
Typed Model Counting and Its Application to
Probabilistic Conditional Reasoning at Maximum Entropy

Marco Wilhelm and Gabriele Kern-Isberner
Department of Computer Science

TU Dortmund, Germany

Abstract

Typed model counting expands model counting of pro-
positional formulas by the ability to distinguish between
certain types of models. Formally, we incorporate el-
ements of a commutative monoid that represent these
model types directly into the propositional formulas. An
advantage of this approach is the ability of preserving in-
formation about which parts of a formula are satisfied by
a certain type of model. We exploit this benefit when ap-
plying typed model counting to probabilistic conditional
reasoning at maximum entropy. In particular, we address
the task of determining the conditional structure induced
by a reasoner’s probabilistic conditional knowledge base
in order to draw nonmonotonic inferences based on the
maximum entropy distribution.

Introduction

The principle of maximum entropy (ME-principle) consti-
tutes a most appropriate form of commensense probabilis-
tic reasoning (Paris 1994) as it endows a reasoner with a
nonmonotonic inference relation that allows for drawing in-
ferences from incomplete knowledge. While fulfilling the
paradigm of informational economy (Gärdenfors 1988), rea-
soning at maximum entropy is as cautious as possible. How-
ever, due to its non-transparency, the ME-principle is often
perceived as a black box methodology.

In order to gain structural insights into ME-reasoning, we
examine the conditional structure (Kern-Isberner 2001) that
is induced by a probabilistic conditional knowledge base KB,
and we formulate ME-inferences based on this abstraction. A
probabilistic conditional (B|A)[p] is a statement of the form
“if A holds, then B follows with probability p”. Its logical
part can be verified (ω |= A ∧ B), falsified (ω |= A ∧ ¬B),
or found to be not applicable (ω |= ¬A) with respect to a
possible world ω. The conditional structure of ω encodes for
every conditional in KB how its logical part is evaluated. As
possible worlds with the same conditional structure also have
the same ME-probability, the conditional structure allows
for partitioning the set of possible worlds according to their
influence on the ME-distribution and hence allows for a more
generic view on drawing ME-inferences. We introduce the
concept of typed model counting (TMC) that prove to be a

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

convenient framework for examining the conditional struc-
ture. The formalization of TMC is the main contribution of
this paper. It is based on a language LS that extends a propo-
sitional language by incorporating a commutative monoid,
as for instance conditional structures. Hence, LS allows to
represent both the knowledge stated in and the conditional
structure imposed by a knowledge base within a shared frame-
work. TMC then is the task of finding all models of a formula
in LS and dividing them into certain types that are repre-
sented by the elements of the commutative monoid. With a
view to the application of TMC to ME-reasoning, determin-
ing the equivalence classes of possible worlds induced by the
conditional structure and calculating their cardinalities can
be performed by TMC simultaneously. In this regard, TMC
is an advancement of the multi-steps approach presented in
(Wilhelm, Kern-Isberner, and Ecke 2016), where the deter-
mination of the equivalence classes and the actual model
counting process were performed consecutively and the mod-
els were counted independently for every single equivalence
class.

There is a strong connection between TMC and algebraic
model counting (Kimmig, v. d. Broeck, and de Raedt 2012)
as both map literals to elements of an algebraic structure.
However, algebraic model counting does not allow formulas
to contain elements of the algebraic structure themselves,
which is necessary for computing conditional structures.

The rest of the paper is organized as follows: After recall-
ing some basics of reasoning with probabilistic conditionals
at maximum entropy, we present the idea of TMC. For this
purpose, we introduce the structured language LS and show
how TMC works. To this end, we introduce a normal form
called sd-DNNFS for formulas in LS . Afterwards, we apply
TMC to reasoning at maximum entropy and conclude. Due
to space restrictions, we omit purely technical proofs.

Preliminaries

We consider a propositional language L = L(Σ) over a finite
set of atoms Σ. For formulas A,B ∈ L, we write AB instead
of A∧B and A instead of ¬A. The set of atoms that appear in
A is denoted with Σ(A). A literal ȧ is either the atom a or its
negation a. Thus, Lit = {a | a ∈ Σ} ∪ {a | a ∈ Σ} denotes
the set of all literals. A subset of Lit is called consistent iff it
does not contain both a and a for any a ∈ Σ.

