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Abstract
In competitive videogame communities, a tier list is a hier-
archical ranking of playable characters that, despite its sim-
plicity, tries to capture an often nuanced metagame where
matchups between characters do not follow a transitive order-
ing. We model the creation of tier lists as a coalition formation
game, based on hedonic games, where the set of agents is par-
titioned into a hierarchy and an agent has preferences over the
set of agents at and below its level of the hierarchy. We prove
the computational complexity of determining whether there
exists a stable partition under two stability notions borrowed
from hedonic games.

1 Introduction
In many scenarios involving pairwise comparisons between
objects, intransitivity prevents a precise best-to-worst rank-
ing of those objects. A classic example is the game of Rock-
Paper-Scissors: Paper beats rock, and rock beats scissors, but
this does not entail that paper beats scissors. Similar rela-
tionships occur in voting (consider the Condorcet paradox),
preferences (Tversky (1969) observes that human choices
are often inconsistent with transitive preference orderings),
and sports. Recently, there have been efforts to model these
relationships quantitatively, e.g., Chen and Joachims (2016)
and Saarinen, Tovey, and Goldsmith (2014).

Of particular interest is character selection in videogames,
a major strategic decision beyond the gameplay itself. Pre-
vious game-theoretic perspectives on character selection in-
clude the work of Jaffe (2013), who analyzes it as a zero-sum
game based on win probabilities in the ensuing matches, and
Spradling et al. (2013; 2015), who consider matchmaking in
team-based videogames incorporating gamers’ preferences
over character “roles” and group compositions. Our model
instead focuses on the notion of a tier list. A tier list, in the
casual sense, is a ranking of playable characters into lev-
els representing their competitive viability, with higher-tier
characters dominating the competitive scene. The creation
of a tier list (by the collective decision of a videogame com-
munity or by an authority within it) is subjective and often
controversial, owing in part to intransitivity; a character that
is perceived as weak may perform exceedingly well against
certain characters generally considered “better”.
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Some competitive videogame communities use tier lists
as a game balancing tool: The character selection in a tour-
nament may be limited only to characters at and below a
certain position on the community’s tier list. For instance,
the Pokémon community Smogon1 uses this model; matches
take place on a predefined tier level, with “Ubers” matches
allowing all characters, “OverUsed” matches allowing all
but a select few dominant characters, “UnderUsed” matches
allowing only a subset of that, and so on. (A character may
be played in a match on a level higher than its own tier, and
may even be an effective counter to a character or strategy
popular on that level, but the character is likely to underper-
form on that level in general.) The tier system allows play-
ers who enjoy a particular character to have an environment
where they can use that character competitively even if the
character is not considered a viable choice with respect to
the entire pool of characters.

Tier list formation is an iterative process; Smogon’s tiers
are periodically updated according to a formula based on
frequency of usage, and other communities adjust based on
human deliberation. In our case, we wish to model tier list
formation as a computational problem to study it from a
complexity-theoretic point of view.

We base our model on hedonic games (Bogomolnaia and
Jackson 2002), in which a set of agents is partitioned into
a set of coalitions, with agents having preferences over the
coalition they join; relevant problems include finding sta-
ble partitions, where no agent (or colluding group of agents)
would prefer to move to a different coalition with respect
to some set of allowable moves. In the model that we in-
troduce, tiered coalition formation games, agents represent
characters being placed into tiers; these tiers are analogous
to the coalitions in hedonic games, but rather than being in-
dependent of each other, they are ordered from high-tier to
low-tier. Since, in a Smogon-like competitive environment,
a character played on its own tier level may compete against
opponents at and below its own tier, an agent has prefer-
ences over the combined membership of the tier list from
its own tier downward, with more-preferred sets of agents
representing more-favorable environments.

In Section 2 we formalize the tiered coalition formation
game model. In Section 3 we explore two notions of stability

1http://www.smogon.com/
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and the computational complexity of deciding the existence
of stable partitions. In Section 4 we introduce a preference
representation that trades expressivity for certain guarantees
about stability. In Section 5 we summarize and discuss di-
rections for future work.

2 Definitions
Definition 1. A tiered coalition formation game (TCFG) in-
stance is a pair (A,�) consisting of a finite set of agents
A = {a1, a2, . . . , an} and a preference profile �= {�1,�2

, . . . ,�n}, where �i is a weak total order over subsets of A
that contain ai.

An outcome (tier list) consists of a partition of A into
a totally ordered set of k disjoint coalitions (tiers) T =
{T1, T2, . . . , Tk}.

