
Modeling with Events from Policy Descriptions

Nandan Parameswaran,1 Pani N. Chakrapani2

1School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
2 Department of Mathematics and Computer Science, University of Redlands, Redlands, CA 92373, USA

Abstract

Given the policy descriptions in the domain of vehicle insur-
ance, we have attempted to provide an event based model of
the descriptions using event diagrams and an event descrip-
tion notation. Event models show events and time explicitly
thus enabling intuitive reasoning easier for non-experts. We
quantify the overhead in reasoning with events by measuring
the mental effort.

Introduction

Policy is a set of principles that guide agents in making de-
cisions to perform socially acceptable behaviors. In several
domains, policies are described in natural languages such as
English. Event based models of policy descriptions make the
concepts and constructs easy to understand as these models
clearly tell what events happen and when, what the states
of the resources are, and the history and commitment in fu-
ture an agent has. In this paper, we have made an attempt
to provide an event based model for concepts occurring in
the domain of vehicle insurance policy written in informal
English.

In the following sections we first define events, the rela-
tions that exist between them, and a simple (pseudo) nota-
tion to represent complex event structures. We then consider
the domain of vehicle insurance policy descriptions, identify
several types of objects, events, and relations and use them
to provide event models of the core concepts in the domain.
We also estimate the overhead in reasoning with events us-
ing the concept of mental work. In the last section, we com-
pare our work with other related work, and conclude with
final remarks.

Events

An event ei is said to occur when an object changes its state
from sj to sk, denoted as, ei::sj→ sk. As events involving
an object occur in time, a timeline represents a sequence of
events that the object is subjected to, and thus each object
has a timeline of its own. We group events and states occur-
ring in one or more timelines (involving several objects) and
call the group as an event structure. An action is an event

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

structure when it is intended by an agent as an action. A
timeline is divided into two parts: the past and the future,
and there is a unique point NOW that represents the current
time instant. Finally, there is one global timeline on which
each timeline is projected to for reasoning purposes when
necessary. Figure 1 shows an event diagram where events

Figure 1: An event structure diagram

occurring in two objects O1 and O2 over their individual
timelines are shown. In object O1, event e1 changes the state
s0 to s1 at the time instant t0. At t4, the object O1 has three
options: e3, ε, and e4 where ε refers to null event. Any one of
the three events can happen, but the occurrence of ε does not
change the state of the object. The occurrence of an event
may be related to states that currently exist or events that oc-
curred in the past (as depicted by the arcs in the diagram).
The occurrence of e4 is related to s2 and e6: (((s2.att1 >
s2.att3) preCondition) and (e6 causes)) e4. The expression
s2.att1 refers to the attribute value of an attribute att1 of s2.
When the precondition is true, e4 is caused by e6. A context
for an event ei occurring at time instant tj is a set of states
that exist at tj where ei is related to each state sk by some
relation Rp. For ei to occur at tj, the condition (sk Rp ei) is
checked at tj for each sk by accessing the attribute values

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

694

of sk currently available. However, when ei is related to an
event ej that occurred at tj in the past, the agent has to re-
member the occurrence of ej (in its event memory) before
performing ei leading to performance overhead.

Figure 2 shows the description of events in Figure 1 using
a simple event structure notation. (We use this notation of-
ten instead of diagrams to conserve space.) ES1 is the event
structure describing the events for object O1 where t0, t2 and
t4 are time instants, s0,s1,s2,s3,and s4 are states. Events oc-
cur in the sequence specified: for example, e1 at t0, and e2
at t2. The where clause specifies the relation between events
and states.

TimeConstraints t0 < t1 < t2 <t3 < t4
EventStructure ES1 /* on timeLine1 */
Object O1
Sequence

t0: e1:: s0 → s1
t2: e2 :: s1 → s2
where ES2.e5 causes e2
/* ES2.e5 denotes event e5 from ES2.*/
t4: e3:: s2 → s3 | e4:: s2 → s4 | ε :: s2 → s2
where ((ES2.e6 causes and ((s2.att1 > s2.att2) preCondition)) e4

EventStructure ES2 /* on timeline2 */
Object O2
Sequence

t1: e5 :: s5 → s6
t3: e6 :: s6 → s7

Figure 2: Event structure notation for the events in Figure 1.

