
What-If Prediction via Inverse Reinforcement Learning

Masahiro Kohjima, Tatsushi Matsubayashi, and Hiroshi Sawada
NTT Service Evolution Laboratories, NTT Corporation

1-1 Hikari-no-oka, Yokosuka-shi, Kanagawa, 239-0847 Japan
Email: {kohjima.masahiro, matsubayashi.tatsushi, sawada.hiroshi}@lab.ntt.co.jp

Abstract

What happens if a new street is constructed in a city? What
happens if a certain traffic regulation is executed in an ex-
hibition hall? It is important to answer such questions in or-
der to identify “good” operation scenarios for improving city
and event comfort. In this paper, we propose a new method
on a framework of inverse reinforcement learning (IRL) that
can answer these and similar questions. Given any scenario
among executable scenario candidates, the proposed method
predicts the impact on people under the condition that the
scenario is executed. The proposed method consists of three
steps: parameter estimation, scenario integration, and predic-
tion. In the parameter estimation step, our new IRL algorithm
estimates both cost (reward) function and transition proba-
bility from past transition logs. Note that it is not necessary
that the scenario to be conducted is executed in the past. In
the scenario integration step, the estimated parameters are up-
dated by scenario information, and prediction is conducted in
the final step. We evaluate the effectiveness of the proposed
method by experiments on synthetic and real car probe data.

Introduction
People living in a large city always suffer from congestion.
People are caught in traffic jams on the way to work, and
need to wait in a long queue to attend a popular event such
as sports festivals and product/technology exhibitions. It is
desirable to solve or at least reduce the congestions in order
to improve the comfort and safety of people and enhance
their enjoyment of the event.

One of the major difficulties in easing congestion is that
we cannot make trial operations because of the cost and
risks. For example, it is too expensive to construct a new
street in a city just for a trial. As another example, over-
crowding may threaten the safety of visitors if new traf-
fic regulations are set in an exhibition hall. Therefore, it
is essential to predict the effects of operations without try-
ing them in the real world. If such predictions are possible,
we can compare several scenarios, each consisting of set of
operations to be executed, based on the prediction results.
“Good” scenarios are those among the executable scenario
candidates that reduce congestion. However, it is very diffi-
cult to predict people’s transition behavior in a scenario even
if past transition data are available.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we tackle the problem of predicting the tran-
sition of people when any of the scenario candidates is exe-
cuted. Since this is a kind of virtual prediction problem that
involves answering the question, what will happen if a cer-
tain scenario is executed?, we call this the what-if prediction
problem.

We consider the setting that (i) past transition logs and
(ii) information of the scenario under test are available. The
past transition logs do not need to contain past instances
in which the scenario was executed. We design a method
for the what-if prediction problem in order to satisfy three
requirements (R1)(R2)(R3). (R1) The method needs to ex-
tract parameters that are invariant regardless of which sce-
nario is executed from past transition logs. This requirement
makes what-if predictions possible. (R2) The method needs
to merge the information of the scenario to be conducted.
Otherwise, we cannot expect precise predictions. (R3) The
method needs to conduct prediction without gathering new
data in order to find “good” scenarios without executing op-
erations.

Keeping the above requirements in mind, we developed
a new method for what-if prediction. Our main idea is
the use of Inverse reinforcement learning (IRL) (Ng and
Russell 2000). IRL is a method that estimates a cost (re-
ward) function for a certain class of Markov decision pro-
cess (MDP) (Puterman 2005) from agent’s optimal behav-
ior. “Inverse” means that the input and output have the re-
verse relationship to that in standard reinforcement learn-
ing (RL) (Sutton and Barto 1998), which estimates optimal
behavior given a cost function. We extend the formulation
of IRL to satisfy the three requirements. (R1) Cost func-
tion is regarded as the most succinct, robust and transfer-
able definition of RL tasks in IRL literature (Abbeel and
Ng 2004). By estimating the cost function from past transi-
tion data, we can expect the extraction of invariant param-
eters. (R2) RL has two types of parameters, cost function
and transition probability of an environment. Even if the cost
function is invariant, the behavior of agent can be drastically
changed by modifying the transition probability. Merging
scenario information with transition probability allows the
2nd requirement to be satisfied. (R3) The IRL method only
estimates the cost function in general. However, transition
probabilities which define the state transition given an ac-
tion are needed to output predictions. Therefore, we propose

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

74

Figure 1: System overview of what-if prediction. Proposed
IRL method is a core algorithm.

a new IRL algorithm that can estimate both a cost function
and transition probability.

