Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

A Logic for Making Hard Decisions

Roussi Roussev, Marius Silaghi
Florida Institute of Technology
150 W University Blvd
Melbourne, FL 32901

Abstract

We tackle the problem of providing engineering deci-
sion makers with relevant information extracted from
data obtained via a process model based on delibera-
tion and voting. We list examples of potential applica-
tions from the area of bug-fix scheduling for software,
as well as space-vehicles “go”-“no-go” decision mak-
ing. In such application domains, important decisions
have to be made hastily and therefore the decision fac-
tors have to be informed timely of the main issues dis-
covered by the teams. A logic is proposed for reasoning
with comments available in such deliberations. Search
based algorithms are proposed which recommend the
best justifications for a decision and retain the voting de-
cisions for interested parties to tally. We have developed
a Bayesian network for generating data by simulation
based on probabilistic models that we can train from
collected deliberation databases. The data generated in
this way was used for evaluating the proposed search al-
gorithm, showing how it can provide better than random
recommendations of arguments to decision makers.

Introduction

Voting is an important research topic and as such it is heav-
ily studied in the computing and social literature. It enables
groups of people to reach a decision. The voting process
starts with enumeration of eligible sets of decision makers
through a process called census. It continues with discus-
sion, presentation and agreement on the questions asked and
the choices offered. After discussions of the merits of each
choice, the actual votes are cast. The process finishes with a
tally, verification and dissemination of the results.

It can be argued that at least as important as voting it-
self is the process of establishing the alternatives on the bal-
lot, namely of how alternatives on the ballot are decided.
This paper proposes solutions that help voters make edu-
cated choices. Voters are often provided with a choice from
a set of pre-selected answers and they (hopefully) take the
time to study them before important decisions are made.
Voters pose a question for discussion, request and tally feed-
back.

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

712

To illustrate the importance of discussing alternatives, we
provide interesting examples from common every day deci-
sions familiar to us, computer scientists and engineers. One
such important decision is whether to include a particular
fix as part of a release. It is an important question that often
confronts the management teams against the engineers, and
the future success and reputation of the individuals and their
organization (whose level of democracy may vary) is often
at stake. When preparing to vote, a skilled decision maker
organizes the set of prior justifications that she could find
into supporting or opposing groups for each choice. If none
of the existing justifications seem fit, she can create a new
one. Presenting the justifications is where relevance comes
into play.

There is a wide body of research in Al on “argumenta-
tion frameworks”, starting with Dung’s paper, which tries
to reach conclusions based on logic with no special con-
sideration to the internal structure of the arguments (Dung
1995). (Leite and Martins 2011) extends Dung’s frame-
work with votes on arguments. (Egilmez, Martins, and
Leite 2013) further extend it with votes on attacks. (Hunter
2013) takes into account the probabilistic nature of the argu-
ments and extends the framework as appropriate. (Kaci and
van der Torre 2008) present frameworks that handle prefer-
ences among arguments.

Argumentation methods has been applied to several engi-
neering fields. (Baroni et al. 2015) present an argumenta-
tion framework as applied to three engineering decisions: a
civil engineer’s choice of foundation for a multi-story build-
ing, a water engineer’s choice of wastewater treatment tech-
nologies, and a medical engineer’s choices when designing
a reusable precise-dosage syringe.

We argue that it is human nature to be sometimes irra-
tional, incorrect, (un)intentionally inconsistent or even de-
ceptive. We introduce a very basic algorithm for scoring
justifications based on bipartite graphs of user defined rela-
tionships between those justifications.

Example

In this section, we provide examples of non-trivial engineer-
ing decisions. It is indisputable that the productivity tools
widely used by engineers (such as bug tracking databases
like JIRA and Bugzilla) do a good job at recording decisions.
For open source projects, they do a good job at making them

publicly available. At the same time, they provide only lim-
ited decision supporting functionality, often only in the con-
text of voting on whether an issue should be addressed or
not. They do not provide functionality for tracking votes
against. They do not provide voting on individual com-
ments. Some allow limited threading to bring basic structure
to the debate. Almost all are organized chronologically by
creation timestamp and there is hardly any relevance compu-
tation. A decision-maker often has to sift through hundreds
and potentially thousands of comments before she has the
full context (Mozilla bug178993). One is often subscribed
to changes made to issues of interest, and while some of the
notifications received are indeed insightful, others are just
checking for status, corrections to a previous comment or
just automated responses. An average decision-maker has
to juggle from as little as a few items a day (for a junior
engineer) to tens or even hundreds issues per day (for man-
agement and cross-domain experts).

