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Abstract

Contemporary SAT solvers emit proofs of unsatisfiability in
the DRAT format to guarantee correctness of their answers.
Therefore, correctness of SAT solvers is reduced to correctness
of DRAT checkers, which are relatively small programs that
decide whether a DRAT refutation is correct. We present a
new fuzzing technique that automatically finds bugs in DRAT
checkers by comparing the outputs of two DRAT checkers.
In case their outputs are different a mechanically verified
DRAT checker finally decides which checker has given the
correct answer. Experiments show that our method finds bugs
in available checkers, and also demonstrate that a common
design choice in efficient DRAT checkers is inconsistent with
the specification.

Introduction

The Boolean satisfiability problem (SAT) asks whether there
is a satisfying interpretation for a propositional formula and is
one of the most prominent problems in computer science and
artificial intelligence. Historically, SAT was the first problem
shown to be NP-complete by Cook and Levin, demonstrating
that every problem in the complexity class NP can be re-
duced to SAT (Cook 1971). SAT solving has significantly ad-
vanced over the last decades, and solvers are evaluated yearly
in international SAT competitions. Their performance over,
e.g., hardware and software verification (Biere et al. 1999)
has improved to the extent of being widespread tools in the
industry. Modern SAT solvers are based on the CDCL (con-
flict directed clause learning) algorithm (Davis, Logemann,
and Loveland 1962; Silva and Sakallah 1996) and use many
advanced techniques such as clause learning (Silva and
Sakallah 1996), clause removal (Audemard and Simon 2009),
and formula simplifications (Eén and Biere 2005; Järvisalo,
Heule, and Biere 2012). Unfortunately, even intensively-
tested SAT solvers contain bugs, that have been detected us-
ing fuzzing methods (Brummayer, Lonsing, and Biere 2010;
Manthey and Lindauer 2016).

Bugs where SAT solvers end up incorrectly reporting
unsatisfiability are particularly hard to detect. In order to
have witnesses for the unsatisfiable case, certificates for
unsatisfiability, also known as unsatisfiability proofs, were
developed (Zhang and Malik 2003; Gelder 2002). Today,
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the DRAT (Deletion Resolution Asymmetric Tautology) for-
mat (Wetzler, Heule, and Hunt Jr 2014) is the de facto stan-
dard in the SAT community, and proof generation in this
format is a requirement in the main track of the SAT Com-
petition 2016. A DRAT refutation traces clause additions
and deletions during a run of a SAT solver, i.e. it is a se-
quence of sentences where each sentence is derived from
earlier sentences by applying an inference rule, called Res-
olution Asymmetric Tautology (RAT). Deletion information
can be used to shrink the clause database. Independent pro-
grams, called checkers, decide whether a sequence of these
sentences is a DRAT refutation. In case the checker accepts
the DRAT refutation together with the input formula, we
know that the input formula is unsatisfiable, assuming that
the checker works correctly. Recently, the DRAT format re-
ceived international media attention because SAT solvers
solved the Pythagorean Triples Problem. Its 200 Terabytes
proof, expressed in this format, became the largest machine-
checked proof as of today (Heule, Kullmann, and Marek
2016).

Due to the increasing size of DRAT proofs and their im-
portance in practice, we want to improve the confidence in
the correctness of DRAT checkers such as drat-trim (Wet-
zler, Heule, and Hunt Jr 2014) and proofcheck (Manthey and
Philipp 2015). Our contribution is a new combination of a
fuzzing method and a mechanically verified tool that auto-
matically find bugs in these systems. Our method is effective
as experiments revealed some bugs affecting completeness in
state-of-the-art DRAT checkers. In particular, we show that
deletion information is neither adequately handled by drat-
trim nor by proofcheck. Moreover, we observed that MiniSAT
produces unusual DRAT refutations.

