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Abstract

This paper is an empirical study trying to shed some
light over an obscure, and yet important, input parame-
ter of the popular AdaBoost.M1 algorithm, which is the
more frequently employed implementation of the well
known Boosting method for classification. The algo-
rithm creators and many other researchers on the topic
assumed that the training error threshold should corre-
late with the number of classes in the target data set, and
logically, most data sets should use a threshold value
of 0.5. In this paper we present empirical evidence that
this is not a fact, but probably a myth originated by the
mistaken application of the ensemble effect theoretical
assumption. Next, we focus our study in a better sug-
gestion for defining this threshold in a general case.

Introduction

It has been some time since classification methods have
been used for machine learning and several efforts in the
area of knowledge discovery in databases have been done
to increase the effectiveness of these methods (Tan, Stein-
bach, and Kumar 2006). Classification is a task of supervised
learning for data analysis and to extract models that describe
classes of important data, with a number of applications, in-
cluding fraud detection, destination marketing, performance
prediction, manufacturing, and medical diagnosis (Han, Pei,
and Kamber 2011). Within the area of classification, there
are ensemble methods, such as Boosting (Schapire 1990),
which combine the results of many classifiers aiming to im-
prove the classification accuracy.

The Boosting method was initially proposed with two dis-
tinct algorithms, AdaBoost.M1 and AdaBoost.M2 (Freund
and Schapire 1996). Even though both algorithms were dis-
cussed in Freund and Schapire’s work, only AdaBoost.M1
experienced a large usage. Nevertheless, even the authors
mention as a disadvantage of AdaBoost.M1 the application
for data sets with more than two classes. According to the
authors, such disadvantage is a consequence of a specific
test within the algorithm to drop classifiers with an accuracy
below 50%, frequently called the ε training error threshold.

This anticipated limitation of AdaBoost.M1 is ignored
for the majority of users that keep using this algorithm
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indistinctly for all data sets. As for the research commu-
nity, a large number of studies suggest adaptations to Ad-
aBoost.M1 to improve classification results, e.g., (Milidiú et
al. 2009; Freund, Schapire, and Abe 1999; Friedman 2002).
Curiously, few research works observe the training error
threshold (ε) which remains a relatively obscure point, even
thou some researchers believe it is logical application of the
ensemble effect (Hansen and Salamon 1990). AdaBoost.M1
uses ε to interrupt the classification process if the classifier
shows a loss in its matching capacity. Following the remarks
of Freund and Schapire, Zhu et al.’s tried to use a training
error threshold dependent of the number of classes NC, i.e.,
ε = 1/NC, which correspond to assume that the classifier
must be better than a random choice (Zhu et al. 2009).

Our goal in this paper is to empirically analyze other pos-
sible choices of numerical values for ε threshold with re-
spect to its impact in the accuracy and execution time over
some randomly chosen data sets. To do so, we took 32 data
sets previously made available and employed in a compar-
ison study (Fernandes, Lopes, and Ruiz 2010) using Ad-
aBoost.M1.
• First we want to empirically verify if threshold ε = 0.5 is

effective to data sets with only two classes;
• Secondly, we want to verify if the approach of using ε =
1/NC brings any help;

• At last, we try to propose a more effective way to choose
the numeric value of ε.
The next section briefly describes the Boosting method,

and the AdaBoost details as employed in this paper experi-
ments. The third section describes the experiments’ method-
ology, including the employed data sets. The fourth sec-
tion presents the numerical results for the experiments and
a comparative discussion. Finally, this paper contribution is
summarized and future works are suggested.

Boosting method

Boosting was proposed by (Schapire 1990) and it is fre-
quently known as an alternative ensemble classifier method
to the also popular Bagging method (Breiman 1996). How-
ever, unlike Bagging in which the generation of classifiers is
independent and affected only by random decisions, Boost-
ing implementations generate new classifiers taking into ac-
count the performance of previous generated classifiers.
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Specifically, such procedure is referred as an iterative
procedure to change in an adaptive way the distribution
of training examples in order to have the classifiers focus-
ing in examples that are hard to classify (Tan, Steinbach,
and Kumar 2006). The first implementation of the method
is called AdaBoost.M1 (Adaptive Boosting) (Freund and
Schapire 1996), which builds a set of base classifiers through
a weighted voting (Freund and Schapire 1995). According to
the authors, AdaBoost.M1 performs very well for data sets
with only two classes, but it is too restrictive to data sets with
more than two classes. Therefore, another implementation
of the Adaptive Boosting, called AdaBoost.M2, is aimed to
cope with the problems brought by the arbitrary use of the
training error threshold ε = 0.5.