This section presents an example of reaching a ’go”-""no-
go” decision on whether to go ahead with the launch of a
space vehicle. It is based on the Challenger decision to
go ahead with the launch despite concerns from engineers
(most notably from Bob Ebeling and Roger Boisjoly) that in
the winter morning of the planned launch date, the tempera-
ture was forecasted to fall below the tested limits of some of
the components (Bergin 2007). Engineers argued the launch
should be postponed given the lack of testing data on the
performance of the rubber O-rings during low temperature
conditions, i.e. it was suspected that under freezing temper-
atures the rings may not sufficiently seal and cause catas-
trophic failure.

Both sides of the go-nogo decision had valid set of ar-
guments. Arguments *for* continuing with the launch in-
cluded multiple previous delays (AF}), the existence of sec-
ondary O-rings that would have provided backup (AF3),
poor presentation of the technical arguments against (AF3),
the next launch window would be as far as three months
in the future (AF}), a safe temperature range was not pro-
vided by the engineers (AF5), lack of historical failures with
the current design (AFg), redesign was already in progress
that was hoped to be completed before any major failure
was observed (AF7). Arguments *against* the launch in-
cluded lack of test data for the O-ring performance at low
temperatures (AA;1), lack of failover testing ensuring that
the secondary O-rings would prevent catastrophic failure in
event of primary O-ring failure (A Az), O-rings were critical
components (criticality 1) and a backup should not be re-
lied upon (A As3), all launches should be postponed until an
O-ring redesign already well under way was completed and
the criticality of the O-rings downgraded (A Ay).

The actual NASA justification is presumed to have con-
tained a subset of the arguments for launch. The O-ring
manufacturer’s original justification is presumed to have
contained a subset of the arguments against launch. It should
be noted that, the O-ring manufacturer has subsequently
changed the decision and voted for the launch with no well
documented justification. It is not clear if NASA has re-
leased its own justification for proceeding with the launch
and the level with which engineers agreed with it.

99 99

713

Another example of a non-trivial decision is whether to
quickly address a security vulnerability if only complex, and
thus risky, fixes are proposed. Engineers and managers are
aware of the risks of not fixing the issue, e.g. watching their
system being exploited in the wild. At the same time they
need sufficient time to understand the impact, evaluate al-
ternatives, “bake” the changes (get them properly reviewed,
tested and deployed) and are afraid of causing regressions
in quality due to the complexity involved. Everyone gets
together (usually in a live triage meeting), presents their ar-
guments for and against, and formally accepts risk through
voting. In most engineering organizations, such triage hap-
pens on a daily or weekly basis.

Relations

For the context of this paper, a justification contains a set of
arguments. It can be classified based on the type of signature
that it accompanies (e.g. support, opposition, abstention).
While we consider abstention important, in this paper we
propose solutions with only two types of justifications: sup-
porting justifications and opposing justifications. Two jus-
tifications are of the same type if both accompany the same
type of signature (support or opposition).

Relations between justifications. Unlike classical argu-
mentation where relations are extracted from formal argu-
ments, we assume that certain relations are explicitly offered
by associating them with opaque arguments in the form of
an opaque justification. This is commonly done in exist-
ing fora, where relations are provided via a threading model
(e.g., each comment responds to another comment). While
a formal logical argumentation could be used as support for
much more complex mechanisms, the mechanism of opaque
arguments we use can be seen as a basic case, where argu-
ments in each provided justification form the premise of the
associated vote (support or opposition):

arguments — petition

arguments — —petition

Another class of relations we support is refutes, where a
justification is presented as an answer to a different justifi-
cation that it corrects or enhances.

A third class of relations that we discuss is subsumes,
claiming that a justification includes all arguments of an-
other justification. It should be noted that refutes and sub-
sumes are claims explicitly introduced by a voter and that
may or may not be automatically verifiable or logically cor-
rect.

The last type of relation is more_recent which orders the
justifications by submission date.

justification claimed_refutes justification

justification claimed_subsumes justification
justi fication

justi fication more_recent

Given that those relations are provided by the voter, there
is a varying degree of trust in them. For example, while vot-
ing systems try to guarantee the property of non-repudiation,

it is still a best effort guarantee. The more_recent relation
is stronger in a centralized system where there is a cen-
tralized time-keeper, and weaker in decentralized systems
where clock skew is more prevalent. As one solution to the
different levels of trust, we incorporate weights which is dis-
cussed further.

