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Abstract

Textual queries in networks such as Twitter can have more
than one label, resulting in a multi-label classification prob-
lem. To reduce computational costs, a low-dimensional rep-
resentation of a large network is learned that preserves prox-
imity among nodes in the same community. Similar to se-
quences of words in a sentence, DeepWalk considers se-
quences of nodes in a shallow graph and clustering is done
using hierarchical softmax in an unsupervised manner. In this
paper, we generate network abstractions at different levels us-
ing deep convolutional neural networks. Since class labels of
connected nodes in a network keep changing, we consider a
fuzzy recurrent feedback controller to ensure robustness to
noise.

Introduction

In the last few years, graphs have become popular data struc-
tures to model social networks like Facebook, Twitter and
community based question answering systems (Fang et al.
2016). Textual data such as queries, web-pages, products
and even users can have more than one label (Chen et al.
2017). For instance, a query such as Jaguar can have a label
set containing Animals, Software and Automotive classes.
Due to the huge dimension and the sparsity of these graphs,
traditional machine learning algorithms struggle to perform
well on this kind of data (Cambria, Wang, and White 2014).

Hence, some researchers proposed the use of community
embedding techniques, which project the original network
structure onto a low-dimensional latent/hidden vector space
(Zheng et al. 2017). The learned vector space can be easily
utilized by algorithms for tasks such as node classification
or community detection. Similar, to sequence of words in a
sentence, DeepWalk (Perozzi, Al-Rfou, and Skiena 2014)
and LINE (Tang et al. 2015) consider a sequence of nodes in
a graph connected by edges (Mikolov et al. 2013). Shallow
learning in the form of hierarchical softmax or negative
sampling is used to predict the dependencies among far
away nodes in an unsupervised way. The resulting model
appears capable of preserving correctly the second-order
proximity, thus ensuring that nodes in the same community
are closer in the embedded space.
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Fig. 1 illustrates a toy example where the well-known
karate network (Zachary 1977) is projected onto a 2D space
using the embeddings obtained from DeepWalk respect to
our model. This is a non-linear problem, that can be effec-
tively solved using several layers of neurons. In order to re-
duce computational costs, a multi-class problem can be de-
composed into a number of binary problems knows as one-
vs-rest. This approach can be extended to multi-label predic-
tion by using the F1 evaluation metric to optimize the SVM
decision threshold for imbalanced binary classifiers. Hence,
given a node vi, instead of learning a single embedding φi,
in a traditional one-for-all way, we learn K different embed-
dings φik for each class k in our dataset.

Several authors have considered first- or second-order
proximity in graphs, however only few works exploit a deep
network to obtain a higher abstraction. Our work is inspired
by the recent use of deep auto-encoders to learn graph em-
beddings in multi-class problems (Cao, Lu, and Xu 2016).
In this paper, we argue that supervised learning can highly
affect the final nodes embedding since can better separate
nodes of different classes and highlight some communities
structure. While nodes and node’s neighborhoods are ev-
ident property of a graph, communities can have blurred
boundaries and detecting them is challenging, for this reason
we exploit the abstraction property of deep convolutional
neural networks (DCNN).

Random walks are low complexity similarity measures
ideal for large-scale network mining. A random walk is a
stochastic process that starts with a root node and choses a
random vertex from its neighborhood. In this way, the class
labels of the nodes in a random walk will keep changing de-
pending on the community. In this paper, we also introduce a
fuzzy feedback controller, in order to model in a stable man-
ner the changes in class labels for a sequence of connected
nodes in social networks. The resulting model is referred to
as fuzzy convolutional deep walk (FCDW).

Related Work and Contributions

Many applications such as on-line advertisements need to
detect different type of users, hence a valuable network rep-
resentation is mandatory (Majumder et al. 2017). A major
challenge is that many real-world networks are sparse, with
very few observed links among nodes resulting in poor clas-
sification accuracy.
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(a) Karate network (b) DeepWalk embedding

(c) Class 1 (d) Class 2

(e) Class 3 (f) Class 4

(g) DCNN embedding

Figure 1: Embedding of the karate network in a 2D vector space by different methods.

