
Towards an Understanding of What Is Learned: Extracting
Multi-Abstraction-Level Knowledge from Learning Agents

Daan Apeldoorn, Gabriele Kern-Isberner
daan.apeldoorn@tu-dortmund.de, gabriele.kern-isberner@cs.tu-dortmund.de

Technische Universität Dortmund

Abstract

Machine Learning approaches used in the context of agents
(like Reinforcement Learning) commonly result in weighted
state-action pair representations (where the weights deter-
mine which action should be performed, given a perceived
state). The weighted state-action pairs are stored, e. g., in
tabular form or as approximated functions which makes the
learned knowledge hard to comprehend by humans, since the
number of state-action pairs can be extremely high. In this
paper, a knowledge extraction approach is presented which
extracts compact and comprehensible knowledge bases from
such weighted state-action pairs. For this purpose, so-called
Hierarchical Knowledge Bases are described which allow for
a top-down view on the learned knowledge at an adequate
level of abstraction. The approach can be applied to gain
structural insights into a problem and its solution and it can
be easily transformed into common knowledge representation
formalisms, like normal logic programs.

1 Motivation

Machine Learning (ML) approaches like Reinforcement
learning (RL) which are used in the context of learning
agents, work quite well on many different tasks for decades
now. But there is still a lack in understanding what was
learned and how a learning agent solves a previously learned
task. This paper tackles the issue of extracting knowledge
on multiple levels of abstraction from weighted state-action
pair representations that are learned in the context of agents.
The resulting knowledge bases offer a compact view on the
learned knowledge on different levels of abstraction, such
that the knowledge can be inspected at an appropriate de-
gree of detail. The main contributions of the paper are:

• A formal definition of Hierarchical Knowledge Bases
(HKBs) with multiple levels of abstraction, which allows
the inspection of the contained knowledge in a top-down
manner on an adequate degree of detail.

• An improved knowledge extraction algorithm, based
on our preliminary work (Apeldoorn and Kern-Isberner
2016), which is able to extract such knowledge bases
faster from sub-symbolic weighted state-action pair rep-
resentations (independent of the underlying ML approach

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

used for learning, given that it results in a weighted state-
action pair representation).

2 Related Work

In (Sun 2002), two extraction approaches are proposed to
gain simple rules or plans from RL. However, this approach
does not extract an HKB with multiple levels of abstraction,
as will be done here, with the possibility to inspect knowl-
edge at different levels of abstraction. In (Leopold, Kern-
Isberner, and Peters 2008) RL was combined with belief re-
vision to support the learning process of an agent and it was
shown on a object recognition task that the considered agent
can benefit from the belief revision mechanism and it is also
possible to incorporate additional background knowledge.
However, the focus of (Leopold, Kern-Isberner, and Peters
2008) lies on the incorporation of the two paradigms rather
than on the possibility of making the learned knowledge ex-
plicit.

We build on our preliminary work (Apeldoorn and Kern-
Isberner 2016), where we showed the performance gain
of learning agents by incorporating HKBs extracted from
a sub-symbolic representation during the learning process.
The knowledge extraction algorithm used in (Apeldoorn and
Kern-Isberner 2016) suffered from a computational draw-
back which will be improved here by incorporating ideas of
the APRIORI algorithm (Agrawal et al. 1996).

3 Hierarchical Knowledge Bases

3.1 Preliminaries

As a preliminary for the following sections, we consider an
agent which is learning a task by acting autonomously in an
unknown environment. The agent is equipped with n sensors
through which it can perceive its current state in the environ-
ment. The agent is able to perform actions from a predefined
action space and can furthermore perceive, whether or not
the performed actions were good (e. g., in form of a numeric
reward).

More formally, in such a representation, a state s is an el-
ement of a multi-dimensional state space S = S1 × ...× Sn

where n is the number of the agent’s sensors (through which
the agent is able to perceive its state in the environment)
and every Si is a set of possible sensor values of the cor-
responding sensor. Furthermore, the agent selects actions

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

764

from a predefined action set A and the learned weights are
stored in a multi-dimensional matrix Q̂ = (qs1,...,sn,a) with
si ∈ Si and a ∈ A. The weights can be learned by di-
verse ML approaches, provided that the learning approach
converges such that given a state, the highest weight de-
termines the best action to be selected (i. e., amax

s1,...,sn =
argmax

a′∈A

qs1,...,sn,a′).