Closures

Under the assumption that each voter selects the most com-
plete justification fitting a choice, a transitivity for the rela-
tion claimed_refutes can be defined as follows:

p claimed_refutes n’
n' claimed_refutes p’
p’ claimed_refutes n
— pclaimed_refutes n

Another type of tranmsitive closure is based on the
claimed_subsumes relation to define a subsume closure
with the goal of finding a small set of justifications sub-
suming most other relevant justifications. The defini-
tion of claimed _subsumes is simpler than the one of
claimed _refutes:

p claimed_subsumes p’
p’ claimed_subsumes p”
— pclaimed_subsumes p”

Figure 1 shows an example refute-subsume graph based
on the arguments from the Challenger example described
earlier. Justification Jy containing arguments {AF,, AF5}
is claimed to have refuted a justification J; containing ar-
gument AA;. A more complete justification J4 containing
{AF;, AFs, AF;} is claimed to have subsumed justification
Ja. A justification J5 containing {AA;, AAy, AAs, AAL}
is claimed to have refuted a J5. It is also claimed to have
subsumed a justification J3 containing { AA;, AAs}. A jus-
tification Js containing { AFy, AFy, AF;, AFy, AF5, AFg,
AFr} is claimed to have refuted a justification J3 and J5. It
also claimed to subsume J,. By the refute transitivity above,
since Jy claimed_refutes J; and J5; claimed_refutes .J,
and Jg claimed_refutes J5, then Jg claimed_refutes .J;.
Similarly for subsumes, since J, claimed_subsumes J; and
Jg claimed_subsumes J4, then Jg claimed_subsumes .J5.

Using these special transitivities, one can search for the
justifications that (within a limited depth) refute the largest
number of justifications of the other type or subsume the
largest number of the same type.

Problem definition

Definition 1 (Answer to a voter) A justification is said to
answer fo a voter if either it is associated with the signature
of that voter, or if it was created with a specification that it
claimed _refutes or claimed_subsumes the justification se-
lected by that voter.

714

e Claim_refutes

claim_subsumes

N
~ /’
\.- -~
szt
J, = {AF,, AF}
4y ={AA 2}
J, ={Al F2 AF, AF_}
Jp ={AA,, AA2 AA,, AA}
Jg = {AF,, AF,, AF,, AF , AF,, AF , AF_}

Figure 1: Justification graph for the Challenger example

Definition 2 (Representative Arguments Problem) The
Representative Arguments Problem (RAP) for a given
petition M consists of a tuple (N,P,V,R,S,K). Here
N = {ni,...,nm, } is a set consisting of m,, opposing
Justifications of M, and P = {p1,...,Dm, } is a set of m,,
supporting justifications for M.

Each justification j is associated with a number of v; sig-
natures, as per the set V.= {(j,v;) | j € NUP,v; =
signatures(j)}. The relation R C (N x N x P)|J(P x
N x N) associates a weight to each pair between an oppos-
ing justification n; and supporting justification p;, and to
each pair between a supporting justification p; and an op-
posing justification n;, by the claimed _refutes relation. The
function S : PUS — P(PUS) where S |p: P — P(P) and
S |n: N — P(N), associates each justification j to a set of
Jjustifications of the same type that it claimed_subsumes.

VUn.:

n; — -M
Vp,
Di — M
wy;
p; claimed._refutes n;
wi;
n; claimed refutes p;
wi,j
j claimed_subsumes k,Vk € S(j)

The RAP problem is to find a set of at most K supporting
Jjustifications that answer to a maximum number of signato-
ries (both supporting and opposing M), and a set of at most
K opposing justifications that answer to a maximum num-
ber of signatories given the defined weights and relations.

Algorithms

From the perspective of graph theory, the problem of finding
the best supporting and opposing justifications can be solved
by searching a bipartite graph containing the relations. The

algorithm looks similar to mini-max in that it traverses the
search tree down to a certain depth. More exactly, in the ba-
sic case, one starts with the given justification and in subse-
quent steps one can apply kind of transitivity of the relation.

The algorithm pseudo-code for computing the most en-
compassing justifications via only the subsume relation is
shown in Algorithm 1, which is then extended to take into
account the refute relations in Algorithm 2 .

Algorithm 1: Algorithm to find subsuming arguments

1 function subsumes (j,level)
2 for any 1 s.t. j claimed_subsumes i do
3 L add i to S

4 for k=1;k < level k++ do
5 | Sk ={i|u€ Sk_1,uclaimed subsumes i}

level
6 | return|J, 0 Sk;

Algorithm 2: Algorithm to find counter-arguments

1 function refutes (j,level)
2 for any 1 s.t. j claimed_refutes i do
3 add i to Rq;

4 | add subsumes(i,level-1) to Ry;
5 for k=1;k< level;k++ do

6 Ry, = {subsumes(i,level — k) |

7 u € Ri_1,3t,v,u claimed_refutes t A
v claimed _refutes i,

8 B v € subsumes(t,level — k) Ut}

9 | return Uﬁfﬁgl Ry.;

This function can be applied to all justifications (for some
level), and then one can compute the cardinality of the re-
sults to estimate the justifications containing the most argu-
ments.