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

748



Probabilistic Conditionals and Knowledge Bases

A (probabilistic) conditional (B|A)[p] with A,B ∈ L and
p ∈ [0, 1] is a formal representation of the statement “if A
holds, then B follows with probability p”. A finite set of
conditionals is called a knowledge base.
Example 1. Assume an agent believes that animals do fly
or do not have wings with probability 0.95. Further, she is
pretty sure that flying animals do have wings, namely with
probability 0.99, and she thinks that animals that do not fly
are likely to not be birds with probability 0.8. We consolidate
these statements into the knowledge base KBfly consisting of
the three conditionals r1 = (f∨w|�)[0.95], r2 = (w|f)[0.99],
and r3 = (b|f)[0.8].

The semantics of conditionals is based on possible worlds.
Here, a (possible) world ω is represented by a complete con-
junction of literals, i.e., every atom in Σ appears in ω exactly
once, either positive or negated. The set of all possible worlds
is denoted with Ω. There is a one-to-one correspondence be-
tween worlds and propositional interpretations, thus we may
write Iω for the interpretation that is associated with the
world ω. Further, we write ω |= A iff the formula A ∈ L is
true in the interpretation Iω .

A probability distribution P over Ω is a model of the con-
ditional (B|A)[p], written P |= (B|A)[p], iff P(A) > 0 and
p = P(AB)

P(A) , where the probability P(A) of a formula A ∈ L
is defined by P(A) =

∑
ω|=A P(ω). The probability distri-

bution P is a model of the knowledge base KB, also written
P |= KB, iff P is a model of every conditional in KB. If KB
has at least one model, KB is called consistent.

Principle of Maximum Entropy (ME-Principle)

Usually, a consistent knowledge base KB has several mod-
els since the conditional probabilities in KB do not neces-
sarily determine the probability of every single world. For
reasoning tasks such as drawing inferences from KB, it is
useful to choose a certain model among them. From a log-
ical point of view, the ME-distribution is preferable (Paris
1994), which is the unique distribution that maximizes the
entropy H(KB) = −∑ω∈Ω P(ω) · log(P(ω)) among all
models of KB. Therefore, it adds the least amount of as-
sumed information (Shore and Johnson 1980). Given the
knowledge base KB = {(B1|A1)[p1], . . . , (Bn|An)[pn]},
the ME-distribution can be obtained by calculating

PME(KB)(ω) = α0

∏
1�i�n
ω|=AiBi

α1−pi

i

∏
1�i�n

ω|=AiBi

α−pi

i (1)

for every ω ∈ Ω. Here, α0 is a normalizing constant which
ensures that PME(KB)(ω) is a probability, and the so-called
effects αi, i = 1, . . . , n, are impact values quantifying the
influence of the i-th conditional on PME(KB)(ω). Formally,
the effects are solutions of a nonlinear equation system. We
refer to (Kern-Isberner 2001) for the technical details. Equa-
tion (1) implies that worlds which verify (ω |= AiBi) and
falsify (ω |= AiBi) the same conditionals also have the
same ME-probability. Hence, it seems natural to build equiv-
alence classes of worlds with respect to their evaluation of

conditionals. Formally, this is done by the notion of condi-
tional structure (Kern-Isberner 2001). The conditional struc-
ture of a world ω ∈ Ω with respect to the knowledge base
KB = {(B1|A1)[p1], . . . , (Bn|An)[pn]} is

σKB(ω) =
n∏

i=1

σi(ω) =

n∏
i=1

⎧⎨
⎩
a+i iff ω |= AiBi

a−i iff ω |= AiBi

1G iff ω |= Ai

.

The symbols a+i , a−i , and 1G reflect the three different ways
in which (the logical part of) the i-th conditional in KB can
be evaluated with respect to ω. More precisely, a+i stands
for the verification of the i-th conditional, a−i for its falsi-
fication, and 1G expresses that the conditional is not appli-
cable in ω. Formally, the symbols are elements of a free
abelian group G(KB) with identity element 1G and basis
{a±i | i = 1, . . . , n, ± ∈ {+,−}}. We omit the operation
symbol and concatenate the group elements by juxtaposi-
tion. The conditional structure partitions Ω in the sense that
two worlds ω and ω′ are in the same equivalence class iff
σKB(ω) = σKB(ω′). We denote the respective equivalence
class with [ω]σKB and the set of all equivalence classes with
Ω/σKB. Consequently, worlds within the same equivalence
class, i.e., with the same conditional structure, also have the
same ME-probability (cf. Eq. (1)). Therefore, it is not neces-
sary to derive the ME-probability of every world but only of
one representative per equivalence class, as well as the cardi-
nalities of the equivalence classes, in order to fully determine
PME(KB). Besides a potential improvement of calculation
performance (the number of worlds |Ω| = 2|Σ| is exponen-
tially large and thus a bottleneck for probabilistic reasoning),
the transition to equivalence classes of worlds allows for a
more structural view on the interdependencies between the
conditionals in KB and on the ME-distribution itself. There-
fore, it plays an important role in better understanding the
ME-principle.