In (Cao, Lu, and Xu 2015), the authors present a model
named GraRep, which applies matrix factorization to the
graph’s adjacency matrix for learning a new vertex represen-
tation. Node2Vec (Grover and Leskovec 2016) is a frame-
work based on DeepWalk, but exploits a robust path sam-
pling algorithm to obtain a more accurate embedding. It can
be seen that these embedding models are shallow. However,
since the underlying network structure is complex, shallow
models cannot capture the highly non-linear network struc-
ture, resulting in sub-optimal network representations.

Recently, several authors have proposed deep models to
learn graph embeddings. In (Wang, Cui, and Zhu 2016),
the authors propose a semi-supervised deep neural network
(DNN) that considers first-order and second-order proxim-
ity among nodes. The model is trained on each node and its
neighborhood as obtained from the graph. In this way, the
number of possible sequences grows exponentially, whereas
we consider the low-dimensional latent representation of the
network as a source for training our DCNN model. In this
way, we are able to reduce the complexity of the model and
avoid overfitting.

In (Niepert, Ahmed, and Kutzkov 2016), the authors ap-
plied 2D CNN for images to construct locally connected
neighborhoods from the input graphs. Similar to the se-
quence of words in a sentence, the sequence of nodes in a
graph are also unique from left to right and also from top
to bottom. This method uses a sequence of nodes as in-
put, transforming them into neighborhood graphs. Different
graph structures are hence learned via convolution. While
they consider 2D convolution to learn hubs and patterns in
the graph, in our method we have focused on 1D convolution
over latent low-dimensional vectors that can be used to de-
tect communities. Lastly, in (Chang et al. 2015), the authors
considered the scenario where nodes are of different types
such as image and text. They proposed separate deep mod-
els for each type of data that is computationally expensive.
Our method, on the other hand, makes use of latent vectors
that can easily combine multimodal data (Poria et al. 2016).

The significance and contributions of the research work
presented in this paper can be summarized as follows:

• We extend the 1D deep convolutional kernels in language
model to learn the sequence of nodes in each community
in a supervised manner.

• The DNN is able to generate network abstractions at dif-
ferent levels in complex social networks.

• Robustness of the model to noise is achieved using a fuzzy
recurrent feedback controller.
To verify the effectiveness of FCDW in multi-labelling of

nodes in large networks, we consider the BlogCatalog and
Flickr datasets. The first is a social network of bloggers and
is an image hosting website. The remainder of the paper is
organized as follows: next section provides some prelimi-
naries; following, a section introduces the FCDW model for
multi-label classification of large social networks; next, an
experiment section validates FCDW on real-world bench-
mark datasets; finally, a section concludes the paper.

Preliminaries

We briefly review the theoretical concepts necessary to com-
prehend the presently discussed work. We begin with a de-
scription of multi-label classification in graphs. We next
transform the problem into a language model and show that
it can be solved effectively by using DCNNs.

Multi-label Classification

Graph embedding aims to learn an embedding of d dimen-
sions φi ∈ Rd for each node vi ∈ V , where V is the node
set of a graph G = (V,E) and E is the edge set. We can
define node embedding as a set of random variables for a
distribution characterizing how neighborhood’s nodes are
distributed in the low-dimensional space. To learn the node
embedding φi’s of a node vi, we consider the second-order
proximity between vi and the context of its nodes’ neigh-
borhoods φ

′
j as well as the class labels of vi. Let n denote

the number of nodes in the graph, m = n is the number of
features given by the adjacency matrix defined by edge set
E, and K is the number of class labels. Hence, X ∈ Rn×n

is the training embedding matrix, and Y ∈ {0, 1}n×K is
the corresponding label matrix. Given a positive integer d,
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the multi-label problem seeks to find an embedding φ with
exactly d << n columns such that the error in classifica-
tion is minimized. In this paper, we transform the multi-label
problem to a multi-class problem as described in (Cherman,
Monard, and Metz 2011). Following this procedure instead
of learning a single embedding φi, we proposed to learn K
different embedding φik for each class k. In this way, we are
able to maximize the separation between nodes of different
classes.

