
Learning Tree-Structured CP-Nets with Local Search

Thomas E. Allen
Centre College

Danville, Kentucky, USA

Cory Siler, Judy Goldsmith
University of Kentucky

Lexington, Kentucky, USA

Abstract

Conditional preference networks (CP-nets) are an intuitive
and expressive representation for qualitative preferences.
Such models must somehow be acquired. Psychologists ar-
gue that direct elicitation is suspect. On the other hand, learn-
ing general CP-nets from pairwise comparisons is NP-hard,
and — for some notions of learning — this extends even to
the simplest forms of CP-nets. We introduce a novel, concise
encoding of binary-valued, tree-structured CP-nets that sup-
ports the first local-search-based CP-net learning algorithms.
While exact learning of binary-valued, tree-structured CP-
nets — for a strict, entailment-based notion of learning — is
already in P, our algorithm is the first space-efficient learning
algorithm that gracefully handles noisy (i.e., realistic) com-
parison sets.

1 Introduction

Imagine a sandwich vendor that offers a subscription service
to busy professionals who often can’t spare the time to pick
up or place an order for food. Because of the high demand
around lunchtime, the vendor prepares the sandwiches ahead
of time, offering only a limited selection each day. The de-
livery robot decides which kind of sandwich to bring to each
subscriber, anticipating their preferences based on choices
they have made when buying from the vendor in the past.

For a system to personalize itself to a user like this, it must
be able to construct and reason with some form of prefer-
ence representation. If the alternatives result from combin-
ing a large number of features (e.g., meats, cheeses, vegeta-
bles, and condiments), then the user cannot possibly rank
them all explicitly. In addition, the user’s preferences could
be conditional; e.g., mustard may be preferred with cheese,
but mayonnaise with meat.

In this paper, we discuss the problem of acquiring condi-
tional preference networks (CP-nets) (Boutilier et al. 2004a)
from comparisons representing prior choices. A CP-net con-
sists of a node for each feature in the model — e.g., a binary
variable indicating inclusion or exclusion of an item (e.g.,
sandwich ingredient), or a multi-valued variable represent-
ing a category (e.g., beverage) or state of the world (e.g., the
day of the week). A directed edge from one node to another
indicates that the preference over the latter feature depends

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A B C

D E

a � a b � b c � c

b : d � d
b : d � d

c : e � e
c : e � e

Figure 1: A binary-valued, tree-structured CP-net

on the value of the former. Such preferences take the form of
rules such as, “If my sandwich has lettuce, I prefer cheese to
no cheese, all else being equal.” CP-nets have garnered sig-
nificant interest within the computational preferences com-
munity and have been proposed for applications including
cybersecurity (Bistarelli, Fioravanti, and Peretti 2007), ne-
gotiation (Aydoğan et al. 2013), and interest-matching in so-
cial networks (Wicker and Doyle 2007).

Many problems involving CP-nets and their variants, in-
cluding learning a CP-net that is consistent with compar-
isons and using that CP-net to determine which of two
arbitrary outcomes is preferred, are known to be compu-
tationally hard in the worst case (Goldsmith et al. 2008;
Lang and Mengin 2009). However, the second of these,
the dominance problem, is known to be easy for CP-nets
for which the dependency structure is a directed tree or
forest (henceforth, tree-structured CP-nets) and the vari-
ables are binary-valued (Boutilier et al. 2004a; Bigot et al.
2013). Here we restrict our attention to this subclass in or-
der to take advantage of efficient dominance testing. Tree-
structured CP-nets are also the foci of other recent work
by Alanazi, Mouhoub, and Zilles (2016) and Koriche and
Zanuttini (2010).

Methods for acquiring a preference model generally fall
into one of two categories. The first, elicitation, asks the
user directly about their preference structure. The second,
learning, relies instead on observing the person’s choices.
With regard to the former, computer scientists often as-
sume that eliciting CP-nets is straightforward: We explain
CP-nets to the user, and the user writes down the CP-net

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

8

that corresponds to their preferences (Boutilier et al. 2004b;
Domshlak and Brafman 2002). Psychologists, however,
question our ability to introspect in this way. They point
out that people’s reported preferences are often inconsis-
tent with their choices and, unexpectedly, that introspection
about preferences often decreases the chooser’s satisfac-
tion with their choice (Shafir, Simonson, and Tversky 1993;
Wilson and Schooler 1991).

