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Abstract

At the core of an intelligent tutoring system is the ability to
estimate a student’s level of skill proficiency. However, mak-
ing accurate skill estimates can require asking the student rel-
atively many questions. We address this challenge by using
“transfer learning,” a field of machine learning which uses
data from related, but different, “source” domains to aid in
learning in a poorly labeled “target” domain. Thus, to pre-
dict the skill of a student who hasn’t answered many “tar-
get” skill questions, we use estimates of well tested “source”
skills. We explore settings where the student has answered no
questions related to the target skill (the cold start setting) and
those where she has answered a few (the warm start setting).
We focus on the challenging situation where the domain ex-
pert has not identified the relationship between the skills. We
find that the Ridge estimator is useful for transferring knowl-
edge from source to target skills, outperforming nonparamet-
ric regression methods and a baseline which only uses student
performance on target skill questions.

1 Introduction

Intelligent Tutoring Systems (ITS) are systems which simul-
taneously estimate and improve upon the skills of students
(Desmarais and Baker 2012). For example, an ITS to teach
children arithmetic may present a student with a series of
questions in order to estimate the students’ abilities in four
separate areas - addition, subtraction, multiplication and di-
vision - and adaptively present lessons and questions in or-
der to improve the assessment of student’s arithmetic skills
in the four areas.

Accurately estimating skill level when a student has an-
swered few or no questions in an area is a challenging prob-
lem for ITS. Standard methods address these “warm-start”
and “cold-start” problems by modeling the relationship be-
tween skills using a Bayesian Network with meaningful net-
work topology and informative priors representing skill es-
timates, but this requires a domain expert to manually con-
struct the network. This can be both expensive and error-
prone if the domain expert makes a judgment mistake. Fur-
thermore, the priors are likely to reflect average student per-
formance, making them detrimental for use in any atypical
student situations.
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We take a different approach by modeling the cold-start
problem as a supervised transfer learning problem, using
competency estimates from previous “source” skills to es-
timate a “target” skill. Our method does not need a domain
expert to model the relationship between skills. Rather, the
relationship between source and target skills is automatically
learned. This is a challenging problem particularly when
there are many source skills to transfer, but can be solved
using supervised machine learning methods.

Our paper has the following outline. We first describe a
model of the ITS data we use. This model is a superset of
the data required to perform our experiments, but allows us
to better discuss future work. We then sketch previous work
and our own approaches before presenting experimental re-
sults, future directions and concluding.

2 Data Model of a Student

Here we overview an idealized data set. Not all of this data
was available for our experimental results, but we include a
full description to better describe our future work and chal-
lenges. At a high level, the data used in ITS can be modeled
as a series of transactions between different types of “ob-
jects” of interest. Specifically, we assume the existence of
four types of objects:

• Users: students, trainees, or other learners who interact.

• Skills: skills associated with users, such as arithmetic
skills like addition and division. Objects of this type may
also represent concepts to learn, attitudes to impart, and
so on.

• Questions: questions which users interact with in some
way that gives insight to the user’s skills, such as ques-
tions on a test or homework. These may also represent
test items, observed performance in a simulation, and so
on.

• Study Materials: objects users can interact with, but which
don’t necessarily measure a user’s competencies, such as
a study guide or a lecture video.

Assuming we have sets S = {S1, ..., Ss} of users, Q =
{Q1, ..., Qq} of questions, K = {K1, ...,Kk} of skills and
M = {M1, ..,Mm} of study materials, a common set of
transactions/interactions are:
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Question ID Skill
Q1 Addition
Q2 Addition
Q3 Multiplication
Q4 Multiplication
Q5 Division
Q6 Division

Table 1: An example of information available for questions
in the data sets we used. Notably, each question is only as-
sociated with a skill.

Student ID Question ID Score
S1 Q1 1
S1 Q2 1
S1 Q3 0
S1 Q4 0
S2 Q1 1
S2 Q5 1
S3 Q2 1
S3 Q3 0

Table 2: An example of information we used for student-
question transactions in our experiments. Score is binary - 1
for correct, 0 for incorrect.

• User-Question: the results of the interaction between a
user Si and an item Qj . For example, if user Si has an-
swered Qj . This transaction would also store when this
annotation took place and could store how long it took
the user to make the annotation.

• User-Skill: a users skill value, such as their skill in arith-
metic. This would also have a time component, to model
that user skills may change over time.

• Skill-Question: skills associated with the item, such as
skills tested by an exam question.

• Skill-Skill: the relationship between two skills, such as
their similarity, or prerequisite relations.