Thus, ES2.e5 causes e2 denotes the fact that e2 is causally
related to e5 from the event structure ES2. The vertical bar
| stands for option. At time instant t4, three events e3, e4
and ε are possible but only one event is permitted to happen.
The occurrence of e4 is subject to the condition specified
being true at t4. Finally, the constraints across time instants
in different event structures are specified by the relations in
the declaration TimeConstraints.

Modeling policy descriptions with Events

We propose the following steps for event based modeling for
a given vehicle insurance policy description.

Step 1: Identify objects and agents

The motor insurance policies refer to several objects cat-
egorized into different types. Broadly there are two types
of objects: world objects such as vehicle, policy document,
etc., and a mental object. Often the world objects are orga-
nized hierarchically. Some objects can be viewed as basic
and others as composite composed of simpler objects. Each
object has a set of attributes. Further, objects are dynami-
cally created and destroyed at the end of its lifetime. Ob-
jects have relations amongst themselves, such as has, part-
of and adjacent-to, and with agents such as insured-by and
driven-by. In addition, the policies also refer to a few agents
of which we only consider two: the insurer and the insured.

Step 2: Identify events

We identify two types of events: world events and mental
events. World events involve world (physical) objects and
mental events change the internal states of agents affecting
their present and future behaviors. Events can be simple or
composite. A simple event consists of one basic event and a
composite event may consist of several events involving one
or more objects and agents. While we have viewed the world
as consisting of several named objects participating in event
occurrences, we have used anonymous mental objects while
referring to mental events.

Step 3: Identify states

When the values of the attributes of an object are affected
by an event, state changes occur. Information of the past is
partially stored in each state, but when a state is terminated,
this information may be lost. In such cases, the agent has
to remember the past in its event memory. Ideally, an agent
should remember the entire past and this requires that all
events that occur to the objects be remembered. However,
in practice the agent only has to remember those events in
the past that are used in reasoning rules. Similarly, all events
that are committed to and in future used in reasoning rules
must also be remembered.

Step 4: Identify relations

Events and states of an object are related within themselves
and with events and states of other objects. The presence of
relations make reasoning over large intervals of time involv-
ing several events difficult.

Step 5: Abstracting events and defining event
structures

A sequence of events and states can be abstracted either to
form an abstract event or an abstract state. Similarly, we can
define events and states of a composite object in terms of
the events and states of the component objects for reason-
ing purposes. Thus, timelines of component objects can be
merged to produce the timeline of a composite object. Ap-
plying this technique iteratively, we can build complex event
structures.

In practice an event structure is formed using sequences of
events and states from one or more timelines over a carefully
chosen interval of time. Each event structure can be viewed
as an event module that helps simplify reasoning, and they
have the traditional advantages of modules in an engineering
design. Modules along with parameterized abstractions help
in recursively building larger modules. Viewing timelines in
terms of modules makes it easy to understand and manipu-
late with them. Modules can occur parallelly or sequentially.
In parallel compositions of modules, events and states of one
module may depend on the events and states of the other at
any time instant. In a sequential composition, the preceding
module, sets up states (through which data flows) for all the
succeeding modules to use. It may also set up events that
may be recurring in future. To simplify reasoning over large
intervals of timeline, modularity may be improved by mini-
mizing the relations defined across modules.

695

Step 6: Design rules

In this final step we use objects, events, states and event
structures to design rules. A rule is of the them LHS →
RHS, where LHS is a state based condition, event based
condition, or combination of both, and RHS is an event or
an event structure. We model the policy descriptions using a
set of rules and initial conditions involving events and states.
Rules are also useful in defining domain constraints.

Event Trace

An event trace for an object is a sequence of events that has
occurred along its timeline from the beginning to NOW. An
event trace is produced: (i) by applying a set of rules consec-
utively on the given initial state of the object s; and (ii) by
the environment in which the object is situated. Whenever
the antecedent of a rule matches with events and states on
the timeline, the consequent of the rule is used to construct
the next sequence of events and states on the timeline. In
practice, it is useful to show explicitly on the event trace all
future events that an agent is committed to and all options
that were examined at each time instant in the past.