On the other hand, when presented with alternatives,
people often seem to know what they want, even if they
cannot explain the underlying reasoning process in a con-
trolled experiment. Based on this assumption that we can
use our preferences without fully understanding their under-
lying form, several recent CP-net learning algorithms de-
pend on comparison sets — sets of binary choices from
some domain. Some algorithms assume that the choices
have been made prior to run time (Chevaleyre et al. 2010;
Lang and Mengin 2008), a process known as passive learn-
ing. Others adaptively offer alternatives in an effort to de-
crease the number of queries needed. Such active learning
paradigms include querying users about their preferences di-
rectly (Chevaleyre et al. 2010; Guerin, Allen, and Goldsmith
2013; Labernia et al. 2016) or Angluin-style learning queries
(Alanazi, Mouhoub, and Zilles 2016; Koriche and Zanuttini
2010). In a smart-house setting where the AI controls the
choices on offer, we could use a query-based learning algo-
rithm. If we are stuck with whatever the deli’s choices were
(i.e., retrospective choices), we will use the sort of passive
learning algorithms proposed here.

Lang and Mengin (2009) show that passively learning
even a separable CP-net (with no dependencies) is NP-hard.
The active learning algorithms (Koriche and Zanuttini 2010;
Alanazi, Mouhoub, and Zilles 2016; Labernia et al. 2016)
are efficient, both because the “membership queries” are
restricted to computationally easy dominance queries (out-
comes that differ on one variable in the general case, or any
pair of outcomes for tree-structured CP-nets) (Koriche and
Zanuttini 2010), and because they are in the active learn-
ing paradigm, where the learner specifies the next domi-
nance test/swap query. Alanazi, Mouhoub, and Zilles (2016)
also address PAC learning complexity of acyclic and tree-
structured CP-nets.

Both in psychological experiments and in many prefer-
ence data sets, such as those in the PrefLib repository (Mat-
tei and Walsh 2013), we find examples of noisy and in-
consistent preferences. For example, Kamishima and Akaho
(2010) point out that when consumers were asked to rank ten
sushi items and then later to assign rating scores to the same
items, in 68% of the cases the ordering implied by the ratings
did not agree with the ranking elicited only minutes before.
There are many explanations for such phenomena, includ-
ing a lack of computation power to consistently compute
optima, and a very human desire for variety which drives
apparent inconsistencies (McAlister and Pessemier 1982).

To our knowledge only Liu et al. (2013) have addressed
the problem of passively learning general CP-nets from
noisy data. (They also look at the sushi data set.) How-
ever, their algorithm explicitly builds the induced preference
graph, which is exponentially larger than the CP-net. While

we focus on a more specific class of models, our approach
implicitly represents the preference graph by constructing
only the CP-net, and thus is far more efficient with respect
to space. Furthermore, we can control the time that our local-
search-based algorithms take.

In Section 2 we introduce basic definitions. In Section 3
we discuss the meaning, and computational complexity, of
learning a CP-net from comparison sets. In Section 4 we in-
troduce a novel encoding of tree-structured CP-nets. In Sec-
tion 5 we show how to exploit this encoding to facilitate lo-
cal search, introducing WALK-CP-NET as an example. In
Section 6 we describe experiments run with our algorithm.
In Section 7 we summarize our contributions.

2 Preliminaries

A preference relation � is a strict partial order (a reflexive,
antisymmetric, transitive relation) on a set of outcomes O.
We indicate by o � o′ that outcome o is preferred to o′. If
neither outcome is preferred to the other, we say that they are
incomparable and write o ‖ o′. We assume O is finite and
can be factored into n variables V = {X1, . . . , Xn} with
associated domains, s.t. O = X1 × · · · × Xn. When do-
mains are binary, we write Xi = {xi, xi}. When a variable
is constrained to just one value, we say the value has been
assigned to the variable and write Xi = xi or Xi = xi. We
designate by Asst(U) the set of all assignments to U ⊆ V .
An assignment to all variables designates a unique outcome.