Other forms of pairwise data could be available as well.
Importantly, some of the data may be missing, such as only
having the interactions between user Si and a subset of the
questions. This represents an ITS providing useful adapta-
tion to individual learners without needing to fully test every
skill. Also, while it’s generally assumed that the time of any
transaction involving a user will be stored, a time component
could be associated with any object or pairwise transaction
to model change over time.

Additionally, other features may be available for some of
the objects. For example, Si(x) could include not just skills
but also demographics information for user i.

Due to data set limitations, in our experiments the only
data we used was the set of questions and student perfor-
mance on questions. For illustrative purposes, synthetic ex-
amples of the data we used are presented in tables 1 and 2.

3 Previous Work

ITS generally estimate students skills and update these es-
timates based on question performance. These systems pro-
vide questions in an adaptive manner in order to more ac-
curately estimate the student’s skill and to better train the
student in these skills (Beck, Stern, and Woolf 1997), (Fal-
magne et al. 2006), (Desmarais and Baker 2012). However,
because each students’ performance is considered indepen-
dently, systems may need to ask relatively many questions
in order to accurately estimate student skills.

Bayesian Networks can be used to to reduce the num-
ber of questions that need to be asked. This is particularly
common when the system models multiple skills. By us-
ing Bayesian Networks, performance on questions about one
skill can allow inference about the status of other skills. For
example, if a student answers a question on multiplication
correctly, then they have likely mastered addition. While
modeling skill relationships can lead to more accurate es-
timates, it requires a domain expert to construct the network
(Koppen and Doignon 1990). Additionally, there is still the
problem of accurate skill estimation when very few ques-
tions have been asked.

Transfer Learning, in the machine learning sense, is the
problem of learning a function when there exists some dis-
crepancy in the generating distributions of the train and test
sets (Pan and Yang 2010). Here, the training set and test sets
are called the “source” and “target” data sets. Generally, the
source data will be drawn from a problem that is related, but
different from the target data and the challenge is to optimize
performance on the target by somehow overcoming the dif-
ferences between the data sets. For example, if the task is
to predict the outcome of a new medicine, the source data
may consist of patients over the age of 50 while the target
data only contains patents under 40. These two data sets are
similar because they both model the success of the drug, but
they differ in the demographics of the patients, which are ex-
pected to affect the drug’s success in unpredicted ways. As
such, learning algorithms agnostic to this shift may perform
poorly on the target data.

Transfer learning algorithms generally vary in what they
transfer and how they transfer. For example, one class
of transfer learning algorithms assign higher “weight” to
source instances believed to be most similar to the target
set (Ben-David et al. 2007). Conversely, other algorithms
use hypotheses learned from the source data to regularize
the learning of a hypothesis on the target data (Tommasi,
Orabona, and Caputo 2010).

The class of transfer learning algorithms our work focuses
on is a form of “Feature Representation” transfer, wherein
predictions made by hypotheses trained on the source data
are used as features for the target data (Jie, Tommasi, and
Caputo 2011). These methods first, for each source data
set, independently learn a hypothesis then augment the fea-
ture representation of target instances with predictions made
by be these hypotheses. For example, if the original fea-
ture representation of a target instance is x = [x1, ..., xp]
and there are k sources, a hypothesis fi will be learned for
each source and the final target feature representation will
be [x1, ..., xp, f1(x), ..., fk(x)]. Within the context of ITS,
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this means using skill estimates of a set of source skills as
features for the target skill prediction problem.

4 Our work

We are interested in the problem of predicting the compe-
tency of a student in some skill s before they’ve answered
many or even any questions that test the skill. These “warm-
start” and “cold-start” problems are important because ac-
curate initial competency estimates can lead to better use of
learning time through well-aligned question and topic allo-
cation from the start. Also, this problem arises when trying
to decide who, among a set of candidates, should receive
further training in a new area.

Given a rich feature representation for a student,
skill estimation can be solved as a standard supervised
machine learning problem by providing a training set
{(x1, y1), ...(xn, yn)}, where xi is the feature representation
and yi is the skill value of student i. While generating skill
estimates yi for a training set is possible by simply having a
set of students answer questions that test skill s, generating
a feature representation xi is much trickier. Demographics
information could be used, but won’t be available in many
settings and may not be useful for competency prediction.

To solve the feature representation problem we assume
the existence of some set of “source” skills for which we
have competency estimates. The underlying assumption of
our work is that skill estimates from these source skills can
be used to better estimate the “target” skill. For example,
we can assume that given estimates of a students abilities
in addition and subtraction, this information can be used to
make better estimates of their multiplication ability.

