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Abstract

We introduce the creation of a new Content-Based Image Re-
trieval (CBIR) System for regions of interest (ROIs) in so-
lar images. Regions are characterized by statistical features
derived from general-purpose image parameters extracted in
near real-time from the large-scale data stream of the Solar
Dynamics Observatory (SDO) mission. This work formulates
our region representation process, which includes content-
based feature extraction and the derivation of various meta-
data features for complementary spatiotemporal similarity
search capabilities. Preliminary work uses a well-established
dataset of labeled event regions for supervised evaluation
through event classification and retrieval performance. Fea-
ture selection is performed to reduce overall dimensionality
for more effective and efficient classification and retrieval.
Results show promising CBIR capabilities for region-based
querying (RBQ) demands over solar image repositories.

1 Introduction

The Solar Dynamics Observatory (SDO) mission captures
over 70,000 high-resolution images of the Sun per day, pro-
ducing more data than all previous solar data archives com-
bined (Martens et al. 2011). Given this non-stop flood of
data, it has become infeasible to continue traditional human-
based analysis and labeling of solar phenomena in every sin-
gle image. Future endeavors will only continue to increase
the volume of data, such as the currently under construction
Daniel K. Inouye Solar Telescope (DKIST) that is expected
to be operational by 2019 and will dwarf even the SDO data
archive for decades to come (Rimmele et al. 2015). In re-
sponse to this new era of Big Data, interdisciplinary research
is becoming increasingly popular between computer science
and solar physics, utilizing algorithms from computer vision
and image processing, data mining and machine learning,
and information retrieval fields.

This work builds upon existing investigations (Schuh et
al. 2013) into creating machine-usable datasets with SDO
data products to pursue data mining and knowledge dis-
covery from data (KDD) efforts. The data used here com-
bines openly available data products from several auto-
mated detection modules that run continuously in a dedi-
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cated data processing pipeline1. Here we use these datasets
to present proof-of-concept region-based event recognition
and retrieval in each individual image over time. This also
establishes a baseline benchmark of performance capabili-
ties for comparative evaluation of more advanced future re-
search with similar objectives. Therefore, our primary focus
is proper data preparation and experimental methodology for
the framework as a whole.

In Section 2, we provide an overview of the SDO mission,
the specific data sources used and related works. Section 3
presents the general dataset creation and region representa-
tion process. Then in Section 4, we highlight our evaluation
of supervised feature selection, classification, and informa-
tion retrieval. Lastly, Section V finishes with a brief discus-
sion of future work and conclusions.

2 Background

Launched on February 11, 2010, the SDO mission is the first
mission of NASA’s Living With a Star (LWS) program, a
long-term project dedicated to studying aspects of the Sun
that significantly affect human life, with the goal of even-
tually developing a scientific understanding sufficient for
prediction (Withbroe 2000). The SDO is a 3-axis stabilized
spacecraft in geo-synchronous orbit designed to continu-
ously capture images of the entire (full-disk) Sun (Pesnell,
Thompson, and Chamberlin 2012). It contains three inde-
pendent instruments, but our main focus is the Atmospheric
Imaging Assembly (AIA) instrument, which captures im-
ages in ten separate wavebands across the ultra-violet and
extreme ultra-violet spectrum, selected to highlight specific
elements of solar activity (Lemen et al. 2012). Figure 1
shows an example AIA 171 Ångström (Å) image. While all
of these images are grayscale, they are often colorized in
unique ways to quickly identify the wavelength and better
accentuate the solar activity of interest.

An international consortium of independent groups,
named the SDO Feature Finding Team (FFT), was selected
by NASA to produce a comprehensive set of automated fea-
ture (event) recognition modules (Martens et al. 2011). The
SDO FFT modules operate through the SDO Event Detec-
tion System (EDS) at the Joint Science Operations Center
(JSOC) of Stanford and Lockheed Martin Solar and As-

1More info at http://dmlab.cs.gsu.edu/solar/
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Figure 1: An example SDO AIA 171Å image overlaid with
labeled event regions of interest from SDO FFT modules.

trophysics Laboratory (LMSAL), as well as the Harvard-
Smithsonian Center for Astrophysics (CfA), and NASA’s
Goddard Space Flight Center (GSFC). Several modules are
provided with direct access to the raw data pipeline for
stream processing and near-real-time event detection.