The NRMA policy descriptions

The motor insurance policy descriptions we specifically con-
sider in this paper was published by The National Roads
and Motorists Association(NRM). The central themes in
this policy description involve events and time. Major events
involve buying policy, accidents, cover, making claims and
exclusions. Policy period is twelve months, and all entities
(including policy, objects,commitments, and agents) have a
maximum lifetime of one year. Events such as reporting an
incident, making claim, paying premiums, etc. have dead-
lines, and follow patterns with pre-specified durations. At
many points along the timelines, there are options avail-
able for agents to choose from. Agents have responsibilities
and rights about what to expect in future on their timelines.
Objects have composite attributes, composed of simpler ob-
jects, and they are created and destroyed dynamically. Lim-
ited common understanding between agents is achieved by
demanding clarifications and simple negotiations. Time is
continuous for each timeline and is present explicitly and
pre-structured as months but there are also structures in-
duced by events. We have identified the following items cat-
egorized as objects, attributes, etc. as shown in Table 1.

Organization of the policy document

The overall organization of the insurance policy descrip-
tion consists of six major parts: (i) agreement, (ii) insurance
details (including loss or damage to vehicles, benefits, op-
tional cover, liability cover, and additional feature), (iii) ex-
clusions, (iv) responsibilities, (v) claims, and (vi) informa-
tion about policy cancellation, complaints and resolving dis-
putes. Each part uses a set of composite objects, attributes,
event structures, mental events and mental states to describe
the policy. Three agents explicitly addressed in the policy
descriptions are: the policy issuing agent (often referred to
as We, the insurer), the policy buying agent (referred to as

Table 1: Primary items from the NRMA policy descriptions
Modeling
construct

Mental item World item

Objects policy,insurance,
contract

vehicle

Attributes agreed value,
excess,limits,
premium,total-
loss,responsibility

States cover, accidental
damage

damage, acci-
dental damage,
property- damage

Events insure,
cover,agree,pay-
premium,cancel

pay premium

Temporal
objects

month,year, dead-
line, cooling-off-
period

Event struc-
tures(ES)

benefits, responsi-
bility, complaints

benefits

Event trace
(ET)

incident

ES rules claim,exclusions,
liability cover

claim,exclusions,
liability cover

Constraints limits
Time policy period,

deadline
Agent insured/driver, in-

surer
insured/driver, in-
surer

You, the insured), and the driver of the vehicle. (For simplic-
ity, we have assumed that the insured and and the driver are
the same.) There are two major event modules where events
in them span over one year: the Agree Event module that
happens first, and the Cover Event module that follows.
The Agree Event module is important because it is in this
module that the We agent and the You agent enter into men-
tal states of committing to a sequence of future events. The
Cover Event module is composed of events that occur in re-
sponse to an accident in the world. We thus initially have the
following ES structure as shown in Figure 3.

TimeConstraints t0 < t1
EventStructure Insurance()
Sequence /* agree and cover are mental events */
t0: agree :: noAgreement → haveCover
t1: cover :: haveCover → coverProvided

Figure 3: Overall structure of the policy document.

The events agree and cover are abstract collective mental
events that occur at abstract time instants t0 and t1. When
the events are refined using lower level events, time instants
t0 and t1 also get refined spreading over several refined time
instants. The state haveCover is an abstract state and some
of the substates of this state continue to provide the neces-
sary context and conditions for the future events (even after

696

Figure 4: Abstract event negotiaten

haveCover has been terminated) to produce the state cover-
Provided. In this event structure, the We agent and the You
agent collectively respond as one agent to the events.

The Agree event module

The events in this module relate to: limits, exclusions (what
are not covered), agreed values, premium amount and pay-
ment, what happens if premium is not paid, and the rights
and responsibilities of the We agent and the You agent.
Specific to them are mental events and mental states that
forbid certain world events and world states. In particular,
they relate to incidents that occur outside the policy period,
driver and vehicle violating pre-specified conditions and in-
tentional acts. Further an object called contract is created,
maintained and finally destroyed(after a year).