In a tier list T , we say that ai sees aj if ai is in same tier
as aj or a higher tier: Seen(ai, T ) =

⋃m
l=1 Tl, ai ∈ Tm.

For tier lists T and T ′, �i specifies ai’s preference between
Seen(ai, T ) and Seen(ai, T

′).

Example 1. Consider a TCFG with two agents, a1 and a2.
The possible tier lists are as follows: T = {{a2} , {a1}};
T ′ = {{a1, a2}}; and T ′′ = {{a1} , {a2}}. Note that with
respect to a1’s preferences �1, T (where a1 is in a higher
tier than a2) and T ′ (where both are in the same tier) are
indistinguishable: Seen(a1, T ) = Seen(a1, T

′) = {a1, a2}.
On the other hand, a1 does not see a2 from its lower tier
position in T ′′: Seen(a1, T ′′) = {a1}.

The initial specification for a TCFG consists of a set of
agents and a preference specification, just like a hedonic
game. However, unlike the coalitions resulting from a he-
donic game, the tiers resulting from a TCFG are arranged
in a hierarchy; we will analyze an agent’s strategic behav-
ior under the assumption that its preferences are based not
only on the membership of its own tier but on the combined
membership of all tiers up to its own on the hierarchy.

3 Stability
For the theorems and proofs in this section, we assume
TCFG preferences are expressed in terms of a hedonic coali-
tion net (Elkind and Wooldridge 2009), a fully-expressive
representation consisting of rules that award agents utility
for being in a coalition that satisfies a given propositional
formula. This allows the effects of single-agent deviations
to be checked in polynomial time; furthermore, the agent
“priorities” described in this section’s reductions can be re-
formulated in terms of a polynomially-sized set of hedo-
nic coalition net rules, assigning higher utilities to higher-
priority conditions.

In a hedonic game, a partition is Nash stable if there exists
no move by any individual agent (joining another existing
coalition or forming a new coalition by itself) that would re-
sult in a higher-utility coalition for that agent. We introduce
a similar notion of Nash stability for TCFGs:

Definition 2. A tier list T is Nash stable if there exists no
move (to an existing tier, or by forming a new tier in the
hierarchy) by any individual agent ai that would yield a new
tier list T ′ such that Seen(ai, T ′) �i Seen(ai, T ).

Theorem 1. The problem of deciding whether there exists a
Nash stable tier list for a given TCFG is NP-complete.

Proof. For membership in NP, we observe that given a Nash
stable tier list, we can verify its Nash stability in polynomial
time by checking each of the no more than n + 1 possible
movements for each of the n agents.

We will show NP-hardness with a reduction from the
problem of deciding the existence of a Nash stable parti-
tion in additively separable hedonic games, for which Olsen
(2009) proves NP-completeness. An additively separable he-
donic game instance is a pair (A,U) consisting of a set
of agents A = {a1, a2, . . . , an} and a utility function U :
A × A → R. An outcome consists of a partition of A into
an unordered set of disjoint coalitions. An agent ai’s util-
ity for being in coalition C is the sum of its utilities for the
individual members,

∑
aj∈C U(ai, aj).

Given an additively separable hedonic game instance
(A,U), we can derive a TCFG instance (A′,�) in polyno-
mial time such that (A,U) has a Nash stable partition iff
(A′,�) has a Nash stable tier list. Rather than explicitly gen-
erate the entire preference profile �, which is exponential in
the number of agents, we will represent the preference or-
derings implicitly in the form of rules described below.

We construct the TCFG’s set of agents as A′ = A ∪ L ∪
X ∪ Y , containing the original set of agents A plus new
agents L = {l1, l2, . . . , ln}, X = {x1, x2, . . . , xn}, and
Y = {y1, y2, . . . , yn}.

We define each xi’s preferences such that xi adheres to
the following rules, in descending order of priority (i.e., ear-
lier rules take precedence, with later rules breaking ties):

1. Avoid seeing yi.
2. See yi−1 (for i > 1).
3. Avoid seeing more than i A-agents.
4. Maximize the number of A-agents seen (up to i).

Similarly, yi’s priorities:

1. Avoid seeing xi+1 (for i < n).
2. See xi.
3. Avoid seeing more than i A-agents.
4. Maximize the number of A-agents seen (up to i).

Together, the rules 1 and 2 for X and Y create an alternat-
ing sequence of X-agents and Y -agents in any Nash stable
tier list T , with subscripts in ascending tier order.

Priorities for ai:

1. See more X-agents than Y -agents.
2. Evaluate the set of seen A-agents with respect to the orig-

inal utility function U , except that if lj is seen, do not
receive the utility for aj .