Definition 1. A CP-net is a directed acyclic graph G =
(V,E) in which an edge (Xh, Xi) indicates that the prefer-
ences over Xi in general depend on the value of Xh. Each
node is labeled with a conditional preference table (CP-
table) specifying the preference over the value of that vari-
able given all assignments to its parent variables Pa(Xi).

A CP-table consists of rules u : �, where u ∈
Asst(Pa(Xi)) and � is a linear order on the domain of Xi. If
Xi is binary, the rules are of the form u : x � x or u : x � x.
We assume that CP-tables are complete, i.e., contain a rule
for every combination of parent values.

If two outcomes differ in exactly one variable, then any
CP-net (with complete CP-tables) will specify which out-
come is preferred. We can think of a CP-net as a compact
representation of a directed graph called the induced prefer-
ence graph on the space of outcomes, with a edge between
any pair of outcomes that differs on exactly one variable,
directed toward the more preferred outcome; such an edge
represents an improving flip. A directed path through this
graph is an improving flipping sequence. Given a CP-net
N and an arbitrary pair of outcomes (o, o′), if there is an
improving flipping sequence from o′ to o, then N entails
that o is preferred to o′; we say o dominates o′ and write
N |= o � o′. The problem of deciding, for a given CP-net
and pair of outcomes (o, o′), if there is an improving flipping
sequence from o′ to o, is called dominance testing. The com-
putational complexity of dominance testing depends on the
structure of the dependency graph G. A tree-structured CP-
net is one in which each connected component of G takes
the shape of a rooted tree with edges in the direction of the
traversal (Fig. 1). While dominance testing is known to be

9

exceptionally hard (i.e., PSPACE-complete) for CP-nets in
general (Goldsmith et al. 2008), dominance can be deter-
mined in linear time for tree-structured CP-nets (Bigot et al.
2013). Their computational properties and the relative ease
with which trees can be represented (see the next section),
make them attractive for applications that require real-time
decision making and recommendations.

3 The Learning Problem and its Complexity

Let E = {e1, e2, . . . , em} be a set of comparisons ej =
[[oj � o′j]], typically obtained by observing the choices of
the user. In general we do not assume E is consistent (i.e., it
could be intransitive). Such inconsistency could arise due to
noise (the user accidentally selects an unintended item from
a list), aggregation (they select a meal that a guest will also
enjoy), or changing preferences (they no longer enjoy a par-
ticular item as much now as when the data were collected).
If E is intransitive, no preference relation � can model E
perfectly. Nevertheless, in practice we may still need to find
a model that fits the data reasonably well.

As a starting point for talking about the complexity of
learning tree-structured CP-nets, we refer to the algorithm
of Dimopoulos, Michael, and Athienitou (2009). When it
succeeds, this algorithm returns a CP-net that entails all
comparisons in a set. However, in general it may fail even
if an entailing CP-net exists; the authors prove the algo-
rithm’s completeness only for comparison sets with CP-
nets that satisfy a specific subtype of entailment (transpar-
ent entailment). Additionally, we can prove (proof omitted
for brevity) that the algorithm is complete for comparison
sets that are entailed (even nontransparently) by a binary-
valued, tree-structured CP-net. This, combined with the fact
that the algorithm runs in polynomial time for a fixed in-
degree, gives us:

Theorem 1. The problem of deciding whether there exists
a binary-valued, tree-structured CP-net that entails a given
set of comparisons is in P.

However, when we relax the idea of “learning” to be
broader than simply entailing the data set, the problem
quickly becomes intractable. Lang and Mengin (2009) ex-
plore three notions of compatibility between a CP-net and a
data set: In addition to implicative compatibility, wherein the
CP-net simply entails all comparisons as described before, a
comparison set may be strongly compatible with the CP-net
— there is a completion of the CP-net’s preference ordering
that entails all comparisons — or weakly compatible with the
CP-net — each individual comparison is consistent with (not
necessarily entailed by) the CP-net. Lang and Mengin show
that learning binary-valued separable CP-nets (i.e., CP-nets
with no edges in the dependency graph) that are strongly or
weakly compatible with a comparison set is NP-hard; we ob-
serve that separable CP-nets are tree-structured, so learning
a weakly or strongly compatible tree-structured CP-net from
comparisons is hard as well.

