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Abstract

Several problems requiere the combination of temporal and
spatial reasoning under uncertainty, such as wind prediction
for electricity generation in wind farms. In this work we pro-
pose a probabilistic spatial-temporal model (PSTM) focused
on prediction problems, based on two common properties of
these scenarios: sparsity and multivariable mutual informa-
tion. The proposed spatial-temporal model is essentially a
Bayesian network that represents the dependencies between
a target variable of interest and a subset of predictor variables
in different times and spaces. We developed an algorithm
for learning the structure of the model based on a stochastic
search of the optimal subset of predictor variables. The pro-
posed model has been applied for wind prediction at different
locations in Mexico, using information from several locations
at different times. The PSTM is evaluated in terms of predic-
tive accuracy for different time horizons – 1 to 24 hours; and
compared to a dynamic Bayesian network (DBN) developed
for wind prediction. The performance of the PSTM is in gen-
eral competitive, and in most cases superior to the DBN.

Introduction

Several problems requiere the combination of temporal and
spatial reasoning under uncertainty. For instance, wind pre-
diction in the context of electricity generation in wind farms.
In this case, information on climate variables at different
times need to be integrated for predicting wind velocity and
direction in certain location. As the prediction horizon in-
creases, climate data from other locations needs to be con-
sidered. Thus, a spatial-temporal model is required for long
term wind forecasting.

Under the framework of probabilistic graphical models
(Sucar 2015), there are several techniques for modeling tem-
poral processes such as hidden Markov models and dy-
namic Bayesian networks, and also for spatial modeling with
Markov random fields; but there is no much work that com-
bines both dimensions. In this work we propose a proba-
bilistic spatial-temporal model focused on prediction prob-
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lems. This model is based on two properties that apply for
spatial-temporal prediction problems:

Sparsity: the variable of interest (i.e. wind in an specific lo-
cation) tends to depend on a few variables across the tem-
poral and spatial dimensions. In previous work (Sanan-
daji et al. 2015) it has been shown that the wind predic-
tion problem has in general low dimensionality, that is few
variables have the largest impact on wind velocity in cer-
tain region, so it is possible to achieve good predictions
with a low number of variables.

Multivariable mutual information: to select the subset of
relevant variables for predicting the variable of interest
(V ), in general it is better to consider the mutual informa-
tion between a subset of N variables, that for each vari-
able individually (Kraskov et al. 2005). For instance, it
could be that the influence of X or Y over V is low, but
the combined influence of (X,Y ) over V is high.

The proposed probabilistic spatial-temporal model
(PSTM) is essentially a special type of Bayesian network
that represents the dependencies between the variable of
interest, V , and a subset of m variables at different times
and spaces, X1, X2, ...Xm. This subset of variables is
selected to optimize the predictive accuracy of the model
for certain time horizon, T , based on estimating the mutual
information between V and X1, X2, ...Xm. As the number
of subsets increases exponentially with respect to the
number of variables, m, we developed an stochastic search
algorithm for learning the structure of the model; once the
quasi-optimal structure is determined, the parameters are
estimated from data via maximum likelihood. V is then
predicted based on the selected spatial-temporal subset
using probabilistic inference.

We have applied the proposed model for wind prediction
at different locations in Mexico, using information from the
same and other locations and at different times. The model is
evaluated in terms of predictive accuracy for different time
horizons, from 1 to 24 hours; and compared to a dynamic
Bayesian network (DBN) model developed for wind predic-
tion (Ibargüengoytia et al. 2014). The results show good
predictive performance of the PSTM for most locations and
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time horizons, and in most cases it is superior to the DBN.

Related Work

As we mentioned in the introduction, to accurately represent
a complex system in space-time, a model must exhibit two
important characteristics: (i) the representation of the cross-
correlation between the spatial and temporal dynamics, and
(ii) the properties of correlation among variables through the
corresponding dynamic space. To take into account the dy-
namic correlation through space and time, several models
have been proposed (Singh et al. 2010). Some works use
non-stationary Gaussian process models to take into account
variables’ correlation properties in the input space (Garg,
Singh, and Ramos 2012; Plagemann, Kersting, and Burgard.
2008). These works are not focused on prediction problems.

