
Evolutionary Practice Problems Generation: More Design Guidelines

Alessio Gaspar, A. T. M. Golam Bari
Dept. Computer Science & Engineering

University of South Florida
Tampa, FL, USA
alessio@usf.edu

bari@mail.usf.edu

R. Paul Wiegand
Institute for

Simulation & Training
University of Central Florida

Orlando, FL, USA
wiegand@ist.ucf.edu

Anthony Bucci
119 Armory St.

Cambridge, MA, USA
anthony@bucci.onl

Amruth N. Kumar
Ramapo College of New Jersey

Mahwah, NJ, USA
amruth@ramapo.edu

Jennifer L. Albert
The Citadel

171 Moultrie Street
Charleston, SC, USA
jalbert@citadel.edu

Abstract

We propose to further extend preliminary investigations of
the nature of the problem of evolving practice problems for
learners. Using a refinement of a previous simple model of
interaction between learners and practice problems, we ex-
amine some of its properties and experimentally highlight the
role played by the number of values each gene may take in our
encoding of practice problems. We then experimentally com-
pare both a traditional - P-CHC - and Pareto-based - P-PHC -
variants of coevolutionary algorithms. Comparisons are con-
ducted with respect to the presence of noise in fitness evalua-
tions, the number of values genes may take, and two distinct
fitness functions. Each fitness captures an aspect of the nature
of learner-problem interaction but one has been shown to in-
duce overspecialization pathologies. We then summarize our
findings in terms of guidelines on how to adapt evolutionary
algorithms to tackle the task of evolving practice problems.

Introduction

Intelligent Tutoring Systems have been able to provide
new opportunities for students of all disciplines to get au-
tomated feedback during unsupervised practice sessions.
While much research has been dedicated to modeling learn-
ers’ performance in order to adapt practice problems to their
needs, less work has explored the possibility for intelligent
tutors to automatically design practice problems.

The lack of a formal model of the underlying optimiza-
tion problem makes Evolutionary Algorithms natural candi-
dates for the task at hand. More specifically, Coevolutionary
Algorithms - CEA - feature so-called “pathological dynam-
ics” which are analogous to those observed in educational
settings where a population of learners interacts with a set
of practice problems. For instance, the loss of gradient phe-
nomenon occurring when a population significantly outper-
forms its coevolutionary counterpart, is analogous to situa-
tions where assignments become too hard for a group of stu-
dents. Recent theoretical advances in CEA theory open new

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

opportunities to improve our understanding of the dynamic
occurring when adapting a set of practice problems along-
side a population of learners. Such insights are essential to
efficient evolutionary practice problem generation.

Preliminary work in investigating the challenges posed
by practice problem generation to Evolutionary Algorithms
(Gaspar et al. 2016) led us to apply a state-of-the-art co-
evolutionary algorithm to a suite of increasingly complex
approximations of the target application. We propose to re-
visit one of these early models, formally analyze its intrinsic
limitations, and compare it to another well-known Coevo-
lutionary problem (e.g. COMPARE-ON-ONE (De Jong and
Pollack 2004)). These steps supplement our previous work
and allow us to refine our understanding of the design guide-
lines to design suitable EA variants for the task of practice
problem generation. This, in turn, is essential to establish the
role, if any, that evolutionary algorithms may be able to play
in this task before they are even applied to real students pop-
ulations or compared to over approaches previously used to
generate practice problems.

Background

There have been limited applications of evolutionary tech-
niques to educational domain in general, and to automated
generation of practice problems in particular. Instead, previ-
ous work focused on their potential to help personalize the
delivery of content, e.g. (Huang, Huang, and Chen 2007;
Chen 2008), or data-mine educational data, e.g. (Romeroa
et al. 2009). While focused on coevolutionary learning in
the context of the Tron light-cycle game, this approach led
to interesting applications in the educational domain; e.g.
(Sklar and Pollack 1998) and established the foundations
for the game-theoretic study of coevolutionary learning in-
volving human learners (Bader-Natal 2008). Even more re-
cently, theoretical results explaining pathological coevolu-
tionary dynamics (Bucci 2007) have helped gain insights
about the difficulties encountered in an introductory pro-
gramming course (Wiegand et al. 2016).