Figure 1 summarizes the procedure of what-if prediction.
There are three steps: parameter estimation, scenario inte-
gration, and what-if prediction. In the 1st step, our new IRL
algorithm estimates both a cost function and transition prob-
ability from past transition logs. The transition probability
is updated using scenario information in the 2nd step and
predictions is conducted in the final step.

Our new IRL method is based on the proposal of Dvi-
jotham and Todorov (Dvijotham and Todorov 2010). This
method need not solve a forward problem (i.e., RL prob-
lem) repeatedly in an inner loop of the reward estimation
process, unlike the well known IRL methods (Ng and Rus-
sell 2000)(Ramachandran and Amir 2007) (Ziebart et al.
2008). This success is achieved by the use of a new class
of MDP called Linearly Solvable MDP (LMDP) (Todorov
2006). Therefore, our IRL method uses the framework of
LMDP. We extend LMDP to formulate a new IRL prob-
lem and construct a new IRL method that estimates both a
cost function and transition probability. Use of LMDP also
contributes to reduce the number of parameters of transition
probability in comparison with standard MDP.

The problem setting of this study is related to multi-agent
simulations (MAS) which evaluate scenarios by using hand-
made simulators (Macal and North 2010). MAS is effective
in addressing a problem in which the movement of agents,
e.g., people, can be easily modeled. For example, in evac-
uating a building on fire, people rush for the exit. In fact,
Ueda et al. recently proposed a method that uses MAS to
identify good scenarios (Ueda et al. 2015). However, peo-
ple’s transitions in a city and exhibition hall have more va-
riety. Some people may just be wandering and may stop
at a shop/exhibition-booth that catches his/her eye. Our ap-
proach has a complementary relation to MAS.

The rest of this paper is organized as follows. In §2, we de-
fine an extended variant of LMDP called Shared-Parameter
LMDP (SP-LMDP). §3 presents the formulation and the al-
gorithm of proposed IRL method on SP-LMDP. §4 details
a way of merging scenario information and §5 is devoted to
the numerical experiments. Finally, §6 concludes the paper.

Shared-parameter LMDP (SP-LMDP)

Definition of LMDP and SP-LMDP
Linearly solvable MDP (LMDP) (Todorov 2006) is defined
by the quadruple {S, P̄,R, γ}, where S = {1, 2, · · · , S}
is a finite set of states and S is the number of states.

Figure 2: Forward and inverse problem of SP-LMDP.

P̄ = {p̄jk}Sj,k=1 indicates passive transition probabili-
ties, each element of which defines the transition probabil-
ity from state j to state k when an action is not executed.
R = {rj}Sj=1 is a state cost function and rj denotes the
state cost of state j. γ ∈ [0, 1) is a discount factor. Note that
this work focuses on the “infinite horizon discounted cost”
case (Puterman 2005). However, its application to other set-
tings is straight-forward.

We define a new type of LMDP which is defined as its
collection that share states S, passive transition probabil-
ity P̄ , and discount factor γ. Each LMDP has its own state
cost function, Ri, where i is the index of the LMDP. We
call this shared-parameter LMDP (SP-LMDP). We formu-
late our IRL method as an inverse learning problem to esti-
mate passive transition probability and all state cost func-
tions in SP-LMDP. Figure 2 shows all the parameters of
SP-LMDP. Formally, SP-LMDP is defined by the quadru-
ple {S, P̄,R, γ}, where R = (R1, · · · ,RI) is a set of
state cost function and Ri = {rij}Sj=1. I is the number of
the state cost functions. Note that the setting where multiple
state cost functions are defined is considered in IRL litera-
ture, e.g., (Babes et al. 2011).