3.2 Definition of HKBs

This section introduces the concept of Hierarchical Knowl-
edge Bases (HKBs) and provides the corresponding defini-
tions. The HKBs consist of rules which are organized on dif-
ferent levels of abstraction. To be able to define these rules,
two different kinds of states and two different kinds of rules
will be distinguished:

Definition 1 (Complete States/Partial States) A com-
plete state is a conjunction s := s1 ∧ ... ∧ sn of all val-
ues si currently perceived by an agent’s sensors, where n
is the number of sensors (and every perceived sensor value
si ∈ Si of the corresponding sensor value set Si is assumed
to be a fact in the agent’s current state). A partial state is a
conjunction s :=

∧
s′∈S s′ of a subset S ⊂ {s1, ..., sn} of

the sensor values of a complete state.

Definition 2 (Complete Rules/Generalized Rules) Com-
plete rules and generalized rules are of the form pρ ⇒
aρ [wρ], where pρ is either a complete state (in case of an
complete rule) or a partial state (in case of a generalized
rule), the conclusion aρ ∈ A is an action of an agent’s ac-
tion space A and wρ ∈ [0, 1] is the rule’s weight.1

Thus, complete rules map complete states to actions and
generalized rules map partial states to actions. An HKB can
now be defined as follows:

Definition 3 (Hierarchical Knowledge Base) A Hierar-
chical Knowledge Base (HKB) is an ordered set KB :=
{R1, ..., Rn+1} of n + 1 rule sets, where n is the num-
ber of sensors (i. e., the number of state space dimensions).
Every set Ri<n+1 contains generalized rules and the set
Rn+1 contains complete rules, such that every premise pρ =∧

s∈Sρ
s of a rule ρ ∈ Ri is of length |Sρ| = i− 1.

According to Definition 3, the set R1 contains the most
general rules (with empty premises) and the set Rn+1 con-
tains the most specific (i. e., complete) rules.

For the relations of rules, the terms of exception and
needed exception are used in the following:

Definition 4 (Exception/Needed Exception) A rule ρ ∈
Rj>1 is an exception to a rule τ ∈ Rj−1 with premise pτ =∧

s∈Sτ
s, action aτ as conclusion and weight wτ , if Sτ ⊂ Sρ

and aρ �= aτ . The exception is needed, if there exists no
other rule υ ∈ Rj−1 with premise pυ =

∧
s∈Sυ

s and action
aυ as conclusion where Sυ ⊂ Sρ, aυ = aρ and wυ > wτ .

1Note that in (Apeldoorn and Kern-Isberner 2016), complete
rules are called elementary rules.

4 Knowledge Extraction

4.1 Extraction Algorithm

To be able to extract rule-based symbolic knowledge from
a sub-symbolic representation on multiple levels of abstrac-
tion, adequate representation criteria have been defined in
(Apeldoorn and Kern-Isberner 2016), following the idea of a
human, explaining a previously learned task to another per-
son. Usually, one is interested in a compact representation
of the knowledge which explains how to solve a previously
learned task (i. e., how to get from a starting state to a solu-
tion). Considering only the relevant weights in this sense can
be easily achieved by letting the agent store the best state-
action sequence which was found according to the weights
contained in Q̂ as a set SAQ̂ = {(s1, a1), ..., (sm, am)}
(with every si ∈ S1×...×Sn and every ai = argmax

a′∈A

q̂si,a′).