The ME-distribution yields a nonmonotonic inference rela-
tion which enables us to answer queries as per common
sense. Given a knowledge base KB and a further condi-
tional (B|A)[p], we define the ME-inference relation |∼ME

by KB |∼ME (B|A)[p] iff PME(KB) |= (B|A)[p]. It states
that, givenKB, it is rational to assume that B follows from A

with the conditional ME-probability p = PME(KB)(AB)
PME(KB)(A) . The

fraction on the right-hand side can also be expressed in terms
of equivalence classes of worlds:

p =

∑
[ω]σKB∈Ω/σKB PME(KB)(ω) · c([ω]σKB , AB)∑
[ω]σKB∈Ω/σKB PME(KB)(ω) · c([ω]σKB , A)

(2)

where c([ω]σKB , A) = |{ω′ ∈ [ω]σKB | ω′ |= A}| for A ∈
L (cf. (Wilhelm, Kern-Isberner, and Ecke 2016)). Besides
calculating the ME-probability for a single representative of
each equivalence class, there are two tasks to perform in order
to draw inferences from KB: (a) Find the equivalence classes
of worlds by elaborating their conditional structure, and (b)
count the worlds within these equivalence classes, i.e., worlds
with the same conditional structure (that satisfy additional
constraints, depending on the query). In the following, we
address both tasks and solve them with typed model counting.

749



Typed Model Counting (TMC)

Typed model counting (TMC) extends model counting of
propositional formulas by distinguishing between different
types of models. These types are represented by elements of
an algebraic structure the formulas are equipped with. There-
with, TMC allows for a more fine-grained evaluation of the
formula. For instance, TMC can be used to preserve informa-
tion about which parts of a formula are satisfied by a certain
type of model. As a formal basis for TMC we define the
structured language LS that is built upon the propositional
language L and a commutative monoid S. When applying
TMC to ME-reasoning we will instantiate S with G(KB), i.e.,
with conditional structures.

Structured Language LS

The structured language LS is obtained by incorporating
an algebraic structure (S,⊗) into the propositional language
L = L(Σ). More precisely, we require (S,⊗) to be a commu-
tative monoid and thus ⊗ to be associative and commutative.
We denote the identity element with 1S and usually write
S instead of (S,⊗). In order to combine elements from S
with (propositional) formulas, we further introduce the outer
operation ◦ : S × LS → LS .
Definition 1. The structured language LS = LS(L,S, ◦) is
the smallest set such that
1. if A ∈ L, then A ∈ LS ,
2. if s ∈ S and B ∈ LS , then s ◦B ∈ LS ,
3. if B,C ∈ LS , then B ∧ C ∈ LS and B ∨ C ∈ LS .

Hence, LS consists of all formulas in L, and additionally,
elements from S may be concatenated to the left of any part
of a formula as long as they are not in the scope of negations.
Example 2. Let a, b∈Σ and s1, s2∈S . Then, ¬s1 ◦ a /∈ LS
but A = s1 ◦ (a ∨ s2 ◦ b) ∈ LS .

In order to interpret (structured) formulas in LS , we ex-
tend S by a distinguished element 0S /∈ S which satisfies
0S ⊗ s = s⊗ 0S = 0S for all s ∈ S. The element 0S is
used to indicate that a formula in LS is not satisfied by a
structured interpretation while elements in S are the model
types of the considered formula.
Definition 2. A (structured) interpretation IS on Σ is a map-
ping Σ→ {1S ,0S}. We extend structured interpretations to
deal with arbitrary formulas in LS and therefore to mappings
IS : LS → S ∪ {0S} by inductively defining

1. if A ∈ L, then
{IS(¬A) = 1S iff IS(A) = 0S
IS(¬A) = 0S iff IS(A) = 1S

(other cases do not occur as A is purely propositional),
2. if A,B ∈ LS , then IS(A ∧ B) = IS(A) ⊗ IS(B) and

IS(A ∨B) =

⎧⎨
⎩
IS(A) iff IS(B) = 0S
IS(B) iff IS(A) = 0S
IS(A)⊗ IS(B) otherwise

,

3. if s ∈ S and A ∈ LS , then IS(s ◦A) = s⊗ IS(A).
Example 3. We consider A = s1◦(a∨s2◦b) from Ex. 2 and
the structured interpretation IS with IS(a) = IS(b) = 1S .
Then, IS(A) = s1⊗IS(a∨ s2 ◦b) = s1⊗IS(s2 ◦b) since
IS(a) = 0S , and thus IS(A) = s1⊗s2⊗IS(b) = s1⊗s2.