In both LMDP and SP-LMDP, action a is represented as
a continuous value R

S dimensional vector and the action
transition probability from state j to state k when action
aj = {ajk}Sk=1 is executed is defined as

pjk(aj) = p̄jk exp(ajk). (1)

Note that action executed in state j must belong to Aj ={
aj ∈ R

S |
∑

k pjk(aj) = 1
}

so that the summation of the
probabilities equals one1. Therefore, the transition probabil-
ity itself can be controlled by an action. For example, in-
creasing ajk increases the probability of the transition from
state j to k. In order to execute a certain action, it is neces-
sary to pay the action cost defined by action cost function.
The action cost when action aj is executed in state j is de-
fined as

qj(aj) = KL(pj(aj)||pj(0)), (2)

1More precisely, p̄jk = 0 → ajk = 0 since ajk doesn’t affect
the action transition probability pjk(aj) when p̄jk = 0.

75

where KL(·||·) is Kullback-Leibler divergence and pj(a) =
{pjk(a)}Sk=1. Thus, action cost increases as pjk(a) deviates
further from passive transition p̄jk. Note that when the ac-
tion is a zero vector, a = 0, pjk(0) equals the passive tran-
sition probability p̄jk and action cost qj(0) = 0.

Forward Problem of SP-LMDP
The forward problem of the i-th LMDP in SP-LMDP can be
solved independently following the method used for LMDP.
Let πi = {aij}Sj=1 be a policy on the i-th LMDP whose el-
ement aij indicates the action executed in state j. The value
function of policy πi, vπi

i = {vπi
ij }Sj=1, is defined such that

element vπij indicates the expected sum of future cost from
state j following policy πi on the i-th LMDP,

vπi
ij = lim

T→∞
EdT

[
T∑

t=1

γt−1 {rist + qst(aist)}
∣∣∣s1 = j

]
,

where EdT
denotes the expectation over trajectory dT =

{st}Tt=1, the finite time step transitions from t = 1 to T . st
denotes the visit state at time t, and dT follows probability
P (dT |P̄,πi) = pinis1

∏T−1
t=1 pstst+1

(aist). p
ini is the initial

state distribution.
The forward problem of the i-th LMDP is to obtain opti-

mal policy π∗i = {a∗ij}Sj=1, i.e. the one that minimizes the
expected sum of the future cost. The optimal action in state
j is given by

a∗ij = arg min
aij∈Aj

{
rij + qj(aij) + γ

∑S

k=1
pjk(aij)vik

}

= −γvij − log
{∑

k
p̄jk exp(−γvik)

}
, (3)

where vi = {vij}Sj=1 is the optimal value function of the
i-th LMDP, vij = minπ v

π
ij , which satisfies the following

optimal equation:

vij = rij − log
{∑

k
p̄jk exp(−γvik)

}
. (4)

This optimal function can be efficiently obtained by power
iteration (Todorov 2006). Inserting Eq. (3) into Eq. (1), op-
timal transition probability, the transition probability when
the optimal action is executed, can be written as

p∗ijk = pijk(a
∗
ij) =

p̄jk exp(−γvik)∑
� p̄j� exp(−γvi�)

. (5)

We emphasize that the above form of optimal transi-
tion probability is a direct consequence of LMDP unlike
Bayesian IRL, which uses the value function as a potential
function (Ramachandran and Amir 2007).