There is some previous work that considers spatial and
temporal information for wind speed prediction, in partic-
ular for short term forecasts. (Larson and Westrick 2006)
considered the case of a potential site for a wind farm lo-
cated in the Columbia River, where weather observations are
available from a close site. Another example is the work of
(Damousis et al. 2004), for an area with constant thermal
winds. (Gneiting et al. 2006) have proposed various mod-
els of regime change which represent two dominant wind
directions for prediction of wind speed up to 2 hours, with
an interesting extension to a probabilistic forecast. More
advanced models may be necessary for longer term predic-
tions, as discussed by (Hering and Genton 2010), potentially
requiring considerable expertise for the identification of its
structure and its parameters. (Gillard and Allard 2013) is
based on characteristics of spatial-temporal energy from the
wind and use two strategies for obtaining the main direction
and speed of propagation. (Gillard and Allard 2013) analyze
the structure of stochastic spatial-temporal wind energy for
a prediction horizon of up 4 hours.

Previous work on spatial-temporal models in general does
not incorporate knowledge about the dependency structure
of the domain, and does not represent explicitly the uncer-
tainty on the predictions. This is important for wind pre-
diction, as the decision makers do not only require a point
prediction, but also an estimate about the uncertainty (i.e.
variance) of this estimate.

A Probabilistic Spatial-Temporal Model

With the aim of developing a probabilistic graphical model
that represents relations between time and space, we pro-
posed two main concepts:
Spatial-Temporal Node (STN). A spatial-temporal node,
STN , is random variable defined in certain space S and
time T . X is a vector containing the record of the events
over time, X = [X1, X2, ...Xn], and T is the vector con-
taining the time in which each event occurred.

Spatial-Temporal System (STS). A spatial-temporal sys-
tem is composed of a set of events in discrete space and
time, where events at different geographical spaces occur
over time. It is represented as a directed acyclic graph,
G = (V,E), in which vertices (V ) are STNs and the
edges (E) define spatial-temporal relations.

We represent a probabilistic spatial-temporal model
(PSTM) as a Bayesian network in which each node corre-
sponds to spatial-temporal node at certain space S and time
T , XS

T ; and each arc corresponds to a direct probabilistic de-
pendence between XS1

T1 and Y S2
T2 . Given that our interest is

on prediction, we focus on an specific type of PSTM which
represents the dependencies between the variable of interest,
at certain space and time, and a set of predictor variables, at
different spaces and times. The aim is to reduce the predic-
tion error by considering variables from different spaces and
time delays, compared with the traditional models which use
a fixed delay and usually an specific space.

Learning the Model

Structure learning. Given that the objective is to build a
PSTM to predict an specific variable at certain space and
time, the learning algorithm is designed to optimize the pre-
diction accuracy. That is, we want to find a subset of m
variables [X1S1

T1, X2S2
T2, ...XmSm

Tm] that can best predict the
variable of interest, V S

T . Dependence among variables of
different spaces and times is considered to define the set of
variables that relate to the objective one. The prediction sub-
set is based on the concept of mutual information, assuming
that a subset of variables that present a high mutual informa-
tion with the target variable will provide good predictions.