Jievel := max | refutes(j, level) |
J

One can integrate the votes on justifications and rela-
tions as weights to arguments, recognizing the difference in
importance. They can further be discounted with a factor
v <=1 to consider their depth in the tree:

level

Z 7* s votes(k)

k=0
where votes(k) integrate the number of signatures for all
justifications at level k as well as for the claimed_refutes
and claimed_subsumes relations in the directions used for
the transitivity: votes(k) = votes;(k) + a * votes_, (k).

To implement the weighted algorithm, one can substitute
the union operation (line 6 of Algorithm 1 and line 9 of Al-
gorithm 2) with the sum on the total scores of the justifica-
tions at each level and use a priority queue to keep the top
justifications. It should be noted that the cardinality-based
algorithm is a special case of the weighed one, when gamma
is set to one and alpha is set to zero.

715

Experimental results

We have built a Bayesian network to generate arguments,
justifications based on those arguments and relationships be-
tween justifications. In such a network corresponding to an
instance of a problem, there are three nodes, A;, R; and S}
for each justification j. Each justification is introduced in
the network in the order defined by the more_recent rela-
tion. The domain of A; is the power set of Ays, P(Anr).
The domain of R; is the set of possible justifications (that
are less recent than j), and specifies a justification of a dif-
ferent type that j claimed_refutes. Similarly, S; specifies a
justification of the same type that j claimed_subsumes.

We used that Bayesian network to generate 1000 justifica-
tions over 100 arguments. Each justification contains a uni-
form random subset of arguments from the power set of all
arguments. Given empirical data that people are more likely
to respond if they disagree than when they agree (Agrawal
et al. 2003), we select our parameters to refute a justification
85 percent of the time and subsume 15 percent of the time.
To limit the size of our network, we allow a justification to
refute at most 10 other justifications and to subsume at most
3 ones. The votes are distributed proportionally with the to-
tal number of decision makers, the number of arguments a
justification contains and how old a justification is under the
assumption that the better a justification is, the more times
it will be chosen, and the older it is the more opportunity it
has had to get votes. As justifications are inserted into the
network with increasing timestamp during data generation,
we make sure that a justification refutes/subsumes only an
earlier one and with distribution proportional to the number
of arguments that it contains. We executed one hundred runs
of the cardinality-based and weighted search algorithms on
freshly generated data for the run. The algorithms find the
best justifications 64 percent of the time which is improve-
ment over chronological or random order. Of those, the car-
dinality based algorithm (which is a degenerate case of the
weighted algorithm with gamma set to one and alpha set to
zero, as described earlier) found the best justification 47-52
percent of the times when the best justifications were found.
We also computed the best sets of values for gamma and al-
pha which are specific to each instance of the Bayesian net-
work. We have found that the best justifications are usually
in the top five levels, hence we limit the depth of the search
to eight levels.

Conclusion

We believe that the methods that we describe are a small
step towards enabling decision makers to reach better sup-
ported and agreed upon decisions. This is achieved by
presenting the best possible justifications for each choice
based on a set of user-annotated relations (claimed_refutes
and claimed_subsumes) and metadata generated by the sys-
tem (more_recent). We proposed two algorithms to return
the best justifications and provided preliminary experimen-
tal comparison using a Bayesian network of justifications.
While at present we take the user generated relations for
granted, using natural language processing to extract them
is an area of future research for us.

References

Agrawal, R.; Rajagopalan, S.; Srikant, R.; and Xu, Y. 2003.
Mining newsgroups using networks arising from social be-
havior. In Proceedings of the 12th International Conference
on World Wide Web, WWW °03, 529-535. New York, NY,
USA: ACM.

Baroni, P.; Romano, M.; Toni, F.; Aurisicchio, M.; and
Bertanza, G. 2015. Automatic evaluation of design alterna-
tives with quantitative argumentation. Argument and Com-
putation.

Bergin, C. 2007. Remembering the mistakes of challenger.
NASASpaceFlight.com.

Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial intelligence
77(2):321-357.

Egilmez, S.; Martins, J.; and Leite, J. 2013. Extending social
abstract argumentation with votes on attacks. In Theory and
Applications of Formal Argumentation. Springer. 16-31.

Hunter, A. 2013. A probabilistic approach to modelling
uncertain logical arguments. International Journal of Ap-
proximate Reasoning 54(1):47-81.

Kaci, S., and van der Torre, L. 2008. Preference-based ar-
gumentation: Arguments supporting multiple values. Inter-
national Journal of Approximate Reasoning 48(3):730-751.

Leite, J., and Martins, J. 2011. Social abstract argumenta-
tion. In IJCAI, volume 11, 2287-2292. Citeseer.

Mozilla bug 178993. https://bugzilla.mozilla.org/show_bug.
cgi?id=178993.

716