There is a one-to-one correspondence between proposi-
tional and structured interpretations that can be observed
by associating 1S resp. 0S with the truth values 0 resp. 1
assigned by propositional interpretations. Except for these
replacements, propositional and structured interpretations
interpret formulas in L in the same way. In particular, we
can talk about the structured interpretation induced by the
world ω, written IS

ω . For arbitrary formulas in LS we have
the following definition.
Definition 3. An interpretation IS is called a typed model
of A ∈ LS iff IS(A) �= 0S , i.e., iff IS(A) ∈ S. It is called
a model of type s ∈ S iff IS(A) = s. The formula A ∈ LS
is called satisfiable iff it has at least one typed model.

Consequently, TMC is the task of finding all types of mod-
els for a given formula A ∈ LS , as well as the frequencies ev-
ery type can be observed with. To simplify TMC on A ∈ LS ,
we S-equivalently rewrite A until it is in a form that is espe-
cially suited for the TMC task. Two formulas A,B ∈ LS are
called S-equivalent, written A≡S B, iff IS(A) = IS(B)
for every interpretation IS . In other words, every model of
type s of A is a model of type s of B, and vice versa. We call
A and B mutually exclusive iff IS(A) ⊗ IS(B) = 0S for
every interpretation IS , i.e., iff A and B cannot be satisfied
at the same time.
Example 4. The formula A = s1 ◦ (a ∨ s2 ◦ b) from Ex. 2
is S-equivalent to (s1 ◦ a b∨ (s1 ⊗ s2) ◦ b), and it has three
typed models, two of type s1 ⊗ s2 (when IS(b) = 1S) and
one of type s1 (when IS(a) = IS(b) = 0S ).

Formulas in L can be S-equivalently transformed fol-
lowing the common equivalent transformations in L. Some
of them, namely commutativity, associativity, and neutral-
ity (A ∧ �≡S A and A ∨ ⊥≡S A), do also hold for arbi-
trary formulas in LS . However, idempotence, distributivity,
and absorption only hold in certain cases due to the fact
that elements in S are not necessarily idempotent (usually,
IS(A∧A) = IS(A)⊗IS(A) �= IS(A)). De Morgan’s laws
and involution (¬(¬A)≡S A) are not defined for arbitrary
formulas in LS due to the negations. We define a weakened
version of distributivity that we make use of later on.
Proposition 1. Let A,B,C ∈ LS . If A and B are mutually
exclusive, or if IS(C) is idempotent (e.g., if C ∈ L), then

(A ∨B) ∧ C ≡S (A ∧ C) ∨ (B ∧ C).

We refer to the property described in Prop. 1 as the rule of
weak distributivity.

Now we introduce the smooth deterministic decomposable
structured negation normal form (sd-DNNFS) which is the
abovementioned form that is especially suited for TMC. The
definition of sd-DNNFS is very much the same as sd-DNNF
for ordinary propositional formulas introduced in (Darwiche
2001), except that we consider structured formulas here, and
hence we need to consider our adapted form of mutual exclu-
siveness. Formulas in sd-DNNFS directly inherit their good
properties for TMC from the fact that formulas in sd-DNNF
are convenient for model counting.
Definition 4. A formula A ∈ LS is in structured negation
normal form, written NNFS , iff negations in A appear only
directly in front of atoms. A formula A in NNFS is said to be

750



1. decomposable iff for every conjunction
∧m

i=1 Ai in A, the
sets Σ(A1), . . . ,Σ(Am) are pairwise disjoint.

2. deterministic iff for every disjunction
∨m

i=1 Ai in A, every
two disjuncts Ai, Aj , i �= j, are mutually exclusive, i.e.,
iff IS(Ai)⊗ IS(Aj) = 0S for every interpretation IS .

3. smooth iff for every disjunction
∨m

i=1 Ai in A, it holds that
Σ(Ai) = Σ(Aj) for every i, j ∈ {1, . . . ,m}.

The formula A is in sd-DNNFS iff A is in NNFS and is
smooth, deterministic, and decomposable.
Example 5. The formula A = s1 ◦ (a ∨ s2 · b) from Ex. 2
is not in sd-DNNFS (the disjunction is neither deterministic
nor smooth), whereas B = s1 ◦ (a b ∨ s2 ◦ ((a ∨ a) b)) is in
sd-DNNFS . The formulas A and B are S-equivalent.