Previous work led us to identify several characteristic

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

549

problems or dynamics in the EA literature, that are directly
relevant to evolving practice problems in general (Gaspar et
al. 2016):

Overspecialization occurs in multi-objectives optimiza-
tion when some highly competitive candidate solutions only
improve a subset of their objectives. In educational settings,
it is analogous to learners who master a subset of practice
problems without acquiring skills in all learning objectives.

Noisy evaluation is inherent to problems where external
factors may affect evaluations’ outcomes. In our target ap-
plication, each practice problem must be evaluated via its in-
teraction with students. However, the outcome may be influ-
enced by learner distraction, learner fatigue or technology-
related issues. Even if we were able to somehow re-expose
a learner to the same problem for the first time, the outcome
would unlikely be identical.

User fatigue (Llorá et al. 2005) is a serious impediment
to the applicability of Interactive Evolutionary Algorithms.
In such algorithms, evaluation of candidate solutions is per-
formed by human agents who quickly become unreliable as
the number of specimens they have to inspect increases. In
educational applications, this problem is further exacerbated
as the time and cognitive effort required to work through a
single practice problem are much greater than in typical IEA
applications where evaluating often boils down to express-
ing a subjective preference; e.g. computer-generated art.

Experiment #1 - Noisy Teacher-Learner

Problem

In order to gain insights about how co-evolutionary tech-
niques in general, and the P-PHC algorithm in particu-
lar, would fare on the practice-problem evolution task, we
adapted the simple stochastic model of teacher-learner co-
evolution that was used in (Gaspar et al. 2016).

As in the original work, we used fixed-length integer vec-
tors as genotypes for both learners (candidates) and prac-
tice problems (tests): 〈g1, g2, g3, g4〉 with each of the 4 genes
taking value in [1..NG]. The rationale for using integer val-
ues taken from a specified range is based on the implementa-
tion requirements of our proof of concept implementation1.
The latter is meant to have an EA variant evolve specific
practice problems for novice programmers, known as Par-
sons puzzles (Parsons and Haden). The puzzle-like exer-
cises have shown to be particularly helpful in developing
programming skills in learners. In each Parsons puzzle, an
already written correct program, accompanied by a plain
English description of its goals is used. It is broken down
into fragments, generally corresponding to one line of code,
which are then randomly shuffled. A few of the fragments
are selected and transformed so as to introduce a bug. For
instance, replacing ”<” by ”<=” in the condition of a FOR
loop would introduce a off-by-one bug. These erroneous ver-
sions of the original program fragments, which we will refer
to as ”distracters”, are then shuffled with all the other frag-
ments. Learners are then presented with the description of

1Source code for the proof of concept implementation under
development is available on the project’s sourceforge repository at
https://sourceforge.net/projects/evotutoring/

the program, along with a list of all the valid fragments and
distracters, shuffled together. Their goal is to drag and drop
the valid fragments from this list in order so as to reconsti-
tute the original program while avoid using the distracters.
In our proof of concept implementation, a practice problem
genotype is a fixed-length integer vector. The first integer
is the index of the program to be used, taken from a pre-
defined library of programs which we wrote to be suitable
for our students’ level. The following integers each repre-
sent the index of a transform also taken from such a library.
Each transform uses regular expressions to match specific
program fragments and modify them so as to introduce bugs
we have observed among students.

In our simplified model, we wanted to also use fixed-size
sequences of integers as the focus of the evolutionary tech-
niques. However, we used a simplified way to interpret them
while still establishing a meaningful coevolutionary influ-
ence between the practice problems and learners entities.

To this end, we compute the sum of the genes for a learner
noted by SL, and the sum of the genes for a practice prob-
lem by SP . SL represents the expected number of attempts
taken by the corresponding learner to solve an arbitrary prac-
tice problem. The higher this number, the more the learner
is struggling. Similarly, SP represents the difficulty level for
the corresponding practice problem, also expressed as an ex-
pected number of attempts needed by an arbitrary learner to
solve it. Based on these, the outcome of the interaction of a
given practice problem with a specific learner is the number
of attempts taken by that learner to solve it.

N = SL + SP + rand(r) (1)
where rand(r) returns a random integer in [0 : r − 1],

thus capturing the variability of students’ performance. Both
the learner and practice problem fitnesses are respectively
derived from this quantity; FL = −N and FP = N .
Therefore, these fitness measures are opposite for learners
and practice problems but both revolve around the concept
of difficulty. The number of attempts necessary for a given
learner to solve a given practice problem is the fitness of the
latter; the higher meaning that the practice problem is more
difficult. Reciprocally, the lower this number of attempts, the
higher is the fitness of the learner.