So for predicting a target variable V S
T at time T in space S

and prediction horizon H , we want to determine the subset
of variables in all spaces, S1, S2, ...Sn, and for times from
T −H to T −Max, where Max > H is a predefined max-
imum temporal range considered for prediction. To select
the optimum subset of predictor variables we use the crite-
rion of mutual information (MI) between the target variable,
Y and a subset of variables (at different times and spaces),
X = X1, X2, ...Xm, as defined by (Kraskov et al. 2005):

MI(Y,X) =
∑

Y

∑

X

P (Y,X)log2
P (Y,X)

P (Y )P (X)
(1)

Although the mutual information has been used before for
measuring association between variables, and in particular
for feature selection (Battiti 1994), in general it is simplified
by calculating the individual mutual information between
the variable of interest (class) and each of other variables
(features). In contrast, this approach is based on the compu-
tation of the joint mutual information between the variable
of interest and the set of predicting variables, MI(Y,X)

As the MI tends to increase with the number of variables,
we divided the structure learning algorithm in two phase:

Optimal subset: The optimum subset of predictor vari-
ables across space and time is determined by calculating
MI(Y,X), for |X| = L, where L is the subset size.

Optimal size: The optimal size of the subset is obtained by
comparing the optimal subsets of different sizes, based on
prediction accuracy1.

1Given the sparsity property we expect that size of the subset
will be small.
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To determine the optimum subset we considered several
search strategies, given that the search space increases ex-
ponentially with the size of the subsets: Exhaustive search,
Hill climbing, Iterative conditional modes and Simulated an-
nealing.

The structure learning process, starts by considering an
initial subset size (l), selects the optimum subset for this size
and then increases the subset size by one (i + 1). It deter-
mines the optimum subset for i + 1, and compares it to i in
terms of predictive accuracy (or other appropriate measure).
If the accuracy improves it continues, otherwise it stops.

Parameter learning. Once the structure is determined,
the required parameters are estimated from data. In the
case of a prediction PSTM the required parameters are the
prior probabilities for each variable in the predictor subset,
P (Xi), and the conditional probability of the target variable
given the prediction variables, P (Y | X1, X2, ...Xm). For
the prior probabilities we assume a uniform distribution (as
in general we will know the value of all these variables, the
priors are not relevant). The conditional probability table
(CPT), P (Y | X1, X2, ...Xm), is estimated from data using
maximum likelihood.

Prediction

Once the PSTM has been learned, we use it to predict the
target variable; selecting the most likely value of the target
variable as the one whose probability is the maximum given
values of the optimum subset of predictor variables:

Y ∗t = argmaxYt
P (Y S

t | Yt−H , X1S1

t−δ1, ...XmSm

t−δm) (2)

where Yt is the target variable at space S, and X =
X1, X2, ...Xm is the predictor subset determined accord-
ing to the structure learning algorithm. Each variable in this
subset is in space Si and at time t − δi with respect to the
prediction time t. Note that δi ≥ H , where H is the predic-
tion horizon. Given that we are discretizing the variables, to
improve the accuracy of the predictions we consider changes
instead of absolute values. Given a base value, Yt, we pre-
dict the change with respect to this value ΔY = Yt+H −Yt,
where H is the prediction horizon.

Test Scenario

In order to validate the proposed spatial-temporal model we
study the behavior of the wind speed at different geographic
locations in Mexico, to determine spatial-temporal relations
and forecast the wind speed at each location.

The national meteorological system in Mexico has sta-
tions carrying out measurements of meteorological variables
in several location in the country. Samples are taken every
minute and registered for a 10 minute period average. For
the present study we considered three geographical systems
(GS) with different number of stations and variables:

GS-12: Twelve stations (located in center-south Mexico),
including only wind speed at each location.

GS-21: 21 stations and the following variables: wind speed,
wind direction, temperature, relative humidity.

Figure 1: Summary of the prediction error in terms of MAE.

GS-35: 35 stations with the following variables per station:
wind speed, wind direction, temperature, relative humid-
ity, atmospheric pressure, radiation.

The first scenario is used to compare the different heuristic
search approaches with the exhaustive search, and to con-
trast our model with a DBN. The other two, more complex
scenarios, evaluate the capacity to deal with a larger set of
spaces and variables. For training and evaluation we in-
cluded the data of the different stations, averaged per hour.
For each scenario we used data for a number of months for
training, and data from other different months for testing.