The following proposition proves that every satisfiable
formula in LS is S-equivalent to a formula in sd-DNNFS .
The latter is not unique, as sd-DNNF’s are not unique either.
Proposition 2. Let A ∈ LS . Then, A is not satisfiable or
A is S-equivalent to B(A) =

∨
ω∈Ω: IS

ω (A)�=0S IS
ω (A) ◦ ω

which is a structured formula in sd-DNNFS .

Proof. Let A be satisfiable, i.e., at least one typed model
IS
ω′ of A exists and the disjunction in B(A) is not vacuous.

Further, let ω, ω′ ∈ Ω. Then, IS
ω′(ω) = 0S iff ω′ �= ω and

IS
ω′

(∨
ω∈Ω: IS

ω (A)�=0S
IS
ω (A) ◦ ω

)
= IS

ω′(IS
ω′(A) ◦ ω′) = IS

ω′(A)⊗ IS
ω′(ω′) = IS

ω′(A)

which proves A≡S B(A). In addition, worlds are decom-
posable and contain all atoms from Σ. Thus, disjunctions
over worlds are smooth, deterministic, and decomposable.
Therefore, B(A) is in sd-DNNFS .

Given a formula A ∈ LS , Prop. 2 implies a construc-
tive method for deriving a formula in sd-DNNFS which is
S-equivalent to A. The drawback is that one has to know all
typed models of A, and hence, this method undermines our
intention behind considering formulas in sd-DNNFS which
is unveiling the model types. When we apply TMC to ME-
reasoning, we state more efficient methods for deriving for-
mulas in sd-DNNFS in this concrete context. But first, we
discuss how TMC based on formulas in sd-DNNFS works.

Typed Model Counting on Formulas in sd-DNNFS

In order to count the typed models of formulas in LS , we
have to enrich (S ∪ {0S},⊗) with a second associative and
commutative operation ⊕ (addition). In detail, we build the
closure S⊕ of S ∪ {0S} under application of ⊕ while re-
quiring that ⊗ and ⊕ satisfy the law of distributivity and
0S serves as the identity element with respect to ⊕. Even-
tually, we obtain the commutative semiring (S⊕,⊕,⊗). We
abbreviate

⊕n
i=1 s with n s where s ∈ S⊕ and n ∈ N0.

Once a formula is in sd-DNNFS , TMC is an easy task
and proceeds similar to model counting based on proposi-
tional formulas in sd-DNNF. For ordinary model counting,
a formula A ∈ L which is in sd-DNNF is transformed into

an arithmetic statement by substituting every literal in A by
1, every ∧ by · , and every ∨ by +. For TMC, formulas are
transformed into algebraic statements instead.
Definition 5. Let A ∈ LS be a formula in sd-DNNFS . The
element s(A) ∈ S⊕ obtained by substituting every literal
in A by 1S , every occurence of ∧ and of ◦ by ⊗, and every
occurence of ∨ by ⊕, is called the structure element of A.

Structure elements are the essentials of TMC.

Typed Model Counting. Let A ∈ LS be in sd-DNNFS ,
and let Ms(A) be the number of models of type s of A.
Counting the typed models of A means deriving s(A), as

s(A) =
⊕
ω∈Ω

IS
ω (A) =

⊕
s∈S

Ms(A) s.

TMC holds for the same reasons for which model counting
holds. Basically, determinism guarantees that no model is
counted twice, decomposability of deterministic formulas
ensures that only interpretations are considered (as multi-
plication of counts arising from inconsistent sets of literals
cannot happen), and the smoothness guarantees that every
model is taken into account. The only difference to ordinary
model counting is the splitting of the models into different
types which does not affect the way of counting itself but
preserves the information encoded in the algebraic type.
Example 6. Recall the formula B=s1◦(a b∨s2◦((a∨a)b))
from Ex. 5 which is in sd-DNNFS . The counts of the typed
models of B are encoded in

s(B) = s1 ⊗ ((1S ⊗ 1S)⊕ (s2 ⊗ (1S ⊕ 1S)⊗ 1S))
= s1 ⊗ (1S ⊕ 2 s2) = s1 ⊕ 2 (s1 ⊗ s2).

From s(B), we can not only read the number of models of B
(i.e., 3) but also how many models of a specific type B has.