It should be clarified before to go any further that the
above model should not be misconstrued as a claim that
solely relying on a difficulty metric is a suitable way to mea-
sure the worth of practice problems. We do plan on inves-
tigating more pedagogically-oriented metrics when we use
our system with students. However, difficulty is often found
to be an essential component of more elaborate approaches
such as the Zone of Proximal Development. As such, we felt
that integrating difficulty measures in a minimalist model
would be a reasonable approach which, while clearly not
meant to capture the complex nature of real students’ perfor-
mance, would introduce relevant coevolutionary interaction
between our two populations.

Algorithms

Interestingly, this model captures the fact that students
would primarily focus on improving their performance and

550

skills, rather than any other metrics, such as informative-
ness, that would primarily facilitate the evolution of practice
problems. For this reason, we explored two variants of P-
PHC; P-PHC-I and P-PHC-P. The first one uses informa-
tiveness, as in the original P-PHC, to drive the evolution of
the learners. The second one relies on performance in terms
of minimizing the number of attempts needed to solve prac-
tice problems. In both the versions, the practice problems’
outcome vectors are now composed of values representing
number of attempts (fP) rather than binary outcomes. When
evaluating learners in P-PHC-I, we averaged the difference,
in the number of attempts, induced by a given learner be-
tween each pairs of practice problems.

Results

As in our previous experiments, we used objective fitnesses
to track improvements in quality. For both practice problems
and learners, we simply summed all the genes. Given how
problems’ genotypes are used to compute the outcome of the
interaction with learners, the larger this sum, the better. We
therefore expected the system to converge to the individual
with maximal allowed value on each of its genes. Similarly,
we expected learners to converge toward an optimal learner
solving problems in as few attempts as possible, thus mini-
mizing the value of all the genes.

Please note that, for the learners, this metric is only rel-
evant when considering the performance-driven versions
of the learners’ fitness; i.e. P-PHC-P and P-CHC. In the
informativeness-based version, P-PHC-I, it would not make
sense to track the sum of genes for learners as the selec-
tive pressure applied to their population does not encourage
them to minimize their number of attempts but rather to help
identify good from bad practice problems. For this reason,
such results are omitted in table 2 which focuses solely on
tracking improvement of practice problems. We also opted
to focus on comparing P-CHC with P-PHC-I only based
on previous results that strongly suggested the Informative
variant to be much more beneficial (Gaspar et al. 2016).

Implications Regarding Design Guidelines

For each of our experiments, we will interpret and summa-
rize the results from the perspective of their significance in
terms of how we should design an evolutionary approach to
practice problems generation. Keep in mind that such inter-
pretation will remain, by necessity, at a certain level of ab-
straction in so far that it is meant to be applicable to a wide
range of EAs and any specific learning domain for which the
practice problems may be targeted; e.g. discrete mathemat-
ics, programming...

The results presented in row ”RL #8” from Table 2 sug-
gests that our target application can benefit from Pareto co-
evolution when NG = 100. Equation 1 defines an interac-
tion model between learners and practice problems. Both the
mean fitness and dispersion metrics show that P-PHC-I out-
performs P-CHC in a statistically significant manner.

However, when bounding the genes values at NG = 10,
these benefits vanish, as shown on row ”RL #7” in Table
2, where the mean values are very close but the dispersion

is significantly higher for P-PHC-I. This observation moti-
vated us to take a closer look at the nature of the interactions
taken place in P-PHC-I.

Analysis of the interaction in Experiment #1

We propose to revisit previous section’s findings in order to
identify the dynamics responsible for the results detailed in
Table 2. To this end, we identify and quantify three prop-
erties that explain the algorithms’ behavior for trivial and
Pareto-based coevolution of practice problems.

Property 1 - Mutation Effect

In both the PHC and CHC algorithms, each parent practice
problem p undergoes mutations in order to generate a child
practice problem c. The mutation operator increases or de-
creases the value of each gene by 1 with equal probability.

However, whether the fitness of a child practice prob-
lem (Fc) becomes higher than its parent’s (Fp) is based on
their respective sum of genes value, along with that of the
rand(r) term (see Equation 1). As both p and c interact
with same set of learners within a generation, SL is con-
stant across interactions, therefore we focus on SP for both
the parent and child, which we will note as Sp and Sc for
short.