In such way, the major difference between the two algo-
rithms is the fact that, according to (Freund and Schapire
1996), AdaBoost.M2 is better than its two-class effective
counterpart AdaBoost.M1. While AdaBoost.M1 stops gen-
erating new classifiers when the accuracy is below the
threshold ε = 0.5, AdaBoost.M2 does not quit generating
new classifiers, since it computes not an accuracy of new
classifiers, but it computes a pseudo-loss to try to guess the
input to generate new classifiers.

As will be seen in the results of our experiments, we did
not find empirical evidences justifying the problem raised as
motivation to propose AdaBoost.M2. This and the fact that
the large majority of practitioners using Boosting concen-
trate their experiments with AdaBoost.M1, led us to focus
our interest solely in this algorithm, more precisely, the ver-
sion implemented in the popular software Weka (Witten and
Frank 2005), using as base classifier J48, an implementation
inspired on c4.5 (Quinlan 1986).

Methodology

The proposed study in this paper is empirical, therefore our
great concern with the employed methodology. Three key
aspects were taken into account for our methodology:
• the choice of target data sets;
• the choice of the software and hardware test bed;
• the care of statistical relevance of the results.

The data sets

All our experiments were conducted over a several of public
data sets chosen without bias. Specifically, we took a col-
lection of 32 data sets gathered with another purpose. These
data sets were described in detail in the original work and
they are not focused on theme, size, number of classes. Ta-
ble 1 summarizes the data sets and its information was taken
from (Fernandes, Lopes, and Ruiz 2010).

The first column of the Table 1 shows the identification
of the data set file (ID). The second column shows the data
set name (BD) and the original repository, being � for Uni-
versity of California Irvine (Asuncion and Newman 2007)
and ∇ for University of West Virginia (Boetticher, Menzies,
and Ostrand 2007). The other columns show the informa-
tion about the data, such as number of attributes (NA), num-
ber of instances (NI), number of classes of target attribute
(NC) and the rate of imbalance (IR).

Table 1: Data sets
ID BD NA NI NC IR

B01 Abalone� 9 4177 29 0.071
B02 Arrythmia� 280 452 13 0.520
B03 Audiology� 70 226 24 0.103
B04 Balance� 5 625 3 0.146
B05 Breast cancer� 10 286 2 0.165
B06 Car Evaluation� 7 1728 4 0.390
B07 CM1 software defect∇ 22 498 2 0.645
B08 Datatrieve∇ 9 130 2 0.690
B09 Desharnais∇ 12 81 3 0.150
B10 Ecoli� 9 336 8 0.168
B11 Echo cardiongram� 12 132 3 0.054
B12 Glass� 11 214 6 0.116
B13 Heart (Cleveland)� 14 303 2 0.008
B14 Heart statlog� 14 270 2 0.012
B15 Hepatitis� 20 155 2 0.345
B16 JM1 software defect∇ 22 10885 2 0.376
B17 Kr-vs-kp� 37 3196 2 0.002
B18 MW1 software defect∇ 38 403 2 0.716
B19 Pima-diabetes� 9 768 2 0.091
B20 Post-operative� 9 90 3 0.366
B21 Primary-tumor� 18 339 21 0.066
B22 Reuse∇ 28 24 2 0,063
B23 Solar Flare� 13 1389 8 0.682
B24 Tic-Tac-Toe Endgame� 10 958 3 0.094
B25 Thyroid (Allhyper)� 30 2800 4 0.928
B26 Thyroid (Hypothyroid)� 30 3772 4 0.807
B27 Thyroid (Sick euthyroid)� 26 3163 2 0.664
B28 Wbdc� 31 569 2 0.065
B29 Wisconsin breast cancer� 10 699 2 0.096
B30 Wine recognition� 14 178 3 0.065
B31 Yeast� 10 1484 10 0.137
B32 Zoo� 18 101 7 0.114