Conditioned Typed Model Counting. It is possible to fo-
cus on certain models when counting the typed models of a
formula A ∈ LS which is in sd-DNNFS . This is of interest
when only those typed models of A are sought that are also
models of an additional formula. We face this task when
drawing ME-inferences later on. In order to focus on models,
we extend the concept of structure elements. For this, let C
be a consistent set of literals. We define sC(A) ∈ S⊕ in the
same way as s(A) except that the literals in {c∈Lit | c∈C}
are replaced by 0S instead of 1S . Then, counting the typed
models of A conditioned on C, i.e., calculating sC(A), yields

sC(A) = s

(
A ∧
∧
c∈C

c

)
.

In plain words, counting the typed models of the formula
A ∧∧c∈C c can be performed by counting the typed mod-
els of A with the modification that now not all literals in
A are substituted by 1S , but those literals in A that con-
tradict

∧
c∈C c are substituted by 0S . The benefit of this

method is that one does not have to transform A ∧ ∧c∈C c
into sd-DNNFS when A already is in sd-DNNFS .

In particular, conditioned typed model counting is suitable
for interpreting a formula. Let ω ∈ Ω be an arbitrary world
and C = {c ∈ Lit | ω |= c}. Then, sC(A) = IS

ω (A).
Next, we apply TMC to simplify ME-reasoning.

751



Application to ME-Reasoning

We show that typed model counting (TMC) is convenient for
solving both open tasks for drawing ME-inferences, namely
finding the equivalence classes [ω]σKB as well as calculat-
ing their cardinalities. Therewith, we are able to draw ME-
inferences by exploiting Eq. (2). In order to apply TMC
to ME-reasoning, we have to convert knowledge bases into
structured formulas. More precisely, we consider the knowl-
edge base KB and extend L by conditional structures. Thus,
we consider the structured language LG = LG(L,G, ◦) with
G = G(KB) and define the formula φ(KB) ∈ LG by

φ(KB) =
∧n

i=1

[
(a+i ◦AiBi) ∨ (a−i ◦AiBi) ∨Ai

]
. (3)

Here, a+i and a−i for i = 1, . . . , n are the generators of G.
The next proposition states that conditional structures serve
as the semantics of these formulas.

Proposition 3. Let KB be a knowledge base and let ω ∈ Ω.
Then, IG

ω (φ(KB)) = σKB(ω).

Proof. Since the outer disjunctions in (AiBi ∨ AiBi ∨ Ai)
are deterministic for i = 1, . . . , n, it follows that

IG
ω (φ(KB)) = IG

ω

(
n∧

i=1

((a+i ◦AiBi) ∨ (a−i ◦AiBi) ∨Ai)

)

=

n∏
i=1

⎧⎨
⎩
a+i iff ω |= AiBi

a−i iff ω |= AiBi

1G iff ω |= Ai

=

n∏
i=1

σi(ω) = σKB(ω). �

As a consequence of Prop. 3, calculating all equivalence
classes [ω]σKB and their cardinalities reduces to counting the
typed models of φ(KB), as

s(φ(KB)) =
⊕
ω∈Ω

σKB(ω) =
⊕

[ω]σKB∈Ω/σKB

|[ω]σKB | σKB(ω).

Hence, it is essential to find a G-equivalent formula in
sd-DNNFG for φ(KB). We show how this can be achieved
by applying the rule of weak distributivity (cf. Prop. 1) while
avoiding the intractable procedure from Prop. 2.

As the outer disjunctions in φ(KB) are deterministic, we
may apply weak distributivity to φ(KB) in Eq. (3) and get

φ(KB)≡G
∨

λ=(λ1,...,λn)

λi∈{a+
i ,a−

i ,1G}

(
n⊗

i=1

λi

)
◦

n∧
i=1

⎧⎨
⎩
AiBi iff λi = a+i
AiBi iff λi = a−i
Ai iff λi = 1G︸ ︷︷ ︸

=:A(λ)

,

The outer disjunction on the right-hand side is determinis-
tic and A(λ) is in L for λ ∈ Λ. Now, we expand A(λ) by
those atoms ai(λ)∈ Σ that do not appear in A(λ) but in Σ by
adding the conjunction

∧
i(λ)(ai(λ) ∨ ai(λ)) to A(λ). After-

wards, the outer disjunction is also smooth, and we just have
to transform A(λ)∧∧i(λ)(ai(λ) ∨ ai(λ)) ∈ L into (standard)
sd-DNNF for each λ ∈ Λ separately. Weak distributivity
can be applied iteratively to pairs of disjuncts, and, on every

step of the iteration, the obtained formulas can be tested for
satisfiability. Unsatisfiable disjuncts may be removed in or-
der to avoid transforming them into sd-DNNF unnecessarily.
This strategy coincides with the algorithm CONDSTRUCTOR
presented in (Wilhelm, Kern-Isberner, and Ecke 2016).