Let us first inspect the probability that Sc > Sp due to
mutation assuming N as genotype size;

Pμ
Sc>Sp

=

(∑N
i=�N/2+0.5�

(
N

i

))
/2N

If N is odd then Pμ
Sc>Sp

= Pμ
Sc<Sp

= 0.5 and Pμ
Sc=Sp

=

0 , otherwise Pμ
Sc>Sp

= Pμ
Sc<Sp

= 0.3125 and Pμ
Sc=Sp

=

1− (Pμ
Sc>Sp

+ Pμ
Sc<Sp

) = 0.375.
Proof: Probability Mass Function - PMF -, of applying

”+1” operation out of ”+1” and ”-1” operations on a genome
of N size, of a random variable X = x where 1 ≤ x ≤ N

is p(x) =
(
N

x

)
/2N . To satisfy the condition, Pμ

Sc>Sp
, ”+1”

operations need to be applied on (N/2 + 1)th to N th genes
on p’s genotype. So, the Cumulative Distribution Function -
CDF -, such that Pμ

Sc>Sp
is P (X > N/2).

Pμ
Sc>Sp

=

(∑N
i=�N/2+0.5�

(
N

i

))
/2N

Explanation: To satisfy Sc > Sp, the frequency of ”+1”
mutation operation need to exceed than that of ”-1” opera-
tion. A parent p, with even genome size, can have half of
its genes increased by 1 and the other half decreased by 1,
thus producing a child c such that Sp = Sc. However, if the
genome size is odd, there is no chance that Sp = Sc.

In the current settings, if Sc > Sp then the former may
exceed the latter by either δμmin = 2 or by δμmax = 4. So,
based on the effects of mutations, the difference between
parent and child is δ = {δμmin, δ

μ
max}.

Property 2 - rand(r) Effect

As mentioned earlier, the probability that Fc > Fp is also
affected by the rand(r) term found in Equation 1. We there-
fore quantify the impact of this random term on the proba-

551

bility that the child practice problem feature a higher fitness
than its parent.

First, PMF of having a child c receives a greater
(smaller) random value than its parent p is based on X =
x where 1 ≤ x ≤ r − 1 is p1(x) = P (X = x) = r−x

r2 .
Consequently, the CDF of X is F1(x) = P (X ≤ x) =∑x

x=1 P (X = x) = x
r − x(x+1)

2r2 , r �= 1.
The PMF of both parent and child receiving an equal

random number Y = y where 1 ≤ y ≤ r − 1 is
P (Y = y) = 1

r2 . Consequently, the CDF of Y is P (Y ≤
y) =

∑r
r=1 P (Y = y) = 1

r
The probability of a child c getting a random value larger

or equal than that of its parent p is therefore P rand
Rc≥Rp

= 1
2 +

1
2r , where r = 2, 3,

Proof :

F1(x) =

x∑
n=1

r − n

r2
=

x

r
− x(x+ 1)

2r2

P rand
Rc≥Rp

=

r∑
i=1

1

r2
+ F1(r − 1) =

1

2
+

1

2r

Explanation: rand(r) returns an integer in [0..r−1]. So,
it can be seen as picking a pair (pa, pb) from r2 pairs where
r of them satisfy pa = pb, r2−r

2 pairs follow pa > pb and
rest of the r2−r

2 are obliged by pa < pb.
As we did with the δ values for the Mutation Effect, we

define δrandmin = 1 and δrandmax = r − 1. In addition, δrand=
corresponds to pa = pb . So, when Sc > Sp the difference
is bounded by δμmin + δrand= = 2 + 0 = 2 ≤ δrandμ ≤
δμmax + δrandmax = 4 + (r − 1) = 3 + r = 5.

Property 3 - Combined Effect

We have so far examined the probability of both the muta-
tion operator, and the random noise, to contribute separately.
In this section, we devote our attention to the combination
of both effects on the relation between Fc and Fp. A child
c Pareto-dominates its parent p based on how much it bal-
ances the gain or loss from the Mutation Effect by that of the
rand(r)Effect . For instance, if Sc > Sp by δ after the Mu-
tation Effect, then p needs to get an equal or smaller value
by at most δ − 1 in order for Fc > Fp to hold.

Let us start by defining three outcomes, win, loss and
draw for the combination of both effects. We say that c wins
against p, i.e. we have a c win when Sc > Sp after Mutation
Effect or Rc > Rp in rand(r)Effect . Similarly, a c loss is
defined for the ”<” relationship and the outcome is termed
as draw for the ”=” relationship.