Because comparison sets may be noisy, and because
learning a tree-structured CP-net N consistent with data E
may be hard, we instead try to optimize the CP-net’s adher-
ence to the comparisons. Michael and Papageorgiou (2013)

1 2 3

4 5

6

Figure 2: Undirected, labeled tree for the dependency graph
of Figure 1

3 2 6 6
︸ ︷︷ ︸

L
Prüfer code

1 0 0 1 1
︸ ︷︷ ︸

B
Bit vector of CP-tables

Figure 3: Treecode for the CP-net in Figure 1

also consider an optimization approach; they suggest us-
ing a MAX-SAT solver in conjunction with Dimopoulos,
Michael, and Athienitou’s algorithm to choose CP-tables
that maximize the number of comparisons transparently en-
tailed by the CP-net. For our approach, we optimize for the
value of a fitness function f(N, E).

We use the following simple fitness function: For each
comparison ej = [[oj � o′j]], if the model entails the same
ordering (N |= oj � o′j), we award one point: αj = 1. If
the model entails the opposite ordering (N |= o′j � oj), we
subtract a point: αj = −1. If oj ‖ o′j with respect to N ,
αj = 0. The fitness is the mean of the points awarded,

f(N, E) = 1

m

m∑
j=1

αj , (1)

and the learning problem is to find a model N∗ with maxi-
mum fitness, N∗ = argmaxN f(N, E).

4 Encoding Tree-Structured CP-nets

We can represent any tree-structured CP-net over n binary
variables uniquely as a treecode (L,B), consisting of a
Prüfer code L with n−1 integers in the range {1, . . . , n+1}
for the dependency graph and a bit vector B with n integers
in the range {0, 1} for the CP-tables (Allen 2016). Figures 4
and 5 show how to convert a binary-valued, tree-structured
CP-net to its treecode and from a treecode to its CP-net re-
spectively, a mapping that we explain below.

As a basis for representing the graph, we refer to Prüfer
(1918), who showed how to encode any undirected tree with
k labeled nodes in a sequence of k−2 integers that has come
to be known as a Prüfer code: L = 〈L1, . . . , Lk−2〉, where
Lj ∈ {1, . . . , k}, 1 ≤ j ≤ k−2. In order to make use of this
encoding, we must convert the directed and possibly discon-
nected dependency graph into a connected, undirected tree
as follows.

Note that the dependency graph G = (V,E) of a tree-
structured CP-net is a forest GF of undirected, labeled,
rooted trees. To obtain G from GF , in particular the direc-
tions of each edge (Xh, Xi) ∈ E, one need only traverse

10

TREE-STRUCTURED-CP-NET-TO-TREECODE(N)

Input: N Binary-valued, tree-structured CP-net
Output: L Prüfer code encoding the digraph

B Bit vector encoding the CPTs

1: for i ← 1 to n do
2: B[i] ← 0 or 1 based on mappings in Equation 2
3: relabel nodes V in N with the integers 1 to n
4: R ← nodes of digraph G of N that are roots
5: V ← V ∪ {n+ 1}
6: E ← E ∪ {(n+ 1, r)} for all r ∈ R
7: make edges E undirected
8: L ← the Prüfer code for (E, n+ 1)
9: return (L,B)

Figure 4: Algorithm: Tree-Structured CP-net to Treecode

each tree in GF from its root. Furthermore, any forest with
n nodes can be mapped to an equivalent tree with n+1 nodes
by introducing a new node, r, inserting edges from r to the
root of each tree in forest GF , and distinguishing r as the
root of the newly formed tree with n+1 nodes. Conversely,
to recover the forest from the tree, one can simply remove
the root and its edges. Observe that the tree in Figure 2 cor-
responds to the dependency graph of the CP-net in Figure 1.
After obtaining a tree, we can derive a corresponding Prüfer
code (and vice versa) with algorithms described in the works
of Kreher and Stinson (1999) and Allen (2016).