Following these ideas, the knowledge extraction algo-
rithm takes a set of state-action pairs SAQ̂ (based on the
weights contained in Q̂) as input and returns an HKB KBQ̂

which reflects the knowledge contained in Q̂ by performing
the following steps:

1. Initial creation of rule sets: In the first step, the multi-
ple abstraction levels R1, ..., Rn+1 of the knowledge base
are initially filled with rules. Since the number of pos-
sible premises of the rules grows exponentially in the
number of sensors, an adequate preselection of the rules
will be done here using adapted ideas from the APRIORI
algorithm (Agrawal et al. 1996). Details on the adaption
of the APRIORI algorithm used here will be provided later
in Section 4.2.

2. Removal of worse rules: In all sets Rj , a rule ρ ∈ Rj

is removed, if there exists another rule σ ∈ Rj with the
same partial state as premise having a higher weight (i. e.,
in every set Rj only the best rules for a given partial state
are kept).

3. Removal of worse more specific rules: In all sets Rj>1, a
rule ρ ∈ Rj with premise pρ =

∧
s∈Sρ

s, conclusion aρ
and weight wρ is removed, if there exists a more general
rule σ ∈ Rj′<j with premise pσ =

∧
s∈Sσ

s where Sσ ⊂
Sρ = {s1, ..., sj−1} and weight wσ ≥ wρ.

4. Removal of too specific rules: In all sets Rj , a rule ρ ∈
Rj>1 with premise pρ =

∧
s∈Sρ

and conclusion aρ is
removed, if there exists a more general rule σ ∈ Rj′<j

with the same action aσ = aρ as conclusion and with
premise pσ =

∧
s∈Sσ

s where Sσ ⊂ Sρ = {s1, ..., sj−1}
and if ρ is not a needed exception to a rule τ ∈ Rj−1.

5. Optional filter step: Optionally, filters may be applied to
filter out further rules which are helpful to explain the
knowledge contained in Q̂ through SAQ̂, but which are
not needed for reasoning later.

After performing these steps on Q̂, the knowledge base KBQ̂

comprises all sets Rj �= ∅ with the extracted rules represent-
ing the implicit knowledge contained in the learned weights
of Q̂ in a compact way.

765

4.2 Adapting APRIORI

An adaption of the APRIORI algorithm (Agrawal et al. 1996)
is used in the first step of the knowledge extraction algorithm
(Section 4.1) to initially fill the rules sets R1, ..., Rn+1.
Given a set SAQ̂ of (best) state-action pairs, the adapted
APRIORI starts with short premises having a minimum sup-
port suppmin (i. e., those partial states that are involved to
some degree in SAQ̂). The premises are then successively
extended to longer premises by keeping only those which
are still having at least the minimum support of suppmin.
The support of a premise pρ with corresponding (ordered)
premise set Sρ ⊆ {s1, ...sn} is calculated as

supp(Sρ) :=
|{(s, a) ∈ SAQ̂ | Sρ ⊆ s}|

|SAQ̂|
(1)

Furthermore, the weight wρ of a corresponding rule ρ of
the form pρ ⇒ aρ [wρ] with premise set Sρ is calculated as
the confidence

conf(ρ) =
|{(s, a) ∈ SAQ̂ | Sρ ⊆ s, aρ = a}|

|{(s, a) ∈ SAQ̂ | Sρ ⊆ s}|
(2)

More detailed, the adapted APRIORI takes a set of state-
action pairs SAQ̂ as input and outputs an initial set of rule
sets with potentially relevant rules RQ̂ = {R1, ..., Rn+1} by
proceeding as follows:

1. Create set R1 and add all rules ρ with an empty premise
pρ, aρ ∈ A and wρ = conf(ρ) > 0.

2. Create a set of premise sets S1 and add all (ordered)
premise sets Sρ of length |Sρ| = 1 with support
supp(Sρ) ≥ suppmin.

3. Create set R2 and add for all premise sets Sρ ∈ S1 all
rules ρ with pρ =

∧
s∈Sρ

, aρ ∈ A and wρ = conf(ρ) > 0.

4. Set k := 2.

5. Create the set Sk of premise sets of length k. Combine
every two premise sets Sρ, Sσ ∈ Sk−1 having the first
k − 1 elements in common to create a new premise set
Sτ = Sρ ∪Sσ .2 Add the new combined premise set Sτ to
Sk if

• all (k − 1)-elementary subsets of Sτ occur in sets of
Sk−1 and,

• supp(Sτ) ≥ suppmin.

