low-dimensional probability distribution is formed
while attempting to minimize the Kullback-Leibler diver-
gence using gradient descent. The resulting mapped data-
points can then be visualized in a 2-dimensional scatterplot.
The algorithm has been shown to have good performance on
a number of different datasets for high-dimensional visual-
ization.

To select the set of keywords to use for the t-SNE image
generation, we used the titles of all cancer-related patents in
the USPTO Cancer Moonshot Challenge dataset. For every
word present in any of the titles, we collected all documents
sharing that keyword and then executed the t-SNE dimen-
sionality reduction on that set. Keywords present in fewer
than ten patent titles were excluded. For clarity of data visu-
alization, returned sets were also capped at 200 documents.

After completing the t-SNE execution on each keyword
document subset, we then generated a PNG scatterplot im-
age showing the documents embedded in 2-dimensional
space. For our chosen dataset, this resulted in about 2400
pre-generated images. These images are pre-generated so
that they may be presented without much delay when the
user is interactively using the system. Search queries con-
taining multiple words are not yet supported in our proto-
type because of the additional resources required, but it is a
feature to be added in the near future.

Interactive Visualizations

The frontend is written in javascript and uses the JQuery
library (JQuery 2016). The pre-generated clustering graphs
and their metadata files are stored on the server and indexed

by keyword. When the user enters a search query, then the
corresponding keyword scatterplot is displayed.

Once the graphs are displayed, the user is then able to ex-
plore the results by selecting individual patent documents.
Clicking a patent’s corresponding dot in the scatterplot dis-
plays the patent’s title and also brings up a link to the
patent’s full text. By selecting patent document dots in close
proximity to one another, a user may explore a subset of the
semantic space covered by those documents.

Since the clustering images are precomputed, the respon-
siveness of the system is very high. Currently, when the fron-
tend system first loads, the metadata for all the documents is
downloaded and prepared for display. This download is cur-
rently several megabytes of data adding a slight delay (de-
pending on the internet connection of the connected user)
to the interface’s start-up time, but in the future we plan on
making this metadata load on demand to speed up initializa-
tion.

Discussion

Many patent clusters show unsurprising groupings of closely
related documents, but it is our hope that others will shed
light on unexpected relationships that are meaningful. For
example, if a patented process attempting to solve a diffi-
cult problem did not succeed, then this tool may help with
the search for the next solution. This tool can also guide the
search for neighboring technologies or techniques, either to
secure against litigation or infringement concerns, or to find
alternative/substitute approaches to similar issues.

Our visualizations also provide a projected outline of the
documents under consideration, drawing attention toward
the edges, toward the holes, or toward the clusters. Where
might investors or translational scientists find the most cre-
ative patents, the ones with the greatest distance to other
patents? Where might they find the edges of the discipline,
the opportunity for advancement without competitors or pre-
vious knowledge? How might we extend our knowledge by
pushing the edges of the graph outward? Where should we
focus our energies on backfilling gaps in our research knowl-
edge?

As an example usage of our system, consider Figure 2
that shows two screenshots of a single search for the key-
word ”cell.” Each image shows the same set of results, but
with a different patent selected. Both selected patents are
nearby to one another, so they should be semantically re-
lated (or at least more closely semantically related than other
patents in our chosen dataset). The left image shows US
patent 7862814, ”Method of inhibiting the proliferation of B
cell cancers using TACI-immunoglobulin fusion proteins,”
and the right image shows US patent 8216576, ”Method for
inhibiting binding to B-cell receptor.” A user may then in-
vestigate both of these patents simultaneously and perhaps
find important similarities and differences in both technique
and patent focus, allowing for new insights and directions of
innovation.
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Figure 2: Two screenshots of a user search for “cell”. Each shows a different document selected (with selection indicated by
a circle around one patent dot), but both are in close proximity to one another. Both patents (US7862814 and US8216576)
concern B cell cancers and, more specifically, inhibitions of both receptor bindings and cancerous cell proliferation.

Future System Improvements

Since our existing visualization tool is currently an example
prototype of an emerging application, it is limited in several
important ways. Our working dataset only contains patents
from about five years’ worth of innovation. Filling out the
system with all available patents would not require a change
in any of the preprocessing steps other than more time and
computational resources.

Keyword searches are limited to single-word queries.
This, again, was done in the interest of lowering computa-
tional costs for getting an initial prototype system up and
running quickly so that it could be used to guide future im-
provements in the user experience. For the system to support
longer queries but still remain highly interactive with no de-
lays between queries, the backend infrastructure will need
to be upgraded. Since the t-SNE algorithm is fairly compu-
tationally intense, all visualizations must be pre-generated.
Moving to multiple-word queries will then involve either
pre-generating large quantities of graphs with the various
combinations of keywords or finding a faster way to com-
pute t-SNE reductions on-the-fly. Implementing a caching
mechanism would likely help speed up this second possibil-
ity since many shorter queries would likely be reiterations of
previously seen queries.
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