When combining the effect of the mutation and random
term, these ”win/loss/draw” outcomes affect the values of
Fc and Fp which, in turn, determine whether the child prac-
tice problem is ”strictly better” than its parent. Therefore,
the combined effect of Property 1 and Property 2 need to
be examined with respect to the cases listed in Table 1 for
r = 2. These actually determine the three relations ,”>”,
”<” and ”=”, between Fc and Fp assuming both of them
interact with the same learner. There are four cases where
Fc > Fp, four cases for Fc < Fp and one case for Fc = Fp.

The probabilities listed in the ”Combined” column are ob-
tained by multiplying the probabilities of the two indepen-
dent effects it combines. Assuming the total probability for
Fc > Fp to be PFc>Fp

. Then, for 1 ≤ k1 ≤ r − 1;
PFc>Fp

≥ 0.3125 × P rand
Rc≥Rp

+ 0.6875 × F1(k1)

Similarly, for k1, k2 ∈ δ; PFc=Fp =
∑r

i=1
1
r2 − k1+k2

r2

and PFc<Fp = 1 − (PFc>Fp + PFc=Fp)
Proof : We can derive the following equation for PFc>Fp

using all the five cases of Fc > Fp listed in Table 1.

PFc>Fp = 0.3125 × F1(k) + 0.3125 × F1(k1)

= 0.15625 + 0.15625 × 1

r
+ 0.6875 × F1(k1)

To satisfy Fc = Fp, the three conditions listed in Table 1 can
be summarized as follows for k3 = p1(k) × k + p2 × k2.
PFc=Fp

=
∑r

i=1
1
r2 − 0.3125 × k3

r2

Implications regarding Design Guidelines

The analysis of Exp#1 results presented in this section sug-
gested that having a high number of objectives causes prob-
lems to our algorithms. This finding is aligned with the
literature on evolutionary multi-objectives optimization -
EMOO - where problems with more than about five objec-
tives are much more difficult to tackle by state of the art
algorithms (He and Yen 2016). This led to the definition of
many-objectives optimization as a field of study of its own,
dedicated to investigate solution to EMOO problems featur-
ing a non-trivial number of objectives.

In terms of our target application, these findings suggest
that, rather than attempting to evaluate every evolved prac-
tice problem on as many students as feasible, we should
instead restrict the number of students exposed to a given
problem. Coupled with the need to mitigate user-fatigue, this
means that the policy assigning each evolved practice prob-
lem to a ”suitable” learner may be very selective and still
benefit the overall dynamics of our evolutionary system.

Experiment #2 - Genes’ Bounds

Problem

We adapt COMPARE-ON-ONE to the practice problem -
learner interaction defined in Equation 2 as follows;

Gone(P,L) =

{
+1 if Pm ≥ Lm

−1 otherwise
where,m = arg max Li

(2)
where L is learner, P is practice problem and xi denotes the
value of individual x in dimension i.

Algorithms

We measure performance of P-CHC, P-PHC-P and P-
PHC-I, for two different payoff functions defined in Equa-
tions 1 and 2 while the genes of entities are bounded in
[1, NG] for NG = 10 and NG = 100. It is worth point-
ing out that this is a significant departure from the number
games commonly used in the literature, e.g. (Bucci 2007) or
(De Jong and Pollack 2004). The latter does not limit the
values taken by a gene.

552

Table 1: Different cases and status for combined effect in three relational comparisons between c and p, r = 2. Zc
p refers to an

outcome under condition c with p probability. W, L and D denote win, loss and draw respectively. Prop#1, Prop#2 and Both
stand for mutation, random and combined effect respectively.

Fc > Fp Fc < Fp Fc = Fp

Prop#1 Prop#2 Both Status Prop#1 Prop#2 Both Status Prop#1 Prop#2 Both Status
W δ