Language Model

We denote a random walk rooted at vertex vi as a stochastic
process with random variables W 1

vi
,W 2

vi , . . . ,W
k
vi

such that
the W k+1

vi
is a vertex chosen at random from the neighbors

of vertex vk. We can rephrase the problem of estimating the
class of a vertex given all previous vertices in a random walk
as a language model. In a language model we consider a se-
quence of words (w0, w1 . . . , wn) appearing in a corpus and
try to maximize the probability p(wn|w0, w1, . . . , wn − 1)
over the whole training corpus. However, our goal is to learn
a latent representation, not only a probability distribution of
node co-occurrences, and so we introduce a mapping func-
tion φ : v ∈ V, V ∈ R|V |×d. This mapping φ represents the
latent social representations associated with each vertex v in
the graph. Furthermore, the context is composed of words
appearing to the left and the right side of a word resulting in
a skip-gram. The optimization problem then becomes:

minφ − logp(vi−w, . . . , vi−1, vi+1, . . . , vi+w|φ(vi)) (1)

In the next section we show that, this problem can be effec-
tively solved using DCNNs.

Deep Neural Networks

A DNN can be viewed as a hierarchy of unsupervised mod-
els called restricted Boltzmann machines (RBMs), where
each hidden layer serves as the visible layer for the next
RBM. Each RBM is a bipartite graph comprising two layers
of neurons: a visible and a hidden layer; where the connec-
tions among neurons in the same layer are not allowed.

To train such a multi-layer system, we must compute the
gradient of the total energy function Ed with respect to the
weights in all layers. To learn such weights and maximize
the global energy function, the approximate maximum like-
lihood contrastive divergence approach can be used. This
method employs each training sample to initialize the vis-
ible layer. Next, it uses the Gibbs sampling algorithm to up-
date the hidden layer and then reconstruct the visible layer in
succession, until convergence. As an example, here we use a
logistic regression model to learn the binary hidden neurons,
with each visible unit assumed to be a sample from a normal
distribution. The continuous state ĥj of the hidden neuron j,
with bias bj , is a weighted sum over all continuous visible
nodes v

′
and is given by:

ĥj = bj +
∑
i

v
′
iwij , (2)

where wij is the connection weight to hidden neuron j from
visible node v

′
i.

The binary state hj of the hidden neuron can be defined
by a sigmoid activation function:

hj =
1

1 + e−ĥj

, (3)

Similarly, in the next iteration, the continuous state of each
visible node v

′
i is reconstructed. Lastly, the weights are

updated as the difference between the original and recon-
structed visible layer labelled as the vector vrecon using:

�wij = α(< v
′
ihj >data − < v

′
ihj >recon), (4)

where α is the learning rate and < v
′
ihj > is the expected

frequency with which visible unit i and hidden unit j are
active together when the visible vectors are sampled from
the training set and the hidden units are determined by (2).
Finally, the energy of a DNN can be determined in the final
layer using:

Ed = −
∑
i,j

v
′
ihjwij , (5)

To extend the DNN to a DCNN, we simply partition the
hidden layer into Z groups. Each of the Z groups is as-
sociated with a nx × ny filter where nx is the width of
the kernel and ny is the height of the kernel. Assume that,
the input has dimension Lx × Ly, then the convolution
will result in a hidden layer of Z groups each of dimen-
sion (Lx − nx + 1) × (Ly − ny + 1). These learned kernel
weights are shared among all hidden units in a particular
group. The energy function of layer l is now a sum over the
energy of individual blocks given by:

El = −
Z∑

z=1

(Lx−nx+1),(Ly−ny+1)∑
i,j

(6)

nx,ny∑
r,s

v
′
i+r−1,j+s−1h

z
ijw

l
rs.

Hence, each layer of a DCNN is referred to as a convolution
RBM (CRBM). In this paper, since there is no special in-
terdependence between 2 node embedding φik and φjk , we
set ny to 1. In such a model, the lower layers learn abstract
concepts and the higher layers learn complex features for
clusters of nodes.

Fuzzy Convolutional Deep Walk

In this section, we describe the complete framework for us-
ing DCNN for multi-label classification of nodes in social
networks. We introduce a layer of fuzzy neural network and
a feedback controller to stabilize the changes of class labels
in a sequence of connected nodes (Xing, Cambria, and Zou
2017).