Solar events identified by these modules, among oth-
ers, are reported to the Heliophysics Event Knowledgebase
(HEK), which is a centralized archive of solar event reports
accessible online (Hurlburt et al. 2012). While event meta-
data can be downloaded manually through the official web
interface2, this process is cumbersome and slow. In pre-
vious work, automated methods were used to comprehen-
sively collect and process all events reports into a clean
and ready-to-use dataset. Importantly, the dataset contains
events only from the automated SDO FFT modules, remov-
ing any human-in-the-loop limitations or biases in reporting
and identification, while facilitating timely updates as mod-
ules continually deliver new reports. Here we begin with this
curated dataset as a starting point, and refer the reader to the
previous work for more detailed information (Schuh, An-
gryk, and Martens 2016).

Figure 1 shows examples of all seven types of events
in the dataset: Active Region (AR), Coronal Hole (CH),
Emerging Flux (EF), Filament (FI), Flare (FL), Sigmoid
(SG), and Sunspot (SS), which were all chosen because of
their long-running modules and frequent reporting. Many of
these event types are identified in alternative image sources,
including non-SDO data, so this figure is only meant as
a general spatiotemporal reference. This work focuses on
AR and CH event types. Active regions are brighter areas
of higher magnetic activity that contain other events such
as sunspots and flares. Conversely, coronal holes are much

2http://www.lmsal.com/isolsearch

cooler and darker areas of lower energy and activity. Both
types of events are identified by the SPoCA module (Ver-
beeck, C. et al. 2014) using AIA 171Å and 193Å images.

As another one of the 16 SDO FFT modules, the interdis-
ciplinary research group at Georgia State University (GSU)
developed a “Trainable Module” to comprehensively extract
image parameters over each AIA image, enabling novel re-
search efforts in a wide variety of data mining topics un-
related to specific solar phenomena, including a Content-
Based Image Retrieval (CBIR) system for full-disk solar im-
ages (Banda et al. 2013) and solar event tracking (Kemp-
ton, Schuh, and Angryk 2016). The main benefit of such a
module is the availability of a general-purpose and space-
efficient image descriptor catalog over the entire data archive
for future research that has yet to be determined.

In previous works, a wide variety of possible image
parameters were evaluated to represent the solar images
(Banda and Angryk 2010a; 2010b). Given the volume and
velocity of the data stream, the best ten parameters were cho-
sen based on not only their classification accuracy, but also
their processing time. Figure 2 shows heatmap plots of each
normalized parameter for a single image (very similar to the
image presented in Fig. 1), where the colors range from blue
(low values) to red (high values). Each 4096×4096 pixel im-
age is segmented by a fixed-size 64× 64 grid, which creates
4096 non-overlapping cells per image. For each 64×64 pixel
cell, these ten image parameters are calculated and archived
along with image metadata and thumbnails.

The Trainable Module operates on a six minute cadence
that results in roughly 240 images processed per day for each
of the ten SDO AIA channels (wavebands), which is over
800,000 images per year. This totals approximately 850MB
per day, which sums to about 300GB per year. Much like the
event datasets, a previous work has meticulously analyzed
and curated large-scale datasets to make this image parame-
ter data easily available for research such as this work, and
we refer the reader here for more detailed information be-
yond our scope (Schuh, Angryk, and Martens 2015).

3 The Data

Here we discuss the creation of our specific CBIR evaluation
dataset using the public data repositories discussed in the
previous section. We first provide an overview of the region
identification process, which links event labels with associ-
ated spatiotemporal regions of image parameter data. Then
using this set of labeled regions, we discuss our specific rep-
resentation (or characterization) methodology, which forms
the labeled data instances for our research dataset. We em-
phasize the representation process as an independent step
after identification, because the larger goal is that alterna-
tive representations, such as sparse-coding or deep-learning
methods, can be generated on the same events for direct
comparative evaluation.

Unless otherwise stated, we focus on one year of data over
the entire 2012 calender year. Although SDO became opera-
tional in mid 2010, this is the earliest date currently available
for the Trainable Module image parameter data. The single

527



Figure 2: Image parameter heatmap plots for an AIA image, where each plot is normalized from 0.0 (blue) to 1.0 (red).

year dataset3 contains approximately 38,000 event (data) in-
stances, and while solar activity is not constant from year to
year, we can safely estimate thousands of new events each
year of additional data added in future works.