To construct the bit vector B, observe that there are only
two possible CP-tables for a node with no parents or one
parent (as shown in Equation 2). We can thus represent each
of the n CP-tables of a tree-structured CP-net as a bit B[i] =
0 or 1 according to the following mappings, for nodes with
0 and 1 parent, respectively.

xi � xi B[i]=0

xi � xi B[i]=1

xh : xi � xi

xh : xi � xi
B[i]=0

xh : xi � xi

xh : xi � xi
B[i]=1

(2)

The treecode representation facilitates local search by
providing a straightforward way to define “neighboring”
CP-nets: Two tree-structured CP-nets are neighbors if their
treecodes differ in exactly one element. For a treecode over n
variables, there are n2 neighbors: there are n choices of CP-
tables to change, and n2 − n potential edges to add/subtract
(corresponding to changes to the Prüfer code).

5 Learning via Local Search

To show how our encoding facilitates learning tree-
structured CP-nets with local search, we present a learning
algorithm, WALK-CP-NET (Allen 2016), in Figure 6. In-
spired by the GSAT (Selman, Levesque, and Mitchell 1992)
and WALKSAT (Selman, Kautz, and Cohen 1994) algo-
rithms for Boolean satisfiability, WALK-CP-NET combines
hill-climbing with random perturbations.

TREECODE-TO-TREE-STRUCTURED-CP-NET(L,B)

Input: L Prüfer code
B Bit vector encoding the CPTs

Output: N Binary-valued, tree-structured CP-net

1: n ← length of B
2: assert that L has length n− 1
3: V ← {1, . . . , n+ 1}
4: E ← the tree for L
5: G = (V,E)
6: traverse G from node n+1 assigning directions to edges

in order of traversal
7: V ← V \ {n+ 1}
8: E ← E \ {(n+ 1, k)} for all (n+ 1, k) ∈ E
9: initialize CP-net N with digraph G

10: obtain CPTs of N from B using mappings in (2)
11: return N

Figure 5: Algorithm: Treecode to Tree-Structured CP-net

The algorithm maintains a current model, N , and a best
model seen so far, N∗. It starts by initializing N to a random
treecode. With probability π ∈ [0, 1] (a user-selected param-
eter), the algorithm randomly walks (Line 12); otherwise, it
attempts hill-climbing (Line 15). In the random walk, the
algorithm replaces N with a randomly selected neighbor.

In hill-climbing, the algorithm uses dominance testing on
E to evaluate the fitness (Equation 1) of each neighbor, and
chooses a neighbor with the highest score. Note that if N is
locally optimal, the fitness level may stay the same, or even
decrease. If so, the search may have reached a plateau. To
avoid getting stuck there, the algorithm increments a strikes
counter. However, if the new fitness is strictly better, and the
new model is the best yet encountered, the counter is reset
to 0 (Line 8).

When the counter eventually reaches max-strikes (a user-
selected parameter), the algorithm does a random restart,
choosing a potentially distant model uniformly at random,
and increments the restart counter, up to max-restarts (a
user-controlled parameter). When max-restarts is reached,
the algorithm terminates, returning N∗, the best model en-
countered. The algorithm can also terminate (Line 10) if it
encounters a model that entails all comparison examples in
E , so N∗ is provably a global optimum.

6 Experiments

The WALK-CP-NET configuration used in these experi-
ments uses a max-strikes count of 3, a max-restarts count of
10, and a random walk probability of 30%. We chose these
parameters empirically, based on trials on small CP-nets.

For each trial, to generate a comparison set given number
of variables n and noise parameter p, we generated a ran-
dom size-n tree-structured CP-net and chose random out-
come pairs (o, o′), performing dominance testing on them
with respect to the CP-net. If the CP-net entailed o � o′ or
o′ � o, we added the correct comparison to the comparison
set with probability 1 − p; with probability p, we added the

11

WALK-CP-NET(E , n, π, max-strikes, max-restarts)
Input: E comparison set

n # of binary variables
π Prob. of random walk
max-strikes Counter to detect plateaux
max-restarts Max # of restarts

Output: N∗ Fittest CP-net encountered
1: N∗ ← null model with fitness −∞
2: for restarts ← 1 to max-restarts do
3: N ← random treecode over n variables
4: strikes ← 0
5: repeat
6: if f(N, E) > f(N∗, E) then
7: N∗ ← N
8: strikes ← 0
9: if f(N∗, E) = 1 then