6. Create set Rk+1 and add for all premise sets Sρ ∈ Sk all
rules ρ with pρ =

∧
s∈Sρ

, aρ ∈ A and wρ = conf(ρ) > 0.

7. Set k := k + 1.

8. If k ≤ n, continue with step 5.

2Note that an additional performance gain may be achieved here
in practice since (in contrast of the original APRIORI-algorithm)
only those pairs of sets that do not have any sensor values of the
same sensor value set in common have to be considered for combi-
nation.

After performing these steps, the rule sets contained in
RQ̂ are initially filled with preselected rules that could po-
tentially be relevant for the knowledge to be extracted, given
a minimum support of suppmin.

5 Examples

5.1 Example Scenarios

Three example scenarios are provided, where an agent (e. g.,
a robot) based on the agent model from Section 3.1 learned
to get from a starting point A to a target point B.3 Figure 1
shows the scenarios with learned policies (indicated by the
arrows) together with the corresponding extracted knowl-
edge bases.

5.2 Extraction Example

In this section, the knowledge extraction algorithm from
Section 4 is applied to Example 2 from Figure 1:

1. Starting from the learned state-action pairs SAQ̂ =
{((x0, y0),North), ((x0, y1),East), ..., ((x7, y1),East),
((x7, y1), South)}, the adaption of the APRIORI algo-
rithm (Section 4.2) is performed with suppmin = 0 to
initially fill the knowledge base KBQ̂ with potential rules.
After that, KBQ̂ contains the following rules (rules to be
removed in the subsequent step are marked by * in the
following):

� ⇒ East [0.778]
*� ⇒ South [0.111]
*� ⇒ North [0.111]
y0 ⇒ North [1.0] x2 ⇒ East [1.0]
y1 ⇒ East [0.875] x3 ⇒ East [1.0]

*y1 ⇒ South [0.125] x4 ⇒ East [1.0]
x0 ⇒ East [0.5] x5 ⇒ East [1.0]

*x0 ⇒ North [0.5] x6 ⇒ East [1.0]
x1 ⇒ East [1.0] x7 ⇒ South [1.0]

x0 ∧ y0 ⇒ North [1.0] x6 ∧ y1 ⇒ East [1.0]
x7 ∧ y1 ⇒ South [1.0] x5 ∧ y1 ⇒ East [1.0]
x2 ∧ y1 ⇒ East [1.0] x4 ∧ y1 ⇒ East [1.0]
x1 ∧ y1 ⇒ East [1.0] x3 ∧ y1 ⇒ East [1.0]
x0 ∧ y1 ⇒ East [1.0]

2. After removing the worse rules, KBQ̂ contains the fol-
lowing rules:4

� ⇒ East [0.778]
y0 ⇒ North [1.0] x3 ⇒ East [1.0]
y1 ⇒ East [0.875] x4 ⇒ East [1.0]

*x0 ⇒ East [0.5] x5 ⇒ East [1.0]
x1 ⇒ East [1.0] x6 ⇒ East [1.0]
x2 ⇒ East [1.0] x7 ⇒ South [1.0]

*x0 ∧ y0 ⇒ North [1.0] *x6 ∧ y1 ⇒ East [1.0]
*x7 ∧ y1 ⇒ South [1.0] *x5 ∧ y1 ⇒ East [1.0]
*x2 ∧ y1 ⇒ East [1.0] *x4 ∧ y1 ⇒ East [1.0]
*x1 ∧ y1 ⇒ East [1.0] *x3 ∧ y1 ⇒ East [1.0]
x0 ∧ y1 ⇒ East [1.0]

3To learn the optimal policy, a standard Q-Learning approach
(Watkins 1989) was used here in every scenario.

4In case of equivalent rules (i. e., rules having the same premise
and an equal weight), only one of these rules need to be kept. Here
the selection is done according to the lexicographic order of the
conclusions.