Proposed IRL method

This subsection details the proposed IRL method; it can es-
timate both state cost and passive transition probability for
PS-LMDP. This type of IRL problem has not been well stud-
ied in IRL literature except for the work for partially observ-
able setting (Makino and Takeuchi 2012). We denote the
all transition logs which are used for estimation as D and
the number of transitions from state j to state k in the i-th

LMDP as nijk. Our IRL method is naturally derived by con-
sidering that each transition data is generated by the proba-
bility defined in Eq. (5) which has the parameter V, P̄; the
probability of all transition D is given by

P (D|V , P̄) =
∏
i

∏
j,k∈S

{
p̄jk exp(−γvik)∑
� p̄j� exp(−γvi�)

}nijk

. (6)

Our algorithm is designed to minimize the sum of nega-
tive log-likelihood term − logP (D|V , P̄) and regularization
term Ω(V, P̄) which is defined as

Ω(P̄,V) = −
∑

j,k
(α− 1) log p̄jk +

β

2

∑
i,j

v2ij . (7)

α and β are weight parameters. Note that this regularization
is equivalent to putting a Dirichlet prior on P̄ and a Gaussian
prior on V . Then, the objective function is given by

L(V, P̄)=
∑
i,j

{
ni·jγvij+nij· log

(∑
k′

p̄jk′ exp(−γvik′)
)}

−
∑
j,k

(n·jk + α− 1) log p̄jk +
β

2

∑
i,j

v2ij , (8)

where dot index means that the corresponding index is
summed out: n·jk =

∑
i nijk, ni·k =

∑
j nijk, nij· =∑

k nijk. We construct an algorithm that iteratively updates
V and P̄ . After V and P̄ are estimated, state cost Ri can be
computed using the estimated vi and P̄ by Eq. (4). Pseudo
code of the proposed algorithm is shown in Algorithm 1.

Update of Value Function: For the minimization with
respect to V , any unconstrained optimization method such
as Newton method can be applied. For the gradient-based
method, the 1st partial derivative is given by

∂L(V, P̄)

∂vi�
= γni·� − γ

∑
j
nij·p∗ij� + βvi�. (9)

Note that the objective function is convex while P̄ is fixed.
In the experiment section that follows, we use the LBFGS
method.

Update of Passive Transition Probability: For the min-
imization with respect to P̄ , we use Lagrange multipliers
to obtain the necessary condition of the limiting point. The
Lagrange function is defined as F(P̄, λ) = L(V, P̄) +∑

j λj

(∑
k p̄jk − 1

)
, where λ is a Lagrange coefficient.

By solving the above, necessary conditions are given by
the following non-linear simultaneous equation Fjk(p̄j) =
0 (∀j, k), where

Fjk(p̄j) =
∑

i
nij·p∗ijk − n·jk + (Sp̄jk−1)(α−1). (10)

Note that p̄jk is also included in p∗ijk as defined in Eq. (5).
Then, P̄ is updated to the value that satisfies Eq. (10).

Note that if passive transition P̄ is known and fixed, and
the number of LMDP, I , equals 1, α = 1.0, β = 0.0, the
proposed method reduces to the method by Dvijotham and
Todorov (Dvijotham and Todorov 2010). In addition, if P̄ is
fixed to a uniform distribution, it is equivalent to maximum
entropy IRL (Ziebart et al. 2008), which was also proven by
Dvijotham and Todorov (Dvijotham and Todorov 2010).

76

Algorithm 1 Proposed IRL Algorithm
Input: D, γ, α, β, Output: P̄,V,R

1: Initialize P̄
2: repeat
3: Minimize Eq. (8) w.r.t. vi and update vi (∀i).
4: Solve non-linear simultaneous equation Fjk(p̄j) = 0

for all k and update p̄j to its solution (∀j).
5: until Converge
6: Compute R: rij = vij + log

(∑
k p̄jk exp(−γvik)

)

Scenario Integration & What-if Prediction

This subsection provides a way to use the estimated state
cost function and passive transition for what-if prediction.
The remainder of the procedure of our system (Fig. 1) con-
sists of scenario integration and what-if prediction.

Integration of scenario information: First, given the
output of the proposed IRL method and scenario informa-
tion, we update passive transition probability by merging the
scenario. We denote the scenario integrated (passive) transi-
tion probability as P̄sc. As shown in Table 1, we assume
that scenario information is given by table format which
tells us which state/edge becomes what kind of condition,
e.g., keep out, one way and so on. Therefore, the update
rules are intuitive. For example, if state sk becomes keep
out, then, the passive transition probability is updated such
that p̄jk = 0 for all j. Thus what we need to be concerned
with is “normalization” to satisfy the sum-to-one constraint.
While various types of normalization procedure are avail-
able, in the later experiment, we use the following normal-
ization which uses softmax function while zero probability
remain unchanged: p̄scjk ∝ p̄jk exp(−p̄jk).