To solve this problem we assume we have accurate skill
estimates for both the source and target skills for some
subset of students. We then transform this into a machine
learning problem by using the source skill estimates as fea-
tures and the target skill estimate as the label. For exam-
ple, if xi

ST = [xi
S1
xi
S2
...xi

Sp
xi
T ] are student i’s skill esti-

mates, where Si is the ith source skill and T is the target
skill, we split up the source and target estimates and use
xi
S = [xi

S1
xi
S2
...xi

Sp
] as the student’s feature representation

and xi
T as the label. Finally, we apply a standard supervised

machine learning algorithm to learn a mapping from the fea-
ture set to label.

Negative Results. We initially experimented with two
nonparametric methods: the Nadaraya-Watson estimator
(Friedman, Hastie, and Tibshirani 2001) and Learning with
Local and Global Consistency (Zhou et al. 2004), both using
Euclidean distance. These methods both performed poorly.
We believe this is because both algorithms require some
measure of distance between pairs of instances, but the Eu-
clidean distance assumes all features are equally important.
Within the context of skill transfer, it seems unlikely that all
skills would be equally predictive for all other skills. Fur-
thermore, nonparametric methods perform worse in high di-
mensional space due to the “curse of dimensionality” (Fried-
man, Hastie, and Tibshirani 2001) and in our experiments we
explore transferring more than 20 source skills. There are
methods for learning a metric (Xing et al. 2003) which may

help solve these problems, but these methods require solv-
ing computationally expensive optimization problems and
can require large training sets.

Instead, in our experiments presented here, we used the
Ridge estimator (Friedman, Hastie, and Tibshirani 2001)
which learns a linear function by solving the following opti-
mization problem:

min
w,b

∑

i

(xi
Sw + b− xi

T )
2 + λ||w||2 (1)

where λ ≥ 0 is a regularization parameter. Experimen-
tally, we found this method works well because it’s able to
assign higher weights to features which are more predictive.
However, it may be interesting to consider different estima-
tors for future work.

Ridge vs Lasso. We chose not to use the Lasso (Tibshi-
rani 1996), which is a modification of the Ridge which uses
the �1 norm in order to promote sparsity of w. While the
Lasso is useful when the goal is to learn the “correct” func-
tion or a more easily interpreted function, our goal is pre-
diction accuracy. Furthermore, the sparsity property of the
Lasso implicitly makes the assumption that only a fraction
of the source skills are relevant. This is a strong assumption
that may not hold in practice, and the Ridge does not make
such an assumption

Given the function estimate produced by the Ridge, we
can estimate the target skill for new students, even if they
haven’t answered any questions pertaining to skill T , as long
as they have answered questions that test the source skills.
For example, to predict a student’s skill in multiplication, we
can use the student’s skills in addition and subtraction. This
is the “cold start” problem.

We also studied the “warm start” setting, where in addi-
tion to source skill estimates students have answered a small
number of target skill questions. For this setting we com-
bined the source-to-target skill estimate f̂ST with an esti-
mate f̂T derived using only target skill questions. Specif-
ically, the final prediction is αf̂ST + (1 − α)f̂T where
α ∈ [0, 1] is a parameter that is tuned using standard model
selection techniques. We found that generating predictions
using both these sources of information can lead to even
more accurate predictions.

In summary, traditional methods using Bayesian Net-
works transfer knowledge of student competencies between
skills as well, but the topologies of these networks must
be manually constructed by domain experts. Additionally,
even if a topology is available, optimizing parameters in a
Bayesian Network solves a fundamentally different inferen-
tial problem than we face in the cold and warm start prob-
lems. Specifically, algorithms to tune Bayesian Networks
optimize a probability distribution that minimizes some no-
tion of error with the full joint probability distribution, while
the goal of our problem is to minimize the error in predicting
competencies of a specific skill in the warm and cold start
settings. The latter goal is directly optimized by supervised
learning methods such as the Ridge estimator.
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Figure 1: Error in skill prediction on “Digital Games for Im-
proving Number Sense” data. x-axis is the number of tar-
get questions available. Note that 0 indicates the cold start
setting. Our method performs much better than the base-
line when few questions are available. Missing bars indicates
not enough data was available to run the experiment. Skills
are: all, all*NearBench, all*NotNear, all*NotNear*Click,
all*NotNear*Click*NonUnitNotNear

5 Experiments

For our experiments we used the “Digital Games for Improv-
ing Number Sense” and “USNA Physics Fall 2008” (Van-
lehn et al. 2005) data sets from the LearnSphere data repos-
itory (Koedinger et al. 2010). The Number Sense data set
records performance of 51 elementary school students on
fraction and decimal visualization tasks. The USNA Physics
data set records performance of 69 university students us-
ing the Andes physics tutoring system. To estimate each stu-
dent’s skill we averaged their performance for each skill sep-
arately. For example, if the student correctly answered 3 out
of 5 questions for skill i then we recorded their skill as .6.