The rate of imbalance (IR) is a numerical index is calcu-
lated by:

IR =

(
STD

(NI/NC)

)
√
NC

It is the ratio between the standard deviation of the num-
ber of cases in each class (STD), by a completely balanced
distribution of the cases between the classes (NI/NC), di-
vided by the square root of the number of classes (NC).
Hence, the rate of imbalance is normalized between 0 and 1.
For example, when observing Table 1, we can see that the
B17 has a low rate of imbalance, equal to 0.002, because its
instances are divided by the two classes in 1669 and 1527.
On the contrary, B25 rate of imbalance is high, because its
instances are divided by its four classes in 62, 8, 7 and 2723
instances each. According to Fernandes et al. (Fernandes,
Lopes, and Ruiz 2010), the rate of imbalance can be seen as
the reverse entropy of the data set.

The hardware and software test bed

All our experiments were conducted MacBook Pro 2.9 GHz
Intel core i5 with 8 Gb 1867 MHz DDR3 running Ma-
cOS v.10.12.1 using the Weka 3.6.12 software. The Ad-
aBoost.M1 implementation was applied to all data sets gen-
erating up to 50 classifiers (50 iterations), using resample,

199



using as base classifier J48 with confidence factor 0.25 and
minimum number of objects equal to 2.

Each data set was repeatedly experimented with different
values of the training error thresholds (ε) from 0.1 to 0.9.
Additionally, some data sets had another value of ε tested
according to the number of classes (NC), e.g., B10 data set
was tested with ε = 0.125, since it has NC = 8.

For each possible value of ε, for each data set, 100 runs
were made, and in each of those runs a different random seed
is considered (seeds from 0 to 99), to set apart the impact
of random decisions. This technique is similar to the analy-
sis performed by previous works (Bauer and Kohavi 1999;
Fernandes, Lopes, and Ruiz 2010) paying attention to the
impact of randomness. For each of these experiments, a 10-
fold stratified cross validation (Kohavi 1995) was performed
in order to obtain an unbiased accuracy estimation.

The statistical relevance of results

The result of experiments was a reliable estimation of accu-
racy of each data set with different values of training error
threshold (ε). To avoid the impact of randomness, the basic
output (the average of the 10-fold cross validation) for each
pack of 100 runs with different seeds the 5 highest and the
five lowest accuracy results were discarded and the average
of the remained 90 runs was considered as the result.

For the execution times a similar analysis was made. Each
ε value for each data set was submitted to the 10-fold cross
validation and the 100 runs with different seed values were
performed. However, instead of discarding the 5 lowest and
the five highest execution times, we kept the execution times
of the same runs as in the accuracy results.

This decision was taken to keep the logic between the ac-
curacy and execution time, since it was incorrect to consider
to the average computation distinct runs for accuracy and for
execution time. Therefore, the average values considered as
numeric raw results in the next section are consistent with
the median 90 experiments with respect to the accuracy.

Results Analysis

The numeric raw average results for accuracy and execution
times were not included in this paper due to space restric-
tions. However, these result are depicted in Figure 1. The
numeric values are available in the larger version of this pa-
per at the address http://www.inf.pucrs.br/peg/pub/conferences/
flairs2017long.pdf.

Is the threshold 0.5 adequate?

According to Freund and Schapire (1996), the training error
threshold ε = 0.5 is adequate for data sets with two classes.
We will consider as the best ε value the one with the highest
accuracy, and in a case of same accuracy, the one with the
smaller execution time.

Table 2 shows the 14 data sets with NC = 2. Among
these 14 data sets, the 0.5 value was never the best threshold.
Table 3 shows the 18 data sets with NC > 2. Among these
18 data sets, the 0.5 value was never the best threshold.