0.31 L1≤k<δ
0.25 W δ−k

0.08 OK W δ
0.31 Lk>δ

0 Lk−δ
0 NA

W δ
0.31 W 1≤k≤r−1

0.25 W δ+k
0.08 OK Lδ

0.31 W k<δ
0.25 Lδ−k

0.08 OK W δ
0.31 Lδ

0 D0 NA
W δ

0.31 D0.50 W δ
0.16 OK Lδ

0.31 D0.50 Lδ
0.16 OK D0.37 D0.50 D0.18 OK

D0.37 W 1≤k≤r−1
0.25 W k

0.09 OK Lδ
0.31 L1≤k≤r−1

0.25 Lk+δ
0.08 OK Lδ

0.31 W δ
0 D0 OK

Lδ
0.31 W k>δ

0 W k−δ
0 NA D0.37 L1≤k≤r−1

0.25 Lk
0.09 OK

Total 0.41 0.41 0.18

In our target application, genes represent selections of
specific characteristics or components of practice problems
and hence be necessarily bounded in value. Therefore, it
is particularly relevant to investigate further whether differ-
ences in NG impact the need for us to rely on Pareto-based
coevolutionary algorithms as opposed to traditional ones.

Results

Table 2, ”RL #1-4” show the performance of P-CHC and
P-PHC-I under two payoff functions. Let us label Equation
1a as the version of Equation 1 in which the rand(r) term is
discarded .

The result for COMPARE-ON-ONE indicates that when
we use a low bound value for genes, we do not need P-PHC
abilities to overcome overspecialization.

Implications regarding Design Guidelines

In terms of design guidelines, if overspecialization is pos-
sible then Pareto coevolution of practice problem based on
learner’s informativeness is preferable. Algorithms, such as
P-PHC-I indeed prevent learners from overspecializing on
some aspects of practice problems at the detriment of in-
creasing their skills across all learning objectives.

Overall, these findings suggest that recent breakthrough in
coevolutionary computation theory (Bucci 2007) is applica-
ble to our target application; i.e. competitive coevolution in
a teacher-learner scenario may be improved by prioritizing
informativeness in one of the populations.

In addition, the target application should be capable to
keep practice problem’s genotype intact but using recycled
gene value while building phenotype from that genotype.

Experiment #3 - Noise & Genes’ Bounds

Problems & Algorithms

In this experiment, we use both Equation 1 and a noisy ver-
sion of Equation 2 in which the outcome is flipped (+1 by
−1 or vice et versa) with a 5% probability.

We measure the performance of the same algorithms than
in our previous experiments on both problems. The genes
values are bound in [1, NG] for NG = 10 and NG = 100.

Results

Table 2, ”RL #5-8”, show the performance of P-CHC and
P-PHC-I under noisy environment.

Results suggest that Pareto coevolution is still better at
getting rid of overspecialization for the noisy COMPARE-
ON-ONE. It is also better when genes can take more values.

Implications regarding Design Guidelines

If learner vs. practice problems interactions may yield over-
specialization, then it is preferable to rely on a Pareto-based
coevolutionary algorithm, even in a noisy environment, re-
gardless gene’s bound range. On the other hand, smaller
bound of gene values in proposed interaction model is ex-
pected to benefit from trivial coevolution. No matter which
fitness function we use, bounding the gene in upper value is
expected to produce practice problems that will refrain the
learners to be expert in only one learning objective.

Conclusion & Future Work

This paper allowed us to extend previous work focused on
identifying design guidelines for leveraging evolutionary al-
gorithms to generate practice problems.

The first, Experiment #1 confirmed previous results (Gas-
par et al. 2016) with a modified model of our target prob-
lem that enabled us to conduct a more thorough analysis of
the intrinsic properties of P-PHC. The combined effects of
the mutation operator and the random term integrated in our
fitness function revealed that, in accordance with the evolu-
tionary multi-objective optimization literature, the larger the
number of objectives in our problems, the more difficult it
is for our algorithms to achieve decent performance. With
respect to our target application, this suggests that not only
using only a few students to evaluate each practice problem
may be necessary to mitigate user fatigue, but it might also
be beneficial to achieve productive coevolutionary dynam-
ics. Furthermore, the previous results regarding the benefits
of informativeness over performance in driving coevolution
(Gaspar et al. 2016) mean that we already have a good candi-
date as criterion to select the students to use for evaluations.

However, while the results highlighted the suitability of
Pareto-based Coevolutionary techniques to our target prob-
lem, they also revealed the unexpected relevance of the num-
ber of values that each gene may take in our encoding. We

553

Table 2: Performance of P-CHC and P-PHC-I under Pathology(overspecialization), noise and different bounds on two Pay off
functions defined in Equations 1 and 2.