Representative statements in Agree Event module

We will now illustrate how modeling is done for a few se-
lected important statements from the descriptions.

Statement
The agreed value is the amount we agree to insure your ve-
hicle for.

In this example, we illustrate the use of abstract events in
modeling complex processes such as negotiation using se-
quences of mental states. In the event diagram in Figure 4
we show negotiaten as an abstract event (which can be re-
fined in terms of lower level events and states later) occur-
ring at an abstract time instant t0n, the occurrence of which
changes the mental states of both the agents.

To start with, both the agents begin with their mental
states in which the initial agreed value given by the attribute
quote is undefined. After n iterations of negotiations, the
agents either mutually agree on a final value or reject the
quote and let it remain undefined. The insurer accepts if
quote > 1000, and the insured accepts if the quote ≤ 1000.
It may be noted that the mutual agreement here is formed
in terms of each agents local mental states and is an ap-
proximation of the traditional mutual belief based agree-
ment(Levesque, Cohen, and Nunes 1990). The event de-
scription in our notation is shown in Figure 5.

The abstract event negotiaten is shown as a shared event
that is performed by both the agents. However, when the
event is refined, each agent performs its own private events.
In Figure 6 we refine negotiaten in terms of private events

description in our notation is shown in Figure 5.
TimeConstraint t0 < tn; t0n = < t0, tn>
/* < to, tn > denotes interval */
EventStructure ESo (n)
Agent Insurer
t0n: negn:: q1 = undef → q1 = 1000 and success

| negn:: q1 = undef → q1 = undef and failure
EventStructure ES1(n)
Agent Insured
t0n: negn:: q2 = undef → q2 = 1000 and success

| negn:: q2 = undef → q2 = undef and failure

Figure 5: Abstract action negotiaten.

quote, agree and donotAgree and shared event negn−1. It is
a simple negotiation where the We agent (insurer) quotes a
figure at t0, the You agent (insured) agrees or does not agree,
the insurer modifies it, and so on, until they arrive at a figure
that each one agrees upon. It may be noted that during the
recursive event occurrences, new time instants labeled as t1
and t23 are created each time.

TimeConstraint t0 < t1 < t2 < t3 < tn; t0n = < t0, tn>
/* t0n denotes time interval */

EventStructure ES0 (n)
Agent Insurer
t0: quote:: q1 = undef → q1 = v1

where ES1.q2 = undef preCondition quote
t2: finalize:: q1 = v1 → q1 = v1 and success

| rejectANDquote :: q1 = v1 → 4 q1 = v3
where ES1.q2 = v1 preCondition finalize and
ES1.q2 = c preCondition rejectANDquote

t3n: negn−1 :: q1 = v3 → q1 = vn and success
| negn−1 :: q1 = v3 → q1 = undef and failure

EventStructure ES1 (n)
Agent insured
t1: accept :: q2 = undef → q2 = v1 and success

| rejectANDquote :: q2 = undef → q2 = v1
where ES0.q1 <= preCondition accept and
ES0.q1 > c preCondition rejectANDquote

t3n: negn−1 :: q2 = c → q2 = vn and success
| neg n−1 :: q2 = c → q2 = undef and failure

Figure 6: Negotiate for a value.

The agreed value is available in the mental state of the
participating agents as quote = vn.

The Cover event module

The next major event module in the policy descriptions
is the Cover Event module. Events in this module occur
primarily in response to incidents in the real world (such
as an accident) and include reporting and making claims as
permitted by the allowable benefits. This module also con-
tains events related to loss or damage to vehicles, benefits
guaranteed by the We agent, exclusions and responsibilities,
claims, cancelling policy (by the You agent or We agent),

697

and resolving complaints and disputes that occur. These
events occur in the context of ongoing events set up by the
previous Agree Event module. When the insurance policy
is cancelled, the context (consisting of mental events and
states) is terminated leading to the termination of events and
states in the cover module.