In a Nash stable tier list, rule 1 for A-agents, combined
with rules 3 and 4 for X- and Y -agents, ensures that each
A-agent shares a tier with an X-agent.

The L-agents act as “utility locks” for their corresponding
A agents. Priorities for li:

1. See the same number of X-agents and Y -agents.
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2. See ai.
3. Minimize the number of A-agents seen.

In a Nash stable tier list, these rules constrain li to be on
a tier above ai, but below the next tier containing A-agents
(since sharing a tier with A-agents would result in ki seeing
more X-agents than Y -agents, contrary to its rule 1). Thus,
only A-agents that share a tier with ai see ai but not ki and
thus receive utility for ai.

Any Nash stable tier list for the TCFG maps to a Nash sta-
ble partition for the original instance — namely, one where
the A-agents that shared a tier now share a coalition. Like-
wise, a Nash stable partition has corresponding Nash stable
tier lists in the reduction, where the A-agents that shared a
coalition share a tier.

We likewise define core stability for TCFGs based on the
hedonic game notion, wherein a coalition structure is core
stable if there is no set of agents that would prefer to form a
new coalition together:
Definition 3. A tier list T is core stable if there exists no
nonempty set of agents B ⊂ A that could form a new tier
together in the hierarchy such that for the resulting tier list
T ′, Seen(ai, T ′) �i Seen(ai, T ) for all ai ∈ B.

Unlike in hedonic coalition structures (Bogomolnaia and
Jackson 2002), there is an entailment relationship between
core and Nash stability in tier lists:
Theorem 2. If a tier list is core stable, it is also Nash stable.

Proof. Suppose a tier list T is core stable but not Nash sta-
ble; there exists an agent ai that can improve its utility by
moving to another tier. If the tier has other agents, ai could
obtain the same set of seen agents by forming a new tier di-
rectly above that tier instead. Letting B = {ai} in Definition
3, this contradicts the assumption that T is core stable.

Like Nash stable tier lists, and like core stable partitions in
hedonic games (Ballester 2004) determining whether there
is a core stable tier list is a hard problem:
Theorem 3. The problem of deciding whether there exists a
core stable tier list for a given TCFG is NP-hard.

Proof. We will show NP-hardness with a reduction from ex-
act cover by 3-sets, for which Garey and Johnson (1979)
prove NP-completeness. An instance is a pair (A,S), where
A and S are sets, |A| is a multiple of 3, and the elements of
S are size-3 subsets of A. The instance is satisfiable if some
subset of S constitutes a partition of A.

Given (A,S), we can derive a TCFG instance (A′,�) in
polynomial time such that A can be partitioned into a subset
of S iff (A′,�) has a core stable tier list.

Let |A| = n. We construct the TCFG’s set of agents as
A′ = A ∪ L ∪ X ∪ Y , where L = {l1, l2, . . . , ln}, X =
{x1, x2, . . . , xn}, and Y = {y1, y2, . . . , yn}.

We define the preferences of the L, X , and Y agents to be
the same as in the proof of Theorem 1. We define the prefer-
ences of agents ai ∈ A such that ai follows these priorities:

1. See the same number of X-agents and Y -agents.

2. Among A-agents for which the corresponding L-agent is
not seen, see exactly two other A-agents aj and ak such
that {ai, aj , ak} ∈ S.

3. If #2 cannot be satisfied, see no other agents.

If the exact-cover-by-3-sets instance has a satisfying parti-
tion, the A-agents will be grouped into its constituent subsets
in the resulting TCFG’s core stable tier lists. Otherwise, any
tier list will have A-agents whose priority #2 is not satisfied;
for tier lists where no more A-agents could group together
to satisfy #2, there will be multiple (specifically, a multiple
of 3) remaining A-agents with incompatible preferences to
satisfy priority #3, preventing Nash stability and hence core
stability.

4 Simple Preferences
It is common in the hedonic-games community to study
preference criteria that are not fully expressive (i.e., can-
not encode all possible preference orderings for an agent)
but that give guarantees about the existence or computabil-
ity of stable partitions. (For a recent survey, see Aziz and
Savani (2016).) We now initiate a similar course of study
for TCFGs by proposing a simple preference representation,
loosely inspired by the friend- and enemy-oriented hedonic
preferences of Dimitrov et al. (2006) and based explicitly on
the idea of pairwise matchups between competitors and the
preference for a competitor to avoid unfavorable matchups.