Property Fitness Bounded
Mean Objective Fitness Mean Dispersion

RLP-CHC P-PHCI p P-CHC P-PHC-I p
Eq 2 [1, 10] 35.99 35.41 > 0.05 7.13 7.10 > 0.05 1

Pathology [1, 100] 67.60 45.52 < 0.01 31.42 7.51 < 0.01 2
Eq 1a [1, 10] 38.50 38.47 > 0.05 3.66 3.71 > 0.05 3

[1, 100] 82.67 81.70 > 0.05 12.05 11.86 > 0.05 4
Eq 2a [1, 10] 36.75 35.18 < 0.01 7.20 6.89 < 0.01 5

Noise [1, 100] 63.94 38.60 < 0.01 20.13 7.65 < 0.01 6
Eq 1 [1, 10] 38.72 38.47 < 0.01 1.60 3.72 < 0.01 7

[1, 100] 82.19 83.50 > 0.05 15.16 11.96 < 0.01 8

investigated only two extreme values so far, NG = 10 and
NG = 100, but also considered a classic coevolutionary
number game, COMPARE-ON-ONE. The latter allowed us
to compare the results obtained with our fitness function
against a baseline for which we know that overspecializa-
tion is encouraged by the environment. Experiments #2 and
#3 suggest that, regardless of whether overspecialization is
likely to occur, a low value for NG means that we may
achieve comparable or even better performance by adopt-
ing a traditional coevolution approach, e.g. P-CHC, rather
than a Pareto-based one, e.g. P-PHC.

A priority for our future work will therefore be to quan-
tify the minimal such value, everything else being equal, for
which Pareto Coevolution shows benefits over traditional ap-
proaches like CHC. Last but not least, we will apply the
design guidelines we gathered so far to conduct a prelimi-
nary evaluation of our proof of concept implementation soft-
ware with real students in order to validate the proposed
guidelines, and thus gain insights on which coevolutionary
pathologies are most pronounced in this specific application.

Acknowledgments

This material is based in part upon work supported by NSF
(awards #1504634, #1502564, and #1504634) and by the
ACM SIGCSE Special Projects 2015 award.

References

Bader-Natal, A. 2008. The Teacher’s Dilemma: A
game-based approach for motivating appropriate challenge
among peers. Ph.D. Dissertation, Michtom School of Com-
puter Science, Brandeis University.
Bucci, A. 2007. Emergent Geometric Organization and In-
formative Dimensions in Coevolutionary Algorithms. Ph.D.
Dissertation, Brandeis University, Boston, MA.
Chen, C. M. 2008. Intelligent web-based learning system
with personalized learning path guidance. Computers & Ed-
ucation 51:787–814.
De Jong, E. D., and Pollack, J. B. 2004. Ideal evaluation
from coevolution. Evolutionary Computation 12(2):159–
192.
Gaspar, A.; Bari, G.; Kumar, A. N.; Wiegand, R. P.; Bucci,

A.; and Albert, J. L. 2016. Evolutionary practice problems
generation: Problem characterization. In 28th IEEE ICTAI.
He, Z., and Yen, G. G. 2016. Many-objective evolutionary
algorithm: Objective space reduction and diversity improve-
ment. IEEE Trans. Evo. Comp. 20(1):145–160.
Huang, M.-J.; Huang, H.-S.; and Chen, M.-Y. 2007. Con-
structing a personalized e-learning system based on genetic
algorithm and case-based reasoning approach. in Expert Syst
Appl 33:551–564.
Llorá, X.; Sastry, K.; Goldberg, D. E.; Gupta, A.; and Lak-
shmi, L. 2005. Combating user fatigue in igas: Partial or-
dering, support vector machines, and synthetic fitness. In
GECCO, 1363–1370.
Parsons, D., and Haden, P. Parson’s programming puz-
zles: A fun and effective learning tool for first programming
courses. In Proc. of 8th ACE, 2006 - Volume 52, 157–163.
Darlinghurst, Australia: Australian Computer Society, Inc.
Romeroa, C.; Gonzalez, P.; Ventura, S.; del Jesusb, M.; and
Herrerac, F. 2009. Evolutionary algorithms for subgroup
discovery in e-learning: A practical application using moo-
dle data. in Expert Syst Appl 36:1632–1644.
Sklar, E., and Pollack, J. 1998. Toward a community of
evolving learners. In ICLS.
Wiegand, R. P.; Bucci, A.; Kumar, A. N.; Albert, J. L.; and
Gaspar, A. 2016. A data-driven analysis of informatively
hard concepts in introductory programming. In SIGCSE.

554