Representative statements in Cover Event module

One important concept that keeps occurring in this domain
is what if something does not happen. Another important
concept is exclusions which refer to situations when cover
is not provided. These are situations where negative events
occur, such as we dont, it will not, etc. Negative events are
those that prevent certain future (positive) events and states
from happening.

Statement
We do not provide cover if the driver of your vehicle was
under the influence of any alcohol or drug.

The occurrence of a negative event results in turning on
the mental state where the agent is committed to not se-
lecting an event that favors certain positive states in future.
While this is hard to do in general, fortunately in this do-
main it is fairly straightforward if we use event modeling. In
Figure 7, the donotCover event makes the agent to commit to
not-cover in future which results in sending a regret message
when an incident occurs where the driver was found drunk.
The event model also implements a protective mechanism
where in a situation when neither do not cover nor cover
happens, the current initial state becomes unstable leading
to an error state at t1 thus preventing any inadvertently of-
fered cover in future.

TimeConstraint t0 < t1 < t2
EventStructure ES0
t0: doNotCover :: initialState → commitToNotCover | cover ::
initialState → coveredState

| ε :: initialState → initialState
t1: someEvent :: initialState → errorState
EventStructure ES1
t2: incident :: driving → incidentHappened

EventStructure ES2
t3: sendRegret :: waitState→ regretSent

| respond :: waitState → serviceState
where (incidentHappened driverDrunk and

commitToNotCover precondition) sendRegret

Figure 7: Exclusions — influence of alcohol or drug.

Finally, in this domain, the concept of responsibility is
emphasized strongly. The event that occurs in this context is
must. We can model this using a mental event which sets the
agent’s mental state to committed-to.

Mental Effort and Mental work
Since events occur over time, reasoning about them need
explicit references to events that occurred in the past and

to future events that the agent is committed to. Thus past
and future events must be maintained in the event mem-
ory and this results in computational overhead. We measure
this overhead using two quantities: mental effort and men-
tal work(Parameswaran and Chakrapani 2014). Metal effort,
denoted by effm at any time instant is measured by a quan-
tity proportional to the number of events that are currently
held in the event memory.If the mental effort effm occurs
over a time period T, then we say that the mental work done
by the agent over T is proportional to effm * T.

Mental effort due to a single event

Let e1 be an event that occurred at time t1. The mental
effort at time instant NOW due to this event is m where m
is a constant. The mental work spent on this occurrence up
to NOW is workm (e1, t1, NOW) = k* m* (NOW - t1) for
some constant k.

Mental effort due to multiple events

For a sequence of two events <e1;e2> where e1 occurred
at t1 and e2 occurred at t2, the total mental effort at
NOW is given as effm(<e1;e2>,NOW)= effm(e1,NOW)
+ effm(e2,NOW) = 2m. Thus, effm(<e1;...;en>) =∑n

i=1 effm(ei) = m ∗ n. Then, workm(<e1;...;en>)
can be shown to be O(n2).

Mental effort in recurring events

When recurring events occur, say n times, the overhead due
to these events over the duration of n units of time is the
mental effort proportional to O(n2). However, if events are a
nested r times, then the mental effort will be O(n2*r).

Simulation

We consider an agent that has to reason about its past and
entire future before performing any current event. Given a
timeline of finite length, as the time progresses, the size of
the history increases and the future decreases. However, the
agent has to reason about all the options that it has in its
future.

Figure 8 shows the mental effort(E) and mental work(W)
spent in different scenarios (simulated in NETLOGO 2016)
over time. The labels 1, 20 and 40 indicate the number of
options open at any time instant along the timeline. As the
options increase, both the effort and work increase. As the
future option decreases to 1, the effort remains constant and
the mental work increases.