3.1 Region Labeling

The first step is to identify the spatiotemporal regions of in-
terest (ROIs) for study. We focus on two specific event types
of interest from the SDO FFT module reports: Active Region
(AR) and Coronal Hole (CH). These were chosen in part be-
cause of similar reporting characteristics that make region
identification easier. Over the year there is approximately
13,518 AR events and 10,780 CH events. Both event types
are reported at approximately a four hour cadence, providing
a snapshot of all visible event instances at each report time.
We chose to use AR events as our base time for linking all
data sources together. We first collect all unique AR report
times, and then for each one, we find all CH events that are
within ± 60 minutes. If no CH events exist, we skip the AR
events to ensure each timestep has both event types. While it
is not necessarily essential to have both types of events (la-
bels) present at each timestep, it does mitigate the concern
of unknowingly overlapping labels that would decrease the
effectiveness of discrete label-based learning tasks.

Next, we calculate the average of all linked AR and CH
events and create a new list of dataset events with their up-
dated timestamps. These events include an ID link back to
their raw reports for later lookup if necessary. They also
contain the spatial information, which consists of a center
point, bounding box, and polygonal outline (chain code).
Since all AR and CH event instances contain chain codes,
unlike many other event types, we use this spatial attribute
for a more precise ROI. In all, we retain 2,116 unique event
times and only discard 12 due to the above restrictions.

Additionally, we artificially create a third event type
called Quiet Sun (QS), which represents areas of the solar

3http://dmlab.cs.gsu.edu/solar/

disk where neither AR or CH events exist. These are gen-
erated by taking the bounding box of each AR event in our
new list and randomly placing it somewhere else on the so-
lar disk without overlapping any other AR or CH events at
that time – another helpful reason to only retain times with
both event types present. By using AR events as templates,
we replicate the natural distribution of event sizes and fre-
quencies, and create exactly the same amount of QS events
(in this case 13,518). While we could use the chain code
for these as well, it intuitively makes little difference and is
computationally much more efficient to use bounding boxes.

3.2 Region Representation

After the list of events has been established, we now gener-
ate instances for the actual dataset. An example image with
labeled ROIs can be seen in Figure 3, with the underlying
image parameter 64× 64 grid cells highlighted for each re-
gion. Notice the large variability possible between an event’s
bounding box and chain code, and the lack of chain codes for
QS events. We first verify associated image parameter data
is present within ± 30 minutes over all nine AIA channels,
otherwise we mark the event skipped for a final tally of data
coverage. Over the entire year, this only happens 137 times
(roughly 6.5%), leaving us with a final count of 1,979 unique
event times for the 37,816 event instances.

Each event instance contains a variable number of image
cells. Each cell is represented by 10 parameters (see Fig. 2)
that are extracted from each of the 9 AIA channels, creating
in total 90 parameters (dimensions). As a preliminary work
establishing the foundations and baseline of performance,
we want to begin with a simple strategy that is easy to un-
derstand and not domain-specific. Therefore, we calculate a
7-statistic summary for each parameter over all cells in the
ROI, ordered as: minimum, 1st quartile, median, 3rd quar-
tile, maximum, average, and standard deviation, which we
notate as the vector: {q0, q1, q2, q3, q4, avg, std} for short-
hand abbreviation. Therefore, each event instance is repre-
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Figure 3: Example of cell-based event ROIs.

sented in a 630-dimensional space (9× 10× 7).
We note that the total ordering is mostly only

important for interpreting results by IDs (1-630),
which are a nested combination of: AIA channel
(94,131,171,193,211,304,335,1600,1700), image pa-
rameter (1-10), and statistical values (1-7). So for example,
ID 1 is the minimum of entropy in AIA 94Å written in
shorthand as “0094-P01-q0”, and so on.

In addition to these content-based features, we derive a
number of metadata characteristics for each region to be
used later for additional qualitative evaluation and possible
filtering capabilities. While advanced use of this metadata
is beyond the scope of this current work, we highlight them
here as they are generated during the representation process
for future use. Namely, we record the distance from solar
disk center to event center, the radial cosine angle of the
event based on disk center, the bounding box size, and the
number of cells within the chain code. These attributes pro-
vide more specific information on the absolute location, size,
and shape of each event instance.

4 Experimental Analysis

Now that we have generated a usable dataset, we follow sev-
eral supervised experimental methods to evaluate our po-
tential CBIR performance. We begin with feature selection
to reduce dimensionality and then briefly look at classifica-
tion accuracy to see how well we can learn the three event
types (class labels) over various dimensionality. This is im-
portant because it provides us more insight into prominently
selected features as well as more assurance in the feature
selection process. Lastly, we perform k-nearest neighbor re-
trieval and evaluate precision for each individual event type.
We also showcase several example query results and their
associated meta data to further highlight the robustness (and
non-trivial results) of our retrieval performance.