The observation of these two grouped results clearly
shows that the value 0.5 is not related at all to the number of

97

98

99

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Error threshold

Ac
cu

ra
cy

 %

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Error threshold

R
el

at
ive

 S
ys

te
m

 T
im

e:
 %

Figure 1: Average accuracy and execution time considering
the 32 datasets. The horizontal straight line is the 1/NC value

Table 2: Best threshold for data sets with NC = 2.
data set B5 B7 B8 B13 B14 B15 B16

ε 0.2 0.6 0.2 0.3 0.2 0.4 0.6
data set B17 B18 B19 B22 B27 B28 B29

ε 0.1 0.6 0.4 0.3 0.1 0.1 0.1

Table 3: Best threshold for data sets with NC > 2.
data set B1 B2 B3 B4 B6 B9 B10 B11 B12

ε 0.5 0.3 0.3 0.1 0.2 0.4 0.4 0.4 0.1
data set B20 B21 B23 B24 B25 B26 B30 B31 B32

ε 0.1 0.5 0.1 0.2 0.1 0.1 0.2 0.1 0.1

classes. In all fairness, it is relevant to mention that rarely lit-
erature authors pay attention to execution time, and in many
data sets the accuracy values did not change according to er-
ror training value. However, this fact alone shows that the
arbitrary choice of value 0.5 is empirically unjustified.

Is the threshold 1/NC any better?

Observing the raw results, we notice that only for the data
sets B9, B11 and B31 the use of 1/NC as training error
threshold was adequate among the 32 experimented data
sets. For data sets B23 and B32 a close accuracy and a small
increase in execution let us enlarge to just 5 the number of
data sets where the use of such way to compute ε value
is somewhat effective. This result is even more clear than
the previous one and it allow us to state that, based on our
empirical evidences, estimate ε = 1/NC is not better than
ε = 0.5.

A consequence of this analysis is to discard, with all due
respect to the previous work, the hypothesis that the train-
ing error threshold has any relation with the effectiveness of
a weak learner in comparison to the random choice among
the classes. We believe that such false claim was a bona fide
mistake made in previous works (Freund and Schapire 1996;
Zhu et al. 2009) because these authors were assuming a com-
pletely balanced data set, where the number of instances in
each class is approximatively equal. However, this is often
the case for the experimented 32 data sets in this paper, nor
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for the data sets in real applications.

Is it possible to suggest a better threshold?

A shallow analysis of the raw resuts indicates that the better
threshold is achieved for 12 data sets with 0.1 (Table 4 shows
the best thresholds for each data set). However, such analysis
is purely an account data sets votes based on their best ε
values, and the use of a threshold value of ε = 0.1 would be
very bad (at least less than 3% of accuracy) for data sets B1,
B2, B3, B9, B10, B11, B13, B14, B15, B21, B22 and B24.

Note that such simplistic analysis is sufficient to discard
threshold suggested values, which was done when we dis-
carded ε = 0.5 and ε = 1/NC. In fact, such analysis is also
the base to refute ε = 0.1, since it only works fine for 12
data sets, while for 12 data sets it is not good enough.

Table 4: Best threshold for data sets.
threshold ε data sets

0.1 B4, B12, B17, B20, B23, B25, B26, B27, B28, B29, B31, B32
0.2 B5, B6, B8, B14, B24, B30
0.3 B2, B3, B13, B22
0.4 B9, B10, B11, B15, B19
0.5 B1, B21
0.6 B7, B16, B18

Having in mind the empirical aspect of our analysis, it is
rather prudent to refrain from a definitive suggestion about
the best training error threshold. However, in the absence of
further information, it seems that the threshold ε = 0.3 was
the best trade-off among the experimented options.

Final Remarks

As a preliminary work, we showed an empirical analysis of
the AdaBoosting.M1 algorithm, the more popular and re-
searched option of the Boosting method with respect to the
choice of training error threshold. We used 32 data sets from
different sources, and with different characteristics. Our ex-
periments were conducted paying attention to the impact of
randomness and the statistical relevance of average results.

We started showing that there was no practical reason
to assume a threshold value of 0.5, even in the cases with
only two possible classes. This is a common misconception
that came from the seminal works proposing the algorithm,
and carried out by the research community, probably due
to a theoretical assumption that all data sets were balanced,
which is far from the truth. Then, we had shown that trying
to cope this problem using the threshold as a function of the
number of classes (1/NC) was equally ineffective.

Finally, we had attempted to suggest a better threshold
option, but the results were not completely conclusive, even
thou our results indicate some advantage to adopt a thresh-
old value of 0.3. Despite that, it is the authors’ opinion that
further studies with more data sets, and specially the search
for correlations between the balance index of data sets and
the threshold value could be an interesting and revealing fu-
ture work.
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