Example 7. We continue Ex. 1 from the introduction and
consider KBfly = {r1, r2, r3} with r1 = (f ∨ w|�)[0.95],
r2 = (w|f)[0.99], and r3 = (b|f)[0.8]. We have

φ(KBfly) =
[
(a+1 ◦ (f ∨ w)) ∨ (a−1 ◦ f w) ∨ ⊥

]
∧ [(a+2 ◦ f w) ∨ (a−2 ◦ f w) ∨ f

]
∧ [(a+3 ◦ f b) ∨ (a−3 ◦ f b) ∨ f

]
and iteratively apply weak distributivity as well as smoothing.
We get

φ(KBfly)≡G
[
(a+1 a+2 ◦ f w) ∨ (a+1 a−2 ◦ f w) ∨ (a+1 ◦ f w)
∨ (a−1 ◦ f w)

] ∧ [(a+3 ◦ f b) ∨ (a−3 ◦ f b) ∨ f
]

≡G
[
a+1 a+2 ◦ f w (b∨b)]∨[a+1 a−2 ◦ f w (b∨b)]
∨ [a+1 a+3 ◦ f w b

] ∨ [a+1 a−3 ◦ f w b
]

∨ [a−1 a+3 ◦ f w b
] ∨ [a−1 a−3 ◦ f w b

]
. (4)

Counting typed models eventually yields

s(φ(KBfly)) =
[
2a+1 a+2

]⊕ [2a+1 a−2
]⊕ [a+1 a+3

]
⊕ [a+1 a−3

] ⊕ [a−1 a+3
] ⊕ [a−1 a−3

]
.

Thus, e.g., there are two models of type a+1 a
+
2 of φ(KBfly)

that correspond to two worlds in which the first two condi-
tionals of KB are verified (and the third is not applicable).

When φ(KB) consists of two decomposable conjuncts, one
can apply weak distributivity to both conjuncts separately.
This is the case when KB can be divided into two sets of con-
ditionals that do not share any atoms. However, knowledge
bases typically do not show this property. With the aid of con-
ditioning (cf. (Darwiche 1999) for a more general definition)
this property can be produced artificially.

Definition 6. Let A ∈ LS and a ∈ Σ. Then (A|ȧ) ∈ LS is
the formula that is obtained by replacing every occurrence of
a in A by � iff ȧ = a and by ⊥ iff ȧ = a. We call (A|ȧ) the
literal conditioning of A by ȧ.

The next proposition makes use of literal conditioning and
is closely related to the Shannon expansion (Shannon 1949).

Proposition 4. Let A ∈ LS and a ∈ Σ. Then,

A≡S (a ∧ (A|a)) ∨ (a ∧ (A|a)).
Note that the disjunction in (a ∧ (A|a)) ∨ (a ∧ (A|a)) is

deterministic and smooth, and the conjunctions are decom-
posable. Thus, transforming A into sd-DNNFS is reduced to
the two smaller problems of transforming (A|a) and (A|a)
into sd-DNNFS . We demonstrate the concept of literal condi-
tioning and show how TMC can help drawing ME-inferences
by means of the following example.

752



[ω]σKBfly
|[ω]σKBfly

| σKBfly
(ω) PME(KBfly)(ω) c([ω]σKBfly

, b) c([ω]σKBfly
, bf)

{b f w, b f w} 2 a+1 a+2 0.25 1 1
{b f w, b f w} 2 a+1 a−2 0.02 1 1
{b f w} 1 a+1 a+3 0.33 0 0
{b f w} 1 a+1 a−3 0.08 1 0
{b f w} 1 a−1 a+3 0.04 0 0
{b f w} 1 a−1 a−3 0.01 1 0

Table 1: Equivalence classes [ω]σKBfly
∈ Ω/[ω]σKBfly

and their relevant properties for drawing ME-inferences.

Example 8. We consider φ(KBfly) from Ex. 7 and apply
literal conditioning. More precisely, we condition by ḟ and
perform obvious simplifications. We get

φ(KBfly)≡G [f ∧ (φ(KBfly)|f)] ∨
[
f ∧ (φ(KBfly)|f)

]
≡G
[
f ∧ (a+1 ◦ �)∧((a+2 ◦ w)∨(a−2 ◦ w))

]∨[ f∧
((a+1 ◦ w)∨(a−1 ◦ w))∧((a+3 ◦ b)∨(a−3 ◦b))

]
.