766

Figure 1: Example Scenarios with Extracted HKBs

3. After removing the worse (or equivalent) more specific
rules, the following rules are remaining in KBQ̂:

� ⇒ East [0.778]
y0 ⇒ North [1.0] *x4 ⇒ East [1.0]

*y1 ⇒ East [0.875] *x5 ⇒ East [1.0]
*x1 ⇒ East [1.0] *x6 ⇒ East [1.0]
*x2 ⇒ East [1.0] x7 ⇒ South [1.0]
*x3 ⇒ East [1.0]

*x0 ∧ y1 ⇒ East [1.0]

4. The final KBQ̂ after removing the too specific rules:

� ⇒ East [0.778]
y0 ⇒ North [1.0]
x7 ⇒ South [1.0]

Such an HKB can also be transformed, e. g., to a nor-
mal logic program, by considering the rules on each level
Rj>1 as exceptions of the rules of level Rj−1. In this ex-
ample, this will result in the program: PQ̂ = {East ←
not y0, not x7.,North ← y0., South ← x7.}.5

5.3 Interpretation of the Results

The knowledge contained in the extracted HKBs in Figure 1
can be read in a top-down manner: In the case of Example 1,
the agent simply learned to go east, which is reflected by the

5Thanks to Corinna Krüger for the exchange of ideas on this.

only provided abstraction level in KBQ̂
1 . In the case of Ex-

amples 2 and 3, in general, the agent also learned to go east
(since the target is still located in the east in both scenarios).
This can easily be seen on the top-level of KBQ̂

2 and KBQ̂
3 ,

respectively. However, when interested in more details, one
can have a closer look on the lower levels of abstraction:
In case of Example 2, the agent learned that when perceiv-
ing y0 it should go north and when perceiving x7 it should
go south to avoid the highly negative rewarded area in the
south. In case of Example 3, an additional third level of ab-
straction is provided in KBQ̂

3 , where it can be seen that the
agent learned to go to east when perceiving x0 and y5 as an
exceptional case.

In general, every level Rj>1 can be considered to contain
the exceptions of the level Rj−1, which allows to compre-
hend what was learned on the respective level of detail.

6 Conclusion and Future Work

This paper presented a knowledge extraction approach
which allows to comprehend what is learned through ML
techniques in the context of learning agents at different lev-
els of abstraction. For this purpose, the concept of HKBs
was described and an improved extraction algorithm was
introduced which is able to extract an HKB faster from a
state-action pair sequence (which was retrieved before from
a weighted state-action pair representation): We were able to
overcome a computational bottleneck of a preliminary ver-
sion of the algorithm used in (Apeldoorn and Kern-Isberner
2016) by introducing a variant of the APRIORI algorithm
(Agrawal et al. 1996) to the extraction algorithm.

Future research could, e. g., comprise a closer incorpo-
ration of the adapted APRIORI approach with the removal
strategies of the extraction algorithm.

References

Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.; and
Verkamo, A. 1996. Fast Discovery of Association Rules.
Advances in Knowledge discovery and Data Mining. Cam-
bridge, MA, USA: MIT Press. 307–328.
Apeldoorn, D., and Kern-Isberner, G. 2016. When
should learning agents switch to explicit knowledge? In
Benzmüller, C.; Sutcliffe, G.; and Rojas, R., eds., GCAI
2016. 2nd Global Conference on Artificial Intelligence, vol-
ume 41 of EPiC Series in Computing, 174–186. EasyChair
Publications.
Leopold, T.; Kern-Isberner, G.; and Peters, G. 2008. Belief
Revision with Reinforcement Learning for Interactive Object
Recognition. ECAI 2008 – 18th European Conference on
Artificial Intelligence Proceedings. Amsterdam: IOS Press.
65–69.
Sun, R. 2002. Knowledge Extraction from Reinforcement
Learning. New Learning Paradigms in Soft Computing.
Berlin Heidelberg: Springer. 170–180.
Watkins, C. 1989. Learning from Delayed Rewards. Eng-
land: University of Cambridge.

767