We compared our method in both the cold and warm start
settings to a baseline method. This baseline returns the aver-
age performance of the student on all available target ques-
tions. Thus, estimates of source skills are unused. Impor-
tantly, this baseline cannot be used in the cold start setting
since there are no target questions answered to estimate the
target skill proficiency.

Figures 1 and 2 are our results for our method compared
to baseline results. These results show our method signifi-
cantly outperforms the baseline when few target questions
are available. Additionally, our method can make accurate
predictions in the cold start setting. When many target ques-
tions are available, our method generally performs compa-
rably to the baseline.

6 Future Directions on Transfer Learning

and ITS

Here we describe a variety of future directions which will
lead to more informative and efficient transfer learning

which in turn will result in more accurate skill estimates us-
ing fewer answered questions.

6.1 Learning Skill Models and Skill Pathways

Here we envision attempting to learn the order in which
skills are mastered. We can consider two data situations, the
first described by the data used in our experiments to esti-
mate skill proficiency once and another when skill estimates
are made at regular intervals as increasingly more questions
are answered.

In the first setting for each student we can create a rank or-
dered list (in terms of decreasing proficiency) of each each
skill. We will then have a collection of such lists (one for
each student) and from each list can create many pairs of the
form skill i is ranked above skill j. If all rankings are consis-
tent across all students then finding a consensus ranking is
trivial, however inconsistent rankings (skill i ranked above
skill j, skill j ranked above skill k and skill k ranked above
skill i) will exist. Finding a consensus ranking from poten-
tially inconsistent individual rankings is known as the Rank
Aggregation problem (Coleman and Wirth 2009). Such a
consensus ranking gives a simple ordering of how the skills
are most likely to be acquired for the population of students.

In the second setting since we have multiple rankings per
student (at various fixed intervals). We can than create multi-
ple consensus rankings for each time step which then shows
how the rankings change over time. If skill i is consistently
ranked above skill j we can infer that skill i requires skill
j. We can find even find more complex insights such as if
skill i is ranked above skill j but when skill k is learnt well
then skill i and j rankings increase then skill k is an enable
of skills i and j. Turning these insights into a graph is a long
term aim.

A particularly challenging situation is to simultaneously
perform clustering of the rankings and find a consensus
ranking for each cluster. Then each consensus ranking (for
each cluster) represents a student pathway through the skill
set.

6.2 Identifying Most and Least Informative
Questions

Here our aim is identify the most informative question asso-
ciated with a skill to assess that particular skill. This can be
extended to identifying the most informative question asso-
ciated with skill i which when transferred is most useful at
estimating skill j. Similar calculations can be performed to
ascertain the least informative question with the belief be-
ing that such questions are mislabeled by domain experts as
testing a particular skill.

6.3 Incorporating Preparation Suggestions

A particular important topic is to predict what preparation
(study material) would most increase a student’s proficiency
at a skill and a related question being to estimate how much
the study material will improve skill proficiency. The for-
mer is a ranking problem and the later a regression prob-
lem. Transfer extensions to ranking and regression problems
(Qian et al. 2014) can be used to understand the effect of
study materials for skill i on the proficiency of skill j.
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Figure 2: Error in skill prediction on “USNA Physics” data. x-axis is the number of target questions available. Note that 0
indicates the cold start setting. Our method performs much better than the baseline when few questions are available. From
left to right and top to bottom, skills are: ‘Angular Momentum, MOMR’, ‘Circular Motion, ROTS’, ‘Energy-Work, E’, ‘Fluids,
FLUIDS’, ‘Free Body Diagrams, FBD’, ‘Linear Momentum, CM’, ‘Linear Momentum, IMP’, ‘Linear Momentum, LMOM’,
‘Power, POW’, ‘Rotational Dynamics, DR’, ‘Rotational Kinematics, KR’, ‘Statics, S’, ‘Translational Dynamics, DT’, ‘Trans-
lational Kinematics, KT’, ‘Vectors, VEC’, ‘Waves, WAVE’

7 Conclusion

The ability to estimate a student’s level of skills proficiency
is central to student assessment. We addressed the cold-start
and warm-start problems by using transfer learning, a devel-
oping area of machine learning that transfers knowledge of
a source task i to learn the transfer task j. We showed show
how transfer learning can be used to predict a target skill
from a collection of source skills. We found that the Ridge
performed better than nonparametric methods when trans-
ferring from many source skills and showed our method out-
performs a baseline on two data sets from the LearnSphere
repository. We outlined several future directions including
creating skill pathways (the trajectories students take whilst
learning a set of skills), estimating the the most informative
set of questions and identifying the most useful set of study
material.
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