10: return N∗

11: if random value in [0, 1] ≤ π then
12: N ← random neighbor of N
13: else
14: previous-fitness ← f(N, E)
15: N ← fittest neighbor of N
16: if f(N, E) ≤ previous-fitness then
17: strikes ← strikes+ 1
18: until strikes = max-strikes
19: return N∗

Figure 6: Algorithm: WALK-CP-NET

opposite comparison instead. If the CP-net entailed neither
comparison, with probability 1−p we did not add the pair to
the comparison set; with probability p, we randomly chose
between o � o′ and o′ � o to add to the comparison set. We
repeated this process with distinct outcome pairs until 100
comparisons had been added to the set.

We ran 10 trials of WALK-CP-NET on each combination
of variable count for the CP-nets (out of 10, 15, and 20) and
noise parameter p for the data generation (out of .04, .08,
and .16). Figures 7, 8, and 9 show the average percentage of
the comparisons in our comparison sets that were consistent
with, or entailed by, the learned CP-nets. Ideally, we would
compare the quality of the learned CP-nets to the optimal
tree-structured CP-nets, but since this is impractical at all but
the smallest variable counts, we instead take as our baseline
the original CP-nets used for generating the comparison sets.

The proportions of the comparison sets entailed by the
learned CP-nets were modest, though they averaged at least
75% of the proportions entailed by the CP-nets used for gen-
eration for each set of trials. However, our algorithm did re-
markably well at learning CP-nets consistent with the com-
parison sets, usually outperforming the generator CP-nets;
it is worth investigating whether a fitness function specifi-
cally tuned for entailment or consistency can improve per-
formance in terms of one of those metrics.

7 Conclusions

In this paper, we have introduced an elegant encoding
of binary-valued, tree-structured CP-nets, whose computa-
tional properties make them a particularly useful subclass.

Figure 7: Averages with noise parameter p = .04

Figure 8: Averages with noise parameter p = .08

Figure 9: Averages with noise parameter p = .16

We showed that our encoding can be leveraged to neatly
code local search algorithms for learning these CP-nets.
While algorithms for learning tree-structured CP-nets have
been studied before (Alanazi, Mouhoub, and Zilles 2016;
Koriche and Zanuttini 2010), ours is the first to robustly han-
dle noisy comparison sets. Since there seems to be a con-
sensus among psychological studies of preferences that hu-
man choices only noisily reflect underlying preferences, it
is crucial to be able to learn preference models from noisy
data. Local search, as exemplified by WALK-CP-NET, offers
a flexible learning tool that lets us customize the tradeoff be-
tween efficiency and accuracy to suit the application.

Future work includes investigating local search for
broader classes, such as acyclic CP-nets in general. While
these do not support polynomial-time dominance testing, a
fitness function based on an efficiently-testable metric like
transparent entailment (Michael and Papageorgiou 2013)
could be substituted.

Acknowledgments

We thank Nicholas Mattei for helpful conversations. This
work was partially supported by NSF grant 1215985.