Fuzzy Feedback Controller

Stability analysis is an important issue for fuzzy control sys-
tems. Recently, linear matrix inequalities (LMI) are used to
reduce stability analysis in fuzzy systems with time delays
(Wang, Tanaka, and Griffin 1996).
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Figure 2: The state space of FCDW for learning communities in social networks.

A fuzzy system can be defined by IF-THEN rules, which
locally represent linear input-output relations of a system:

IF x1(t) is Mi1 . . . xn(t) is Min

THEN x(t+ 1) = Aix(t) +Biu(t) (7)

where i is the rule index and t is the time point in a sequence.
For example, Fig. 3 shows two membership functions for
Bloggers in the interest groups ’Business’ and ’Music’. As
Mi1 goes down the value of Mi2 increases.

Eq (7) gives the fuzzy classifier output x(t+1) as a func-
tion of the output x(t) at previous time point t. Stability
is achieved by designing an additional gain matrix F that
modifies the input data such that it is robust to small per-
turbations. In this paper, the problem is simplified to a linear
matrix inequality (LMI) using the Schur complement lemma
as follows:[

Q (AiQ − BiK)
T

(AiQ − BiK) Q

]
> 0 (8)

where F = KQ−1 and there exists P > 0. This LMI can
be easily solved using convex optimization. Proof is given
in (Wang, Tanaka, and Griffin 1996).

Fuzzy Deep Walk Framework

Fig. 2 Illustrates the state space of FCDW for learning com-
munities in social networks. We learn low-dimensional la-
tent embeddings φik from random walk sequences using
skip-gram model. The new latent dimensions d are used to
train a DCNN. The DCNN is trained to assign each node vi

to a given class which represents a community. Given this
training procedure, the network learns d

′
kernels or filters

in each layer that correspond to the different communities
representations. Lastly, we consider dt fuzzy recurrent neu-
rons with feedback for stable learning of sequences of nodes.
There are 2 fuzzy membership functions at each output neu-
ron. The output layer corresponds to different community
labels.

Experiments and Results

In this section, we evaluate the proposed FCDW on two real-
world multi-label datasets known as BlogCatalog and Flickr
(Tang and Liu 2009). We compare our methods against
three other baseline methods: EdgeCluster (EC)(Tang and
Liu 2009), SpectralClustering (SC)(Tang and Liu 2011) and
DeepWalk. We begin with the details of F1-macro evaluation
metric, next, we describe the dataset and evaluate the results.
Lastly, we visualize the communities learned by FCDW.

Mi1 Mi2

Business Music

1

0
0 x(k+1)

Figure 3: Membership functions for Bloggers of two differ-
ent interest Groups
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Figure 4: BlogCatalog community detection

Evaluation Measure and Datasets

We consider the Macro-F1 score, that is F1 averaged over
categories as defined in (Perozzi, Al-Rfou, and Skiena
2014).

Macro− F1 =
1

K

∑K

k=1
F k
1 (9)

For a category Ck, the precision P k and the recall Rk are
calculated as,

P k =

∑N
i=1y

k
i ŷ

k
i∑N

i=1ŷ
k
i

, Rk =

∑N
i=1y

k
i ŷ

k
i∑N

i=1y
k
i

(10)

where yi, ŷi ∈ {0, 1}K are the true and predicted labels re-
spectively. Then the F1 measure, defined as the harmonic
mean of precision and recall, is computed as follows:

F k
1 =

2P kRk

P k +Rk
(11)

BlogCatalog BlogCatalog is a network of social relation-
ships provided by blogger authors. The nodes can belong to
one of the 39 categories. There are a total of 10,312 nodes
connected by 333,983 edges. The labels represent the topic
categories provided by authors. In this experiment we con-
sider the BlogCatalog network with 80% training data.

Flickr Flickr is an image/video hosting website and on-
line community. The crawled graph represents the friendship
network and the group membership. It results in a network
composed by 80,513 nodes and 5,899,882 edges, containing
195 communities. Given the dimension of the network, in
this case, we use only 8% of the data as training set.