What-if transition probability: The final step is what-
if prediction. The assumption made here is that the (esti-
mated) state cost function is consistent, i.e., unchanged by
scenario information 2. Thus, we define the what-if transi-
tion probability as the optimal transition probability of PS-
LMDP {S, P̄sc,R, γ}, where R is the state cost function
estimated by the IRL method. Since the optimal transition
probability of PS-LMDP is given by Eq. (5), what-if transi-
tion probability, pifijk, is defined as

pifijk =
p̄scjk exp(−γvscik)∑
� p̄

sc
j� exp(−γvsci�)

, (11)

where vsc denotes the value function of the above PS-
LMDP. Figure 3 shows an example explaining why we adopt
this definition. From the definition of the value function, the
values of vsc are changed from the previous values before
scenario integration. Therefore, the magnitude relation of its

2This assumption may be broken in extreme situations, such as
a huge natural disaster since the behavior of people will changed
drastically during an evacuation. However, we consider that this as-
sumption is reasonable in many cases because, for example, crowd
control and traffic regulation plans don’t effect people’s final desti-
nation and attraction of the certain place of the city, i.e., cost of the
state is consistent.

Table 1: Scenario information and update rules of P̄ .

scenario information corresponding update
Edge sj-sk: keep-out set p̄jk=p̄kj=0 and normalize.
State sk: keep-out set p̄jk=0 and normalize, for all j.
State sj : one way to sk set p̄jk=1 and p̄jk′=0 (∀k′ �= k).

Figure 3: An illustrative example of value function and typ-
ical trajectory before and after scenario integration.

value between states can be changed (See, red circle area in
Fig. 3), and so the prediction of a person’s typical trajectory
can be changed since transition to lower value state likely to
occur. This enables us to conduct what-if prediction.

Experiment

Synthetic Data: We evaluate the what-if prediction perfor-
mance of our method using synthetic data and real car probe
data. In the first experiment, we construct a 10 × 10 grid
world as shown in Fig. 4 (a). Passive transition probabil-
ity from each state is set to a uniform probability for the
up and down, left and right states (if some of them involve
walls or obstacles, we consider self-transition). We also pre-
pare four state cost functions, R1, · · · ,R4, and the state cost
is set to 0 only for the corresponding goal state shown in
Fig. 4 (a) and is set to 1 for the other states. We prepare
the scenario information which sets the 4 states to keep out
as shown in Fig. 4 (b). Under this scenario, it becomes im-
possible to go through the left or right corridor. By solv-
ing the forward problem with true state cost and transition
probability, we compute true optimal transition probability;
we use this probability to generate training data and vali-
dation data. Training data is used as the input of the pro-
posed method and validation data is used to choose the op-
timal hyper parameter. After that, by computing true what-
if transition probabilities by scenario integration, we gen-
erate test data. In order to evaluate the performance while
varying the amount of training data, an equal number of
one step transition data was collected in all states; we set
nij· = 5, 10, 20, 40, 100.

Real Car Probe Data: For the second experiment, we
used real car probe data provided by NAVITIME JAPAN Co,
Ltd. This is a collection of GPS trajectory of users who used
a car navigation application on smartphones from 2015.4.13
to 2015.5.17 in Kanagawa Prefecture, Japan. In particular,
we used the trajectories in the area of Minato-Mirai-21 dis-

77

Figure 4: Setting for experiment. (a)(b) Gridworld for syn-
thetic data experiment and (c)(d) landmark graph for car
probe data experiment. Training data and validation data
are obtained in settings (a)(c). Test data is obtained in set-
ting (b)(d).