Common metrics for prediction were used: Mean Abso-
lute Error (MAE), Root Mean Square Error (RMSE), Nor-
malized Root Mean Square Error (NRMSE) and Error of the
Instrument (EI).

Experiments and Results

For predicting the wind velocity in each location of the three
scenarios, we considered all the variables in all the locations
as predictor variables, within a time range of [t−H, t−36],
where H is the prediction horizon in hours. We experi-
mented for H = 1, 2, 3, 4, 6, 12, 24. A model was learned
for each location and time horizon, so in total 12 × 7 = 84
models were learned for GS-12, 21 × 7 = 147 for GS-21,
and 35× 7 = 245 for GS-35.

In these experiments we considered a fixed size for the
prediction subsets, with two (3S) and three variable (4S) –
three and four considering the target variable–, learning and
evaluating all the models for these cases –a total of (84 +
147 + 245) × 2 = 958 models. We leave the second phase
of the structure learning process –establishing the optimal
size of the subset– as future work.

The results are summarized in terms of Mean Absolute
Error in Figure 1 for the three scenarios (GS-12, GS-21 and
GS-35), two structure sizes (there and four variables), seven
prediction horizons (hz) and the different search strategies
(the other metrics have a similar behavior and are not in-
cluded due to space limitations). The table also includes the
average learning time for each search strategy in each sce-
nario.

The time to learn 12 models with exhaustive search is in
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Figure 2: Comparison of the results obtained with the pro-
posed approach (PSTM) against a DBN with prediction
horizon of 4 hours, for the 12 locations in GS-12 scenario.

the order of 15, 600 secs. for subsets of 3 variables (AMD
2 GHz, RAM 12 GBytes). However, with the other search
strategies is in the order of 30 seconds to two minutes for
all the scenarios. Note that the increase in learning time is
not significant with the larger scenarios (GS-21, GS-35), so
with these strategies it is feasible to learn the models even
for more complex problems.

If we analyze the resulting structure of the learned spatial-
temporal models is interesting to observe that: (i) there is
a wide variety of space and time for the variables on the
predictor subset, (ii) although there is some tendency with
respect to the spaces selected for predicting each location,
these vary according to the prediction horizon. In general
the learned structures incorporate variables in close regions
of the region of interest, which are consistent with the dom-
inant winds. An interesting example is station 8 (Oaxaca),
which is influenced by station 12 in Veracruz to the north.
Oaxaca is a region with strong winds that usually come from
the north.

Comparison against DBNs

We compared the predictions of the proposed probabilistic
spatial-temporal model (PSTM) against a dynamic Bayesian
network (DBN) which has been developed for wind predic-
tion (Ibargüengoytia et al. 2014). A DBN model was learned
for the GS-12 scenario considering the 12 wind velocity
variables using the same data set as for the PSTM for train-
ing and testing. See (Ibargüengoytia et al. 2014) for more
details .

The prediction was performed for time horizons of one to
four hours, and evaluated with the same metrics. We present
a comparison for H = 4, depicted in Figure 2. We can ap-
preciate that for most locations superior results are obtained
with the PSTM for all metrics; and for some locations the
difference is significant. The same pattern repeats for the
other time horizons that were evaluated.

Conclusions and Future Work

We developed a probabilistic spatial-temporal model for pre-
diction problems, that encodes the dependencies between a
target variable and a subset of predictor variables at different

times and spaces. We have applied the proposed model for
wind prediction at different locations in Mexico. The results
are competitive for horizons of up to 24 hours, and supe-
rior to a DBN model. The assumption of sparsity could be
seen as a limitation of the proposed approach, as the num-
ber of parameters grows exponentially with the number of
predictor variables. An alternative is to consider the use of
canonical models (such as the Noisy-OR and Noisy-AND),
where the number of parameters grows linearly.

As future work we will evaluate the second phase of the
structure learning algorithm to determine the optimal num-
ber of variables in the model.
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