Afterwards, we establish the smoothness property:

φ(KBfly)≡G[
f ∧ (a+1 ◦ �) ∧ ((a+2 ◦ w) ∨ (a−2 ◦ w)) ∧ (b ∨ b)

]
∨ [ f∧((a+1 ◦ w)∨(a−1 ◦ w))∧((a+3 ◦ b) ∨ (a−3 ◦ b))

]
.

The resulting formula is in sd-DNNFGand can be used in the
same way as Eq. (4) to determine the equivalence classes of
worlds regarding KBfly as well as their cardinalities. The
equivalence classes, their cardinalities, and the appropriate
ME-probabilities are shown in Tab. 1.

Once the ME-probabilities are given, we can draw infer-
ences from KB via Eq. (2). For example, a possible query
could be: With which probability do birds fly? In order to
exploit Eq. (2) we have to count the number of worlds within
each equivalence class that additionally satisfy b resp. bf, i.e.,
we have to calculate c([ω]σKBfly

, b) and c([ω]σKBfly
, bf) for

every [ω]σKBfly
. These counts can be derived by counting the

typed models of φ(KBfly) conditioned on {b} resp. {b, f},
which leads to

s{b}(φ(KBfly)) = a+1 a
+
2 ⊕ a+1 a

−
2 ⊕ a+1 a

−
3 ⊕ a−1 a

−
3 ,

s{b,f}(φ(KBfly)) = a+1 a
+
2 ⊕ a+1 a

−
2 .

For example, s{b}(φ(KBfly)) states, among other things, that
there is one model of type a+1 a

+
2 of φ(KBfly) that is also

a model of b (the same holds with respect to bf). See the
last two columns of Tab. 1 for all counts. We finally derive
PME(KBfly)(f|b) = 0.27

0.36 = 0.75 from Eq. (2), i.e., birds do
fly with probability p = 0.75 with respect to KBfly .

Conclusion

We introduced the concept of typed model counting and
pointed out its benefits by applying it to probabilistic condi-
tional reasoning. Typed model counting extends model count-
ing for propositional formulas as it allows for distinguishing
between certain types of models. In order to do this, formulas
are equipped with elements from a commutative monoid. As
a consequence, typed models can reflect the structure of the

formula to some extent. We used this capability in the con-
text of reasoning under the principle of maximum entropy
(ME-principle). Because ME-probabilities follow conditional
structures, we incorporated the conditional structure induced
by a knowledge base directly into the propositional language
in which the knowledge is represented. Typed model count-
ing then yielded the equivalence classes of possible worlds
regarding the conditional structure, as well as their cardi-
nalities. We exploited this in order to draw nonmonotonic
inferences at maximum entropy.

In future work, we aim to adopt the notion of typed models
to first-order sentences in order to draw lifted inferences at
maximum entropy based on the ideas of first order model
counting stated in (v. d. Broeck 2013). Besides structural
insights, we legitimately expect significant performance im-
provements as in (Finthammer and Beierle 2012).

Acknowledgments. This research was supported by the
German National Science Foundation (DFG) research unit
FOR 1513 on Hybrid Reasoning for Intelligent Systems.

References
Darwiche, A. 1999. Compiling knowledge into decomposable
negation normal form. In Proceedings of the 16th IJCAI Conference.
Darwiche, A. 2001. On the tractable counting of theory models and
its application to belief revision and truth maintenance. Journal of
Applied Non-Classical Logics.
Finthammer, M., and Beierle, C. 2012. Using equivalences of
worlds for aggregation semantics of relational conditionals. In
Proceedings of the 35th KI Conference. Springer.
Gärdenfors, P. 1988. Knowledge in Flux: Modeling the Dynamics
of Epistemic States. MIT Press.
Kern-Isberner, G. 2001. Conditionals in nonmonotonic reasoning
and belief revision. Springer.
Kimmig, A.; v. d. Broeck, G.; and de Raedt, L. 2012. Algebraic
model counting. Computing Research Repository.
Paris, J. B. 1994. The uncertain reasoner’s companion – A mathe-
matical perspective. Cambridge University Press.
Shannon, C. E. 1949. The synthesis of two-terminal switching
circuits. Bell System Technical Journal.
Shore, J. E., and Johnson, R. W. 1980. Axiomatic derivation of
the principle of maximum entropy and the principle of minimum
cross-entropy. IEEE Trans. Inf. Theory.
v. d. Broeck, G. 2013. Lifted Inference and Learning in Statistical
Relational Models. Ph.D. Dissertation, KU Leuven.
Wilhelm, M.; Kern-Isberner, G.; and Ecke, A. 2016. Propositional
probabilistic reasoning at maximum entropy modulo theories. In
Proceedings of the 29th FLAIRS Conference.

753