Related Work

Modeling English statements using events has long been
pursued by linguists, philosophers and computer scientists.
Davidson(Davidson 1967) observed that simple event sen-
tences can be analysed by existentially quantifying the ac-
tion variable in the sentences. Parsons used events to un-
derstand natural language sentences(Parsons 1990). While
we have used event diagrams and event notation to describe
complex event structures, event calculus is also a tool to

698

Figure 8: Mental effort (E) and mental work (W). Numbers
show the number of options available at any time instant

represent events and reason about them in the logic do-
main(Mueller 2014). Controlled natural languages (CNL) is
a carefully chosen subset of natural language that is used
for policy descriptions(Schwitter 2010). There have been
no attempts so far to produce event based model of policy
descriptions from CNL. In (Abrahams, Eyers, and Bacon
2004) event modeling for e-commerce applications has been
reported. Ponder is an object-oriented language that was pro-
posed for specifying security management policy for dis-
tributed systems(Damianou et al. 2001). Event based seman-
tics within the framework of a logic based formalism is re-
ported in(Tan and Thoen 2002). Event extraction from natu-
ral language texts has gained attention recently(Hogenboom
et al. 2011) where events that mostly correspond to verbs
are extracted using machine learning techniques. In (Cybul-
ska and Vossen 2011) for example, events are extracted from
historical archives, by modeling events using four slots < lo-
cation, time, participant,action >. More recently, Zarri has
proposed a method to ”isolate and represent” events in a
stream of narrative information(Zarri 2015) using a knowl-
edge representation language called NKRL (the Narrative
Knowledge Representation Language). We have used a pic-
torial representation and a procedural notation in our model-
ing process. Further we have shown explicitly the relation-
ship that exists between mental events and the world events
as they happen over time.

Discussion

The advantages of event based model are in its explicit rep-
resentation of events, states and time thus making it easier
for an application designer and the insured agent to under-
stand and reason with. We have presented our model using
event diagrams and a simple event based notation which was
more expressive in representing abstractions. We have not
addressed the role of English prepositions in our model. Fur-
ther, more attention needs to be paid to relations that are em-

bedded in the policy description.

References

Abrahams, A. S.; Eyers, D. M.; and Bacon, J. M. 2004. An
event-based paradigm for e-commerce application specifica-
tion and execution. In Proceedings of the 7th International
Conference on Electronic Commerce Research (ICECR7),
181–192.
Cybulska, A., and Vossen, P. 2011. Historical event extrac-
tion from text. In Proceedings of the 5th ACL-HLT Work-
shop on Language Technology for Cultural Heritage, Social
Sciences, and Humanities, 39–43. Association for Compu-
tational Linguistics.
Damianou, N.; Dulay, N.; Lupu, E.; and Sloman, M. 2001.
The ponder policy specification language. In Policies for
Distributed Systems and Networks. Springer. 18–38.
Davidson, D. 1967. The logical form of action sentences.
Hogenboom, F.; Frasincar, F.; Kaymak, U.; and De Jong,
F. 2011. An overview of event extraction from text. In
Workshop on Detection, Representation, and Exploitation of
Events in the Semantic Web (DeRiVE 2011) at Tenth Interna-
tional Semantic Web Conference (ISWC 2011), volume 779,
48–57. Citeseer.
Levesque, H. J.; Cohen, P. R.; and Nunes, J. H. 1990. On
acting together. In AAAI, volume 90, 94–99.
Mueller, E. T. 2014. Commonsense reasoning: an event
calculus based approach. Morgan Kaufmann.
Comprehensive Car Insurance Policy. https://www.nrma.
com.au/car-insurance/comprehensive-car-insurance. Ac-
cessed: 2016-08-25.
Parameswaran, N., and Chakrapani, P. N. 2014. User in-
tentions in interactive tasks. In International Conference on
Circuits and Systems (ICCS’14).
Parsons, T. 1990. Events in the semantics of english: A
study in subatomic semantics.
Schwitter, R. 2010. Controlled natural languages for knowl-
edge representation. In Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics: Posters,
1113–1121. Association for Computational Linguistics.
Tan, Y.-H., and Thoen, W. 2002. Using event semantics
for modeling contracts. In System Sciences, 2002. HICSS.
Proceedings of the 35th Annual Hawaii International Con-
ference on, 2198–2206. IEEE.
Zarri, G. P. 2015. A structured and in–depth representation
of the semantic content of elementary and complex events.
International Journal of Metadata, Semantics and Ontolo-
gies 10(1):12–27.

699