Background

We consider an infinite set of propositional variables V . A lit-
eral L is either a propositional variable A or its negation ¬A.
The complement of a literal L is denoted by L. Clauses are
finite disjunctions of literals, represented by finite sets of
literals, and formulas are finite conjunctions of clauses, rep-
resented by a multiset of clauses. A tautological clause is a
clause containing A and ¬A for some variable A. Let C and
D be clauses such that A ∈ C and ¬A ∈ D. Then, the resol-
vent of C and D upon A is the clause (C\{A})∪(D\{¬A}).
Interpretations map formulas to truth values respecting the
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usual understanding of conjunction, disjunction and negation.
A formula F is satisfiable if there is an interpretation I such
that I maps F to true. Otherwise, a formula F is unsatisfi-
able. The Resolution Asymmetric Tautology (RAT) property
is based on asymmetric literal addition (ALA) (Järvisalo,
Heule, and Biere 2012):

ALAF (C) = C ∪ {L |{L1, . . . , Ln, L} ∈ F and
{L1, . . . , Ln} ⊆ C}

We consider the recursive application of ALA:

ALAF (C) ↑ 0 = C
ALAF (C) ↑ n+ 1 = ALAF (ALAF (C) ↑ n)

A clause C is an asymmetric tautology (AT) w.r.t. the for-
mula F if there is n ∈ N such that the clause ALAF (C) ↑ n
is a tautology. Notice that there are small technical differ-
ences to the original version of ALA (Heule, Järvisalo, and
Biere 2010) in the sense that we phrased their computation
in terms of a mathematical function.
Example 1. Consider the following formula

F = {{p, q}, {p,¬q, r}, {¬q,¬r}}
Note the following fixpoints of ALAF ({p}) and ALAF {q}:

ALAF ({p}) ↑ 0 = {p}
ALAF ({p}) ↑ 1 = {p,¬q}
ALAF ({p}) ↑ 2 = {p,¬q,¬r, r}
ALAF ({p}) ↑ 3 = {p,¬q,¬r, r, q}
ALAF ({p}) ↑ 4 = ALAF ({p}) ↑ 3
ALAF ({q}) ↑ 0 = {q}
ALAF ({q}) ↑ 1 = {q,¬p}
ALAF ({q}) ↑ 2 = ALAF ({q}) ↑ 1

The clause {p} is an AT in F , whereas clause {q} is not.
Note that ALA is monotone in both arguments, and that

replacing clauses by ALA preserves semantic equivalence.
Learned clauses in CDCL SAT solvers are asymmetric tau-
tologies (Beame, Kautz, and Sabharwal 2004) as well as tau-
tologies, resolvents, and subsumed clauses (Järvisalo, Heule,
and Biere 2012).

Järvisalo et al. introduced the following redundancy cri-
terion based on asymmetric tautologies in (Järvisalo, Heule,
and Biere 2012): The clause C is a resolution asymmetric
tautology (RAT) upon literal L w.r.t. the formula F if 1. the
clause C is an asymmetric tautology w.r.t. the formula F , or
2. the literal L occurs in C, and all resolvents of C with any
clause D ∈ F upon L are asymmetric tautologies w.r.t. the
formula F .
Example 2. The clauses {p}, {¬q}, {¬r}, {q, r} are reso-
lution asymmetric tautologies in the formula F from Exam-
ple 1. 1. {p} is a RAT upon p w.r.t. F because there is no
clause D ∈ F with ¬p ∈ D. 2. {¬q} is a RAT upon ¬q, be-
cause there is only one resolvent {p}, which is an AT in F . 3.
{¬r} is a RAT upon ¬r, because there is only one resolvent
{p,¬q}, which is an AT because it is subsumed by the clause
{p} which is an AT in F . 4. {q, r} is a RAT upon q because
both resolvent {p, r} and {r,¬r} are ATs.

Intuitively, a DRAT derivation is a finite sequence of addi-
tion and deletion instructions, where each added clause is a
RAT w.r.t. the preceding clauses, except those that have been
eliminated before. Formally, we consider labeled clauses, i.e.,
expressions of the form (aC) and (dC) representing clause
addition and deletion, respectively. An empty sequence of
labeled clauses is denoted by Λ. For a finite labeled clause
sequence P and a formula F , we assign associated formulas,
denoted by AF(F, P ), as follows:

AF(F,Λ) = F
AF(F, P (aC)) = AF(F, P ) ∪ {C}
AF(F, P (dC)) = AF(F, P ) \ {C}

DRAT derivations in F are then defined inductively as fol-
lows: 1. The empty clause sequence is a DRAT derivation
in F . 2. If P is a DRAT derivation in F , then P (dC) is a
DRAT derivation in F . 3. If P is a DRAT derivation in F
and C is a RAT w.r.t. AF(F, P ), then P (aC) is a DRAT
derivation in F . A DRAT refutation P for the formula F is a
DRAT derivation in F such that we find that ∅ ∈ AF(F, P ).
Analogously, we define a fragment of DRAT, called Dele-
tion Reverse Unit Propagation (DRUP) refutations, in which
every added clause is required to be an asymmetric tautology.
Example 3. Consider the unsatisfiable formula