Unless otherwise stated, before the following experiments

Figure 4: F-Statistic values for all 630 features, sorted by ID
(left) and value (right).

are performed we balance the dataset through random un-
der sampling. This leaves us with 10,780 instances for each
event type, which is only a slight reduction to 32,340 total
instances in the dataset.

4.1 Feature Selection

The first step is feature selection to reduce our dataspace
from 630 original dimensions to something generally more
manageable. Done properly, this can enhance classifica-
tion and retrieval performance by better separating event
types (data classes) and reducing computational burdens. It
will also significantly speed up k-nearest neighbor retrieval
through effective high-dimensional indexing techniques.

We use the F-statistic as a scoring (ranking) of feature im-
portance towards class separation. Due to the greedy nature
of this measure, we first randomize the balanced dataset. An
example of F-stat values is shown in Figure 4, where the left
plot is in original parameter order and the right plot is sorted
by scores. We can see significant and repeated oscillations
on the left, indicating certain image parameters (and/or de-
rived 7-stat measures) are clearly more important than any
specific AIA channel. On the right we see a common de-
scending curve of F-stat values indicating the first features
(approx. 40-60) are significantly more important than the
rest in the selection process.

Table 1: Top 10 features based on 10-run F-Stat ranking.
P-ID P-Label Rank Score
56 0094-P08-q0 3 6696.821
298 0211-P02-q4 14 6454.258
557 1600-P09-q4 24 6363.134
277 0193-P09-q4 28 6226.519
347 0211-P09-q4 40 6132.172
228 0193-P02-q4 49 6021.542
207 0171-P09-q4 60 5774.715
508 1600-P02-q4 70 5650.484
158 0171-P02-q4 79 5584.087
301 0211-P03-q0 87 5320.306

Preliminary empirical results showed that smaller datasets
(e.g., 1 week and 1 month samples) have greater variability
in resultant ranked features. Therefore, while one year pro-
vided more stable results, we also chose to perform ten sep-
arate runs and then sum their scores (and ranks) together for
a final robust list. Table 1 lists the top 10 features sorted by
their rank-sums. We note that the ranking values are 0-based,
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Figure 5: Classification accuracy over dimensionality.

so for example, the first feature with a rank-sum of 3 indi-
cates that over all ten runs it was at worst chosen 4th once
(and 1st nine times), or at best 2nd three times and 1st the
remaining seven times. Therefore we have high confidence
this is indeed the most important feature in the dataset.

Interestingly, notice that 8 of the 10 are q4 (max) and com-
ing from P02 (mean) and P08 (relative smoothness). This
strongly indicates usefulness of these two image parameters,
as well as the frequently used max-pooling strategy often
used in windowing aggregations of more advanced works.
We note that std (standard deviation) also appears very fre-
quently in the top 50, and out of the entire top 100 features
only five are not q0, q4, or std statistics.

4.2 Classification

Next we move to supervised classification using our ternary
labeled dataset (AR, CH, QS). To gauge general classifica-
tion performance, we evaluated: Naive Bayes (NB), Deci-
sion Tree (DT), Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), and Random Forest (RF) methods. While
rigorous tuning of these algorithms is beyond the scope and
purpose here, we did empirically evaluate several critical pa-
rameters and show only the best here. This includes using
Entropy criterion for trees with a max-depth of 10, RBF ker-
nels for SVMs, and K=30 neighbors for KNN.

Using the list of ranked features discovered in the previ-
ous section, we evaluate successively larger dimensionality
from 10 to 200, essentially appending more dimensions back
on to the reduced space. In other words, the top 10 parame-
ters shown above are always used. We perform standard 2/3
train, 1/3 test, but due to temporal dependence, rather than
a randomized shuffle of data instances we split our train-
ing and testing sets temporally as 8 (and 4) months, respec-
tively. This is an often overlooked, but critically important,
aspect that can drastically affect certain learning algorithms.
For example, if we have the same AR event represented four
times, each only four hours apart, then there is a large possi-
bility that the test set would contain one of these events that
is likely very similar to the other events in the training set.
During preliminary experiments we observed this situation
could occur with this data and lead to inflated results.

Figure 5 displays the classification accuracy results for the
five machine learning algorithms over dataset dimensional-
ity. Note that all five algorithms appear quite stable between

Figure 6: Precision results for KNN retrieval.