trict in Yokohama, since an annual parade 3 was held and
traffic regulation was executed on 2015.5.3 (Sun.). We use
the log of this day as the test data. We also use the log of
the holiday between 2015.4.13 to 2015.5.1 (5 days in total)
for training data and the log of 2015.5.2 for validation data.
This allows us to evaluate what-if prediction performance.
Since map matching algorithms have already been applied
to the original trajectories, each point on the trajectory is
tied to street id information. However, in order to remove
noisy transitions derived from GPS noise or the failure of
map matching, we apply the landmark graph construction
algorithm (Yuan et al. 2010) in order to obtain an abstract
street network as shown in Fig. 4(c). We convert the GPS
trajectories to transition data between the nodes (states) of
this graph. We also prepare scenario information based on
the traffic regulation of the event day as shown in Fig. 4(d).
In order to consider the time zone dependency of transitions,
we use the logs of 10:00-12:59, 14:00-16:59, 17:00-19:59 as
the logs of LMDP1, 2 and 3, respectively. We use the log of
the parade day at 10:00-12:59 as test data since the traffic
regulation is conducted only in that period.

Evaluation Measure: We use the negative log like-
lihood metric to evaluate what-if prediction perfor-
mance. The negative test log likelihood is defined as
(1/T)

∑I
i=1

∑
j,k∈S −ntest

ijk log p̂ifijk, where T is the num-
ber of test data sets and ntest

ijk indicates the number of tran-
sitions from state j to state k in the i-th LMDP. For inves-
tigating the effect of scenario integration, we also show the
log likelihood performance of the transition from neighbor
states, which is near to the keep-out state, shown as red-

3http://www.yokohamajapan.com/upcoming-events/63rd-
yokohama-parade-international-costume-parade-2015/

colored states in Fig. 4(b)(d), because the transition from
these states will change drastically.

Baseline Method: For the comparison, we use three ex-
isting methods as the baselines: Random, Markov and
MaxEnt (Ziebart et al. 2008). In all methods, we use the
adjacency information Ej for all j, which denotes the set of
states reachable from state j by one step transition. The tran-
sition probability of Random and Markov is computed as
prandomijk = 1/|Ej | and pmarkov

ijk = (nijk+α)/(nij·+α|Ej |),
respectively. | · | denotes the number of elements in the set.
The probability of MaxEnt is computed by Algorithm 1
with fixed passive transition probability p̄jk = 1/|Ej |.
The proposed method also uses the adjacency information
by modifying regularization term Eq. (7). Note that hyper-
parameters of all methods are set to the one yielding the
best performance for the validation data. For fair compari-
son, the existing method also use scenario information. The
probability of Random and Markov is updated following
the passive transition update rules of the previous section.
The update for MaxEnt is analogous to that of our method.

Synthetic Data Result: Figure 5 (a)(b) shows the results
of the synthetic data experiment 4. Figure 5 (a) indicates that
the proposed method has performance competitive with that
of Markov when the amount of training data does not exceed
10. As the amount of training data increases, our method
outperforms the baseline methods. Comparing the proposed
method w/o scenario integration, the degree of improvement
increases with the amount of data. This is because the esti-
mation accuracy of the value function and state cost func-
tion improved as the amount of training data increases. The
above interpretations are also supported by Fig. 6(a). Value
function with 20 and 40 training data seems to yield good
estimations the true values; the value function with 10 train-
ing data is not accurate enough and its value is not changed
by scenario integration. Figure 5 (b) also shows similar re-
sults except that the degree of improvement attained with
the use of scenario information is large. This is reasonable
since transitions near the keep-out state tend to be drastic as
shown in Figure 6(a).