F = {{p, q}, {¬p, q}, {p,¬q}, {¬p,¬q}}.
A DRAT refutation of F is given by:

(a {¬r}) RAT upon the literal ¬r
(a {r, p}) AT
(a {r}) AT
(d {p, q}) deletion
(d {¬p, q}) deletion
(d {p,¬q}) deletion
(d {¬p,¬q}) deletion
(a { }) AT

This is a DRAT refutation, but not a DRUP refutation. The
following is a DRUP refutation of F : (a {p}) (a { }).

A formula F is unsatisfiable if and only if there is a DRAT
(DRUP, resp.) refutation of F . An advantage of DRAT over
DRUP is that it allows exponentially shorter proofs for some
fragments.

Verifying RAT Refutations with

Deletion Information

Mechanical verification allows us to prove that a program
meets its specification. Our specifications and proofs were
carried out in the Coq proof assistant. Coq is based on the cal-
culus of inductive constructions and combines higher-order
logic with a typed functional programming language. Since
1984, its development is supported by INRIA. In Coq we
define functions in the lambda calculus. Moreover, we can
express mathematical theorems and can prove them interac-
tively. The syntax of Coq is similar to that of other typed
functional programming languages. Accepted Coq proofs
can be independently checked by a small certification kernel.
Finally, we can automatically extract Haskell programs from
Coq theories.

191



Our work extends (Wetzler, Heule, and Hunt Jr 2013) that
describes a RAT checker. Unfortunately, RAT checkers can-
not check RAT refutations with deletion information as the
following example demonstrates.

Example 4. Consider the formula F = {{p, q}}. Then
(d {p, q}) (a {¬p}) is a DRAT derivation in F . However,
(a {¬p}) is not a DRAT derivation in F , because {¬p} is
neither an AT in F nor a RAT because the resolvent {q} is
not an asymmetric tautology in F .

Our definitions and lemmas closely follow those presented
in (Wetzler, Heule, and Hunt Jr 2013), i.e., clauses are rep-
resented by lists of literals, formulas by lists of clauses and
we use the notion of reverse unit propagation used instead of
ALA. We use the inductive definitions of DRAT derivation
and refutation. The following theorem was expressed and
proven in the Coq proof assistant:

Theorem 1. For every formula F and labeled clause se-
quence P , if P is a DRAT refutation of F , then F is un-
satisfiable. Moreover, it is decidable whether P is a DRAT
refutation of F .

To show the first part, we proof that for every DRAT deriva-
tion P of F , it follows that the unsatisfiability of AF(F, P )
implies the unsatisfiability of F . Since a DRAT refutation is
a DRAT derivation that contains the empty clause and the
empty clause is unsatisfiable, we infer that the existence of a
DRAT refutation for F implies unsatisfiability for F . The sec-
ond part of the above theorem is shown in a straightforward
way.

An executable Haskell program can be extracted from
the decidability result. However, the resulting program is
very inefficient. Therefore, we developed another Haskell
program that is based on the automatically extracted one, but
applies the full watcher scheme to improve the efficiency of
unit propagation. Mutable data structures from the vector
package were used. Preliminary experiments have shown that
it is significantly faster than the automatically extracted one.

Fuzzing DRAT Refutations

Fuzzing is a technique that provides correct or invalid
randomly-generated inputs to a computer program. We then
observe whether the program’s behavior is as expected. Our
method is a six-stage process using a given checker and con-
sists of the following steps:

Step 1 A randomly-generated formula F is constructed
using external programs such as the C programs cnfuzz and
fuzzsat (Brummayer, Lonsing, and Biere 2010).

Step 2 A SAT solver, such as MiniSAT , Lingeling, or Riss
solves the satisfiability problem of F . In case F is reported
satisfiable, we go back to step 1. Otherwise, the formula F
is reported unsatisfiable, and a DRAT refutation P of F is
provided by the SAT solver.