Definition 4. A matchup-oriented preference representa-
tion consists of an antisymmetric, antireflexive relation be-
tween pairs of agents. For a pair (ai, aj) in this relation,
we say that aj is a “good matchup” for ai and that ai is
a “bad matchup” for aj . For an agent ai Seen(ai, T ) �i

Seen(ai, T
′) if Seen(ai, T ) has a higher difference of

good matchups− bad matchups.

Whereas core stability implies Nash stability for tier lists
in general, with this representation the two notions are
equivalent:

Theorem 4. If a tier list is Nash stable under matchup-
oriented preferences, it is also core stable.

Proof. Suppose a tier list T is Nash stable but not core sta-
ble; there exists a set of agents B of size 2 or greater (as size
1 would violate Nash stability) that would prefer to form a
new tier together.

Suppose the new tier were above the current tiers of every
agent in B; then, the set of agents seen from that tier would
be the same as the set of agents seen by any individual agent
in B if that agent were to move to the new tier position on
its own. This would contradict the fact that T is Nash stable,
so the new tier position must be below the current tier of at
least one agent in B.

Consider the set B′ ⊆ B of agents that would move
downward to form the new tier. Since T is Nash stable, it
must be the case that each ai ∈ B′ sees at least as many
good matchups as bad matchups in T from its current tier
down to the new tier position (or else ai would be incen-
tivized to move down to the new tier position on its own).
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Meanwhile, in order to be incentivized to form the new
tier with the other agents in B, each ai ∈ B′ must lose
more bad matchups than good matchups in the group move-
ment. Since ai sees at least as many good matchups as bad
matchups in its current tier, and loses more bad matchups
than good matchups when forming the new tier, it must have
more good matchups than bad matchups with other agents in
B′. But this cannot be the case for every ai ∈ B′ (as every
good matchup within the group for one agent entails a bad
matchup for another). Thus, the new tier position cannot be
below any agent’s current position as required.

So assuming a Nash stable but not core stable tier list
leads to a contradiction.

While a general TCFG may have no Nash or core stable
tier list, one is guaranteed to exist under this representation:
Theorem 5. Under matchup-oriented preferences, there al-
ways exists a Nash (and, hence, core) stable tier list.

Proof. Given a non-Nash-stable tier list T where |Tk| = 1
for all Tk ∈ T , we can move some agent ai to a new
tier in the hierarchy resulting in a tier list T ′ such that
Seen(ai, T

′) �i Seen(ai, T ) and |T ′k| = 1 for all T ′k ∈ T ′.
For each agent aj that is seen by ai in T but not in T ′,

ai is seen by aj in T ′ but not in T ; likewise, for aj that
is seen by ai in T ′ but not in T , ai is seen by aj in T but
not in T ′. As such, each gain in a good/bad matchup by ai
results in the loss of a bad/good matchup (respectively) by
some other agent, and vice versa; so since the movement is
a net improvement for ai, it is also causes an average net
improvement for the other agents.

If we continue making such changes as long as some ai
is incentivized to move, either we will eventually arrive at a
Nash stable tier list, or the sequence of changes will contain
a cycle of tier lists (as there are a finite number of possible
tier lists); but since each change yields an average net im-
provement for the set of agents, a cycle is not possible and a
Nash stable tier list will result.

Corollary 1. Under matchup-oriented preferences, a Nash
(and, hence, core) stable tier list can be found in polynomial
time.

Proof. The difference of the highest and lowest possible to-
tal numbers of good matchups − bad matchups for all n
agents in a tier list is bounded by O(n2). The current total in-
creases in each iteration of the process described in the proof
of Theorem 5, and each iteration takes O(n2) time (check-
ing n agents against O(n) possible tier positions) to look for
an agent with an improving movement, so the process gives
an O(n4) algorithm for finding a stable tier list.

5 Conclusions
Our hardness results reflect the observation, well-known
among videogamers, that capturing the nuances of a com-
petitive metagame in tier list form is no simple affair, and
may not always have a satisfactory solution. However, sim-
plified TCFG representations that allow efficient algorithms

are worth further exploration. The matchup-oriented prefer-
ences presented here have room for improvement; they allow
for counterintuitive stable tier lists, like Rock-Paper-Scissors
having three separate tiers (whereas it would be sensible for
only the tier list where all three options share a tier to be
stable). This can be counteracted by adding a second prefer-
ence criterion that, all else being the same, an agent prefers
seeing more agents to fewer agents, but this also destroys the
guarantee that stable partitions exist.

A thorough assessment of TCFG representations will also
require an empirical component — i.e., investigating the re-
lationship between computed stable tier lists and human-
made tier lists for real competitive environments.
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