60-65% accuracy, whereas a random guess would achieve
33% accuracy (3 classes). Some of the minor variances may
be eliminated through more runs on larger datasets, but all
algorithms appear to stabilize after about 40-60 dimensions,
which is less than 10% of the original 630 dimensional
space. Although additional dimensions may be slightly in-
creasing accuracy of NB, SVM, and KNN, it is likely not
worth the trade-off in computation for our purposes.

4.3 Retrieval

Lastly, we look at k-nearest neighbor (KNN) retrieval results
to assess CBIR capabilities, and specifically Region-based
Querying (RBQ) performance. We select 100 random data
instances for each class and retrieve the nearest 1,000 neigh-
bors using Euclidean distance on the top 60 dimensions. We
then aggregate results over all queries for each class and cal-
culate precision for each additional neighbor, which is de-
fined as the ratio of true positives (same class label) over the
total number of retrieved results. Because we do not extend
retrieval results through the entire dataset, we discard the re-
call measure, which is essentially encompassed in precision
performance on a limited KNN set.

In Figure 6, we present the precision results for each class
averaged over 100 queries from K=1 to K=1,000 in 1-step
increments. Remarkably, we find that AR queries maintain
a perfect precision ratio upwards of K=150 and CH to about
half of that at K=75. While perfect precision is not a neces-
sity, it does indicate very good RBQ capability on what are
likely highly distinguishable classes (event types). We note
that QS begins to degrade in precision almost immediately
at K=5, indicating less definable characteristics, which one
would expect given the creation process.

Unlike the prior evaluations, RBQ retrieval uses the entire
(un-balanced, non-separated) dataset. This provides a more
real-world application, but might cause other issues. First,
we note that there are many more events per class than our
largest query, so exhausting the dataset will not be a factor
(K=1,000 with over 10,000 events per class). Second, we
could have temporal-dependence affects skew our results as
suggested above. We briefly investigate this by examining
the metadata features of top results for example queries that
clearly indicates if we are returning “too-similar” results of
spatiotemporal neighbors, which is a known issue for exist-
ing full-disk solar CBIR systems (Banda et al. 2013).
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In Table 2 we present the metadata of the top 3 results for
an example query from each event type. Empirically we ob-
served similar results for many analyzed queries, but due to
space we limit the results here to a small example. We note
all the results match the same label as the query item. Notice
the differences in query and result dates, indicating these re-
sults are not direct temporal neighbors. Also, we provide the
center (X,Y) locations offset by disk center at (2048,2048),
and the total grid cells contained in each region.

Here we can clearly see the results are not direct spatial
neighbors and can vary in size. Therefore, we have strong
confidence in our system returning truly similar (content-
based feature) results independent of the actual spatiotem-
poral qualities of the regions. In the future, we can fuse sim-
ilarity searches over these metadata qualities to satisfy more
specific user-defined queries.

5 Conclusions and Future Work

This paper serves as the foundation for a new region-
based retrieval framework for heliophysics imagery data. We
present a preliminary approach for representing labeled re-
gions of interest within images using general-purpose grid-
based image parameters along with a supervised evaluation
methodology for comparing alternative strategies in future
works. Our results showcase exceptional dimensionality re-
duction capability as well as a promising baseline for re-
trieval performance across multiple event types. The dataset
is available for easy comparative evaluation and benchmark-
ing performance results against alternative works.

Several directions of future work are being pursued. Addi-
tional event types for supervised analyses, unlabeled patches
for exhaustive image corpus coverage, and indexing for re-
trieval scalability. Additionally, more advanced region rep-
resentations, such as sparse coding models and deep neural
networks, are under active research and development.
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Table 2: Metadata results from example queries.
Q-K ID Date X Y Cells
Q-AR 23487 08-28 08:29 -817 267 10
K-1 19054 07-11 11:27 52 -608 23
K-2 33841 11-21 18:51 -964 241 12
K-3 22054 08-13 14:01 -1017 -536 12
Q-CH 30021 10-24 12:26 131 -1134 27
K-1 25901 09-21 13:58 -1166 30 32
K-2 29274 10-19 04:13 -87 -749 21
K-3 30067 08-28 12:29 32 -1129 25
Q-QS 36407 12-16 12:27 1315 -860 35
K-1 30073 10-24 20:26 -795 1184 49
K-2 37338 12-25 10:33 207 826 72
K-3 19329 07-15 13:59 673 261 110
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