Step 3 The formula F and P are given to the checker and
the tuned Haskell program.

Step 4 In case the two programs inconsistently classify
P as accepted or rejected, we know that a bug in one of
the checkers exists. Then, the mechanically verified checker
decides which program has given the correct answer and
our procedure terminates with a bug report. Otherwise, we
continue with step 5.

Step 5 We modify the proof by randomly adding or remov-
ing a literal in a randomly selected clause. Notice that the
addition of a literal in a clause C does not destroy the proof
at this particular point, but at a later position where a clause
depends on C (either in the AT or RAT computation). Even-
tually, the removal of a literal in a clause does destroy the
refutation at exactly this position. In case the proof consists
only of the empty clause, we add a literal to the empty clause.

Step 6 After that, we provide P ′ to the checkers. In case
P ′ is accepted by both programs, P ′ is a DRAT refutation.
Consequently, we go back to step 5. In case P ′ is rejected by
both programs, we go back to step 1. Otherwise, the checkers
behave inconsistently and we observe a potential bug.

Note that we do not introduce or remove deletion infor-
mation, but instead remove the added clauses, which has the
same effect.

Experimental Evaluation

We constructed formulas consisting of 2900 clauses and 800
variables in average, resulting in average proof lengths of
2100. The procedure revealed the following:

Tautological Clauses The checker drat-trim rejects DRAT
refutations containing tautological clauses. Given some un-
satisfiable formula F and a DRAT refutation P of F . Then,
P (a {p,¬p}) is rejected by drat-trim. However, a tautologi-
cal clause is a RAT w.r.t. any formula F .

Deletion of Units The checker proofcheck rejects DRAT
refutations in which unit clauses were deleted. This can be
explained as proofcheck assumes that unit clauses are not
deleted. However, deleting unit clauses is in line with the
specification and ignoring deletion information cannot be
done in DRAT (see Example 4). The checker drat-trim shows
a similar behavior: Suppose q is a variable not occurring in F
and P is a DRAT refutation of a formula F . drat-trim rejects

(a {q}) (d {q}) (a {¬q}) (d {¬q})
︸ ︷︷ ︸

Q

P.

However, the given sequence is a DRAT refutation since
AF(F,Q) = ∅ and P is a DRAT refutation by assumption.

Proof Emission The DRAT emission procedure in the
well-known SAT solver MiniSAT , that consists of few lines
of code, constructs strange DRAT refutations of the form
P (a ∅)(dC)(a ∅), where P is a DRAT derivation and C is
some clause. In an updated version of MiniSAT, this error
is already fixed. Nevertheless, other MiniSAT-based solvers
still might contain this bug.

192



Conclusion

Modern SAT solvers are highly-tuned systematic search
procedures that emit unsatisfiability proofs in the DRAT
format to guarantee correctness of their answers. Unfortu-
nately, available DRAT checkers contain bugs which might
be due to the difficulties in understanding and debugging
highly optimized C or C++ code. Our contribution to im-
prove the confidence in DRAT checkers is a new fuzzing
technique that automatically finds bugs in DRAT checkers.
Our method generates unsatisfiable formulas and inserts er-
rors into DRAT refutations. The modified sequences are then
given to two distinct DRAT checkers, such as drat-trim, our
optimized DRAT checker written in Haskell. In case of in-
consistent behavior of the two checkers, we discovered a
potential bug. The final decision which checker has given
the correct answer is done by a mechanically verified DRAT
checker written in Coq. Recently, an efficient and mechan-
ically verified DRUP checker was developed (Cruz-Filipe,
Marques-Silva, and Schneider-Kamp 2016), which applies
drat-trim to detect relevant clauses in DRUP refutations. Con-
sequently, they rely on the completeness of drat-trim in the
sense that it rejects DRUP refutations that are rejected by
drat-trim. In fact, our fuzzer has shown the incompleteness
of drat-trim and proofcheck. Our verified DRAT checker
extends earlier work (Wetzler, Heule, and Hunt Jr 2013;
Darbari, Fischer, and Marques-Silva 2010) and, to the best of
our knowledge, is the only available, complete and fully me-
chanically verified DRAT checker. The developed software
is available at github.com/drat-tools. In the future, we adapt
the verified checker and the fuzzing procedure to other proof
formats, such as resolution proofs and IORUP.
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