Car Probe Data Result: Figure 5 (c)(d) show the re-
sults of the car probe data experiment; they indicate that
the proposed method outperforms the baseline methods. We
can also confirm the validity of the proposed method from
Fig. 6 (b)5 since the state with lower value corresponds to
attractive spots that attract drivers. Figures 6 (c) also show
that, under the traffic regulation, the estimated value func-
tion seems to reflect the fact that drivers try to avoid the
regulation area. These results imply the effectiveness of the
proposed method for what-if prediction. Without using tran-
sition logs under the traffic regulation, we can predict probe
car transitions under the traffic regulation. Moreover, we
also find that the experimental results suggest future re-
search directions. Comparing Fig. 5 (c) and Fig. 5 (d), the
performance improvement attained by scenario integration
can be confirmed only in the neighbor states result. This re-

4Since true passive transition is uniform in many states, we
make no comparison with MaxEnt to ensure a fair comparison.

5The figures are drawn using QGIS and interpolation plugin.

78

(a) All states (b) Neighbor states (c) All states (d) neighbor states

Figure 5: (a)(b) Result of synthetic data varying the amount of training data nij· = 5, 10, 20, 40, 100. Average and standard
deviation of 20 experiments are shown. Dotted arrow indicates the improvement by scenario integration. (c)(d) Result of car
probe data.

(a) synthetic data (b) car probe data (before) (c) car probe data (after)

Figure 6: (a) The true and estimated value functions of LMDP 1 before/after scenario integration and passive transition proba-
bility among states 1∼10: synthetic data experiment. (b) (c) the estimated value functions before/after scenario integration: car
probe data experiment. Red/Blue color indicate the value is small/large. White arrow indicates the transition that is most likely
to occur from corresponding state.

sult is very similar to that of synthetic data experiment with
a small amount of training data. This means that, in order to
fully enjoy the power of scenario integration, the parameter
estimation accuracy of IRL needs to be improved.

Conclusions and Future work
In this paper, we tackled the what-if prediction problem. We
proposed a methodology to tackle the problem and a new
IRL method that estimates both a cost function and transition
probability. We confirmed the effectiveness of the method by
comparing it in experiments with existing methods.

We list three future works. First, we need to construct an
IRL method that works well with small amounts of data. Ap-
plying a Bayesian framework to handle the uncertainty of
the estimation or the use of auxiliary information may be an
effective approach. Second, we need to extend the method
in order to deal with the case that state cost function is not
consistent. Such extension broaden the application area of
the method. Third, we need to interact with researchers in
e.g. urban engineering for solving congestion in a city by
using our method to identify good scenarios. By fusing their
knowledge with our technology, we hope to improve the
method and to contribute making the world less congested.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning via
inverse reinforcement learning. In Proc. ICML, 1. ACM.
Babes, M.; Marivate, V.; Subramanian, K.; and Littman,
M. L. 2011. Apprenticeship learning about multiple inten-
tions. In Proc. ICML, 897–904.

Dvijotham, K., and Todorov, E. 2010. Inverse optimal con-
trol with linearly-solvable mdps. In Proc. ICML, 335–342.
Macal, C. M., and North, M. J. 2010. Tutorial on agent-
based modelling and simulation. Journal of simulation
4(3):151–162.
Makino, T., and Takeuchi, J. 2012. Apprenticeship learning
for model parameters of partially observable environments.
In Proc. ICML, 1495–1502.
Ng, A. Y., and Russell, S. 2000. Algorithms for inverse
reinforcement learning. In Proc. ICML.
Puterman, M. L. 2005. Markov decision processes: Discrete
stochastic dynamic programming.
Ramachandran, D., and Amir, E. 2007. Bayesian inverse
reinforcement learning. In Proc. IJCAI, 2586–2591.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction. MIT press Cambridge.
Todorov, E. 2006. Linearly-solvable markov decision prob-
lems. In Proc. NIPS, 1369–1376.
Ueda, N.; Naya, F.; Shimizu, H.; Iwata, T.; Okawa, M.; and
Sawada, H. 2015. Real-time and proactive navigation via
spatio-temporal prediction. In Proc. UbiComp, 1559–1566.
Yuan, J.; Zheng, Y.; Zhang, C.; Xie, W.; Xie, X.; Sun, G.;
and Huang, Y. 2010. T-drive: driving directions based on
taxi trajectories. In Proc. SIGSPATIAL, 99–108. ACM.
Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning. In
AAAI, 1433–1438.

79