12

References

Alanazi, E.; Mouhoub, M.; and Zilles, S. 2016. The com-
plexity of learning acyclic CP-nets. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, 1361–1367.
Allen, T. E. 2016. CP-nets: From Theory to Practice. Ph.D.
Dissertation, University of Kentucky.
Aydoğan, R.; Baarslag, T.; Hindriks, K. V.; Jonker, C. M.;
and Yolum, P. 2013. Heuristic-based approaches for CP-nets
in negotiation. In Complex Automated Negotiations: Theo-
ries, Models, and Software Competitions. Springer. 113–
123.
Bigot, D.; Fargier, H.; Mengin, J.; and Zanuttini, B. 2013.
Probabilistic conditional preference networks. In Proceed-
ings of the 29th Conference on Uncertainty in Artificial In-
telligence (UAI).
Bistarelli, S.; Fioravanti, F.; and Peretti, P. 2007. Using CP-
nets as a guide for countermeasure selection. In Proceedings
of the 2007 ACM Symposium on Applied Computing, 300–
304. ACM.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004a. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. Journal of Artificial Intelligence Research 21:135–
191.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004b. Preference-based constrained
optimization with CP-nets. Computational Intelligence
20(2):137–157.
Chevaleyre, Y.; Koriche, F.; Lang, J.; Mengin, J.; and Zanut-
tini, B. 2010. Learning ordinal preferences on multiattribute
domains: The case of CP-nets. In Preference Learning.
Springer. 273–296.
Dimopoulos, Y.; Michael, L.; and Athienitou, F. 2009. Ce-
teris paribus preference elicitation with predictive guaran-
tees. In Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence, volume 9, 1890–1895.
Domshlak, C., and Brafman, R. I. 2002. CP-nets-reasoning
and consistency testing. In In Proceedings of the Eighth In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning. Citeseer.
Goldsmith, J.; Lang, J.; Truszczynski, M.; and Wilson, N.
2008. The computational complexity of dominance and con-
sistency in CP-nets. Journal of Artificial Intelligence Re-
search 33(1):403–432.
Guerin, J. T.; Allen, T. E.; and Goldsmith, J. 2013. Learning
CP-net preferences online from user queries. In Proceed-
ings of the Third International Conference on Algorithmic
Decision Theory. Springer. 208–220.
Kamishima, T., and Akaho, S. 2010. Nantonac collaborative
filtering: A model-based approach. In Proceedings of the
Fourth ACM Conference on Recommender Systems, RecSys
’10, 273–276. New York, NY, USA: ACM.
Koriche, F., and Zanuttini, B. 2010. Learning conditional
preference networks. Artificial Intelligence 174(11):685–
703.

Kreher, D. L., and Stinson, D. 1999. Combinatorial Algo-
rithms: Generation, Enumeration, and Search. CRC Press.
Labernia, F.; Yger, F.; Mayag, B.; and Atif, J. 2016. Query-
based learning of acyclic conditional preference networks
from noisy data. In DA2PL 2016: From Multicriteria Deci-
sion Aid to Preference Learning.
Lang, J., and Mengin, J. 2008. Learning preference rela-
tions over combinatorial domains. Proceedings of the Twelth
International Workshop on Non-Monotonic Reasoning 207–
214.
Lang, J., and Mengin, J. 2009. The complexity of learning
separable ceteris paribus preferences. In IJCAI-09, 848–853.
San Francisco, CA, USA: Morgan Kaufmann.
Liu, J.; Yao, Z.; Xiong, Y.; Liu, W.; and Wu, C. 2013. Learn-
ing conditional preference network from noisy samples us-
ing hypothesis testing. Knowledge-Based Systems 40:7–16.
Mattei, N., and Walsh, T. 2013. PrefLib: A library of prefer-
ence data. In Proceedings of Third International Conference
on Algorithmic Decision Theory, 259–270. Springer.
McAlister, L., and Pessemier, E. 1982. Variety seeking be-
havior: An interdisciplinary review. Journal of Consumer
Research 311–322.
Michael, L., and Papageorgiou, E. 2013. An empirical in-
vestigation of ceteris paribus learnability. In Proceedings of
the Twenty-Third International Joint Conference on Artifi-
cial Intelligence, 1537–1543. AAAI Press.
Prüfer, H. 1918. Neuer Beweis eines Satzes über Permu-
tationen. Archiv der Mathematik und Physik 27(1918):742–
744.
Selman, B.; Kautz, H. A.; and Cohen, B. 1994. Noise
strategies for improving local search. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, 337–
343. MIT Press.
Selman, B.; Levesque, H. J.; and Mitchell, D. G. 1992. A
new method for solving hard satisfiability problems. In Pro-
ceedings of the Tenth National Conference on Artificial In-
telligence, 440–446. AAAI Press.
Shafir, E.; Simonson, I.; and Tversky, A. 1993. Reason-
based choice. Cognition 49(1):11–36.
Wicker, A. W., and Doyle, J. 2007. Interest-matching com-
parisons using CP-nets. In Proceedings of the 22nd National
Conference on Artificial Intelligence, 1914–1915. AAAI
Press.
Wilson, T. D., and Schooler, J. W. 1991. Thinking too
much: introspection can reduce the quality of preferences
and decisions. Journal of Personality and Social Psychol-
ogy 60(2):181.

13