Tuning of Hyper-parameters We consider a validation
set to determine the hyper-parameters. The number of hid-
den neurons in each layer and the number of layers is gradu-
ally increased until performance saturates due to overfitting.
We consider 1D convolutional kernel of width (k=3/4/5) and
up-to 7 layers. Similarly, the number of neurons and mem-
bership functions in the fuzzy classifier were set to 10 and 2
based on highest accuracy and speed. We used Theano based
stochastic gradient descent for deep learning and Simulink
to implement the fuzzy classifier.

Evaluation

In order to measure the improvement provided by using
FCDW alone as compared to DeepWalk, we first extracted
the latent vectors from the graph using both methods. Next,
we classified both datasets using neuro-fuzzy classifier and
feedback controller. We were unable to get a meaningful re-
sult for the feedback controller on DeepWalk features, as
the gradients are difficult to compute. On the other hand,
DCNN is able to heuristically compute the gradients using
contrastive divergence.

Table 1 shows the Macro-F1 when 128 latent dimensions,
as predicted using DeepWalk for BlogCatalog and Flickr
dataset. We can see that features learned via DCNN outper-
form DeepWalk. We can see that the percentage improve-
ment increase significantly with size of social network. The
final results are presented in Table 2. Compared to our base-
line, FCDW outperforms DeepWalk by over 5% when we
consider the Macro-F1 measure on BlogCatalog. The im-
provement is over 15% on the bigger network of Flickr.

Table 1: Macro-F1 by DeepWalk+Fuzzy and FCDW for
BlogCatalog and Flickr dataset.

DeepWalk+Fuzzy FCDW
BlogCatalog 0.33 0.34

Flickr 0.32 0.39

Table 2: Macro-F1 by different models for classifying nodes
in BlogCatalog and Flickr Dataset.

EC SC DeepWalk FCDW
BlogCatalog 0.23 0.31 0.28 0.34±0.05

Flickr 0.20 0.24 0.25 0.39±0.06

Communities Evaluation

In order to evaluate the ability of our algorithm of correctly
separate the 2 classes in each embedding φik , we com-
pute the normalized mutual information (NMI). To obtain
this evaluation, we used the obtained embedding from each
methods and then we fit it in a GMM clustering algorithm.
The GMM is set to have only 2 components, one that repre-
sent the evaluated class at step k and one that represent all
the other nodes.

Proceeding with this One-vs-Rest strategies, we are able
to compute the NMI for each class and report the average
among all the classes. Table 3 show how FCDW is able
to preserve the community’s structure and outperforming
DeepWalk and LINE by a factor of 10 on BlogCatalog.

Table 3: NMI by different methods for evaluating the ability
of detecting the different communities.

DeepWalk LINE FCDW
BlogCatalog 0.00352 0.00346 0.0318

Flickr 0.0066 0.0067 0.0081
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(a) (b)

Figure 5: (a) The output class labels from neuro-fuzzy classi-
fier (b) The output class label after processing with feedback
controller

To give a better understanding of how FCDW is able to
preserve the communities, we have labeled the nodes based
on the highest activation at the 10 convolutional kernels in
the first layer of DCNN. In Fig. 4 in order to provide visibil-
ity we have considered a sub-set of 200 nodes with at least 3
edges in BlogCatalog data. The nodes are colored based on
the community learned by DCNN. It can be seen that DCNN
can learn community embedding effectively. For example,
we can see that blue and brown nodes are connected.

Lastly, we compare the output label vector from a neuro-
fuzzy classifier with that of a feedback controller in Fig. 5.
We can see that the former tends to classify all nodes into the
same class, however the feedback controller is able to detect
the positive class labels in the sparse network.

Conclusion

In this paper, we proposed a novel fuzzy convolutional
deep walk for multi-label classification of nodes in social
networks. Our proposed method outperforms baselines by
up-to 15% in F-measure. In order to learn communities
of node embeddings effectively, we consider deep convo-
lutional neural networks. Furthermore, we capture the se-
quence of connected nodes in the network by using a fuzzy
feedback controller. Deep learning uses contrastive diver-
gence to heuristically approximate the weights of the net-
work, which provides higher accuracy than baselines. The
method is computationally fast and requires much lower
complexity than baselines. Lastly, we are able to visualize
the communities as highly activated nodes at each convolu-
tional kernel in the deep model.
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