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Abstract

Information incompleteness, or ignorance, is an issue that we
have to consider in Semantic Web applications. Dempster-
Shafer theory has been traditionally applied in information
incompleteness situations. On the other hand, logic plays a
major role in the Semantic Web community. In this paper, we
propose a framework that applies Dempster-Shafer theory in
a Description Logic Knowledge Base environment. We name
our model a Dempster-Shafer DL Knowledge Base.

Introduction

In developing Semantic Web applications, we often come
across information incompleteness issues. As an example,
let us consider a data source that contains information about
hotels. We assume each hotel h to be assigned an interval
cost per night rather than a crisp value, e.g h : [50 − 150].
In this case, if we want to make a reservation, we do not
know exactly what the cost is but we know a lower-upper
bound of the cost value. Moreover, if consider the query:
I’m looking for a hotel with cost no greater than 100, then
in a crisp logic framework, where each hotel has a unique
value cost, the query could be answered with a yes/no state-
ment. In our case, where we have to deal with interval value
form, a yes/no statement cannot fully answer this query. The
introduction of a degree notion seems to be more suitable
to describe this kind of information. In a Description Log-
ics environment, if we consider a concept DesiredHotel, de-
fined as DesiredHotel = Hotel � ∃cost. ≤100, then, the
answer to our query is to decide whether a hotel individual
is a member of the concept DesiredHotel.

Information incompleteness can be classified as an uncer-
tainty problem, other uncertainty problems consider infor-
mation randomness and data inconsistency (Dubois 2007).
The Dempster-Shafer theory, along with Dempster’s rule of
combination (Sentz and Ferson 2002), is a framework for
dealing with information incompleteness, allowing integra-
tion of information from different independent sources. In
this paper, we propose an adaptation of Dempster-Shafer
theory in a logic context. In our work, we define an exten-
sion of crisp Knowledge Bases with Dempster-Shafer mod-
ules. The concept of Dempster-Shafer DL Knowledge Base
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is introduced and it is served as a way to tackle informa-
tion incompleteness. Dempster-Shafer Theory is more well-
suited in modelling beliefs regarding the truthness of an
event. A framework that employs Dempster-Shafer theory
is described in (Karanikola, Karali, and McClean 2013).

The rest of this paper is organized as follows: In Section 2,
the basics of Description Logics are introduced. In Section 3,
an overview of Dempster-Shafer Theory is presented along
with some frameworks of its application in Logic. In Section
4, our method, i.e the Dempster-Shafer DL Knowledge Base,
is defined. In Section 5, decidability and reasoning issues are
considered. Finally, we give our Conclusion, where future
work is also outlined.

Description Logics Overview and Uncertainty

Extensions - The DL ALC
In this Section, we overview the basics of Description Log-
ics and present the DL ALC. Description Logics (DL for
short) are a family of knowledge representation languages.
Some papers that introduce DLs are (Krötzsch, Simancik,
and Horrocks 2012), (Baader, Horrocks, and Sattler 2008),
(Franz, Ian, and Ulrike 2005). Generally, Description Log-
ics define a DL Knowledge Base as a triple < T ,R,A >,
where T , the TBox of the Knowledge Base, contains ax-
ioms concerning DL Concepts, R, the RBox of the Knowl-
edge Base, contains axioms concerning DL Roles and A,
the ABox of the Knowledge Base, contains axioms con-
cerning DL individuals. A DL interpretation I is defined as
< ΔI , ·I >, where ΔI is the interpretation domain and ·I
is the interpretation function. An interpretation actually as-
signs a true/false value to each DL axiom. In case an axiom
τ is true wrt. I, this is denoted as I |= τ . Subsumption, in-
stantiation and consistency checking are the main forms of
reasoning in DLs.
ALC is considered the basic DL language. Its syntax uses

the following sets: NC (the set of concept names), NR (the
set of role names) and NI (the set of individuals). In order
to build complex rules, we apply a set of syntax rules. More
precisely, ALC concepts are the following:

• �,⊥, A, where A is a primitive concept

• If C,D areALC concepts, then C �D, C �D, ¬C, ∀r.C
and ∃r.C, where r is a DL Role, are ALC concepts.
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An interpretation I = (ΔI , ·I) performs the following map-
ping:

�I = ΔI ,⊥I = ∅, CI ⊆ ΔI , rI ⊆ ΔI ×ΔI

(C �D)I = CI ∩DI , (C �D)I = CI ∪DI

(¬C)I = ΔI\CI

(∀r.C)I = {d ∈ ΔI : ∀d′, (d, d′) ∈ rI implies d′ ∈ CI}
(∃r.C)I = {d ∈ ΔI : ∃d′, (d, d′) ∈ rI and d′ ∈ CI}

In addition, ALC considers two kinds of assertions for an
individual α: C(α), meaning that α is an instance of C (con-
cept assertion) and r(α, β), meaning that there is a rela-
tion r between α, β (role assertion). A set of concept as-
sertions {C(α1), . . . , C(αn)} is satisfied in an interpreta-
tion I, iff αI

i ∈ CI , i = 1, . . . , n. A set of role assertions
{r(α1, β1), . . . , r(αn, βn)} is satisfied in an interpretation
I, iff (αI

i , β
I
i ) ∈ rI , i = 1, . . . , n.

There exist various frameworks for representing uncer-
tainty in DLs. These approaches can be classified either as
probabilistic or possibilistic, based on the logic behind them.
For an overview on Possibility or Probability theory see
(Dubois and Prade 2001). In (Lukasiewicz 2008), a frame-
work for representing and reasoning over probabilistic un-
certainty in a DL environment is outlined. The syntax is de-
fined as a language of conditional constraints as an expres-
sion of the form (ψ|φ)[l, u], where ψ, φ are concepts and l, u
are real numbers in [0, 1]. A possibilistic DL, which is based
on a possibilistic interpretation, is described in (Qi, Pan, and
Ji 2007). In this approach, possibilistic axioms are defined
as (φ, α), where φ is crisp DL axiom and α ∈ (0, 1].

Dempster-Shafer Theory

Dempster-Shafer theory has been evolved as a method for
representing incomplete information (Shafer 1976), (Liu
and Yager 2008), (Dubois and Prade 2008). Generally,
Dempster-Shafer can be considered a model of subjective
probabilities. This theory employs the concept of the frame
of discernment W , which is defined as a set of exhaus-
tive and mutually exclusive events. Then, the power set of
W , denoted as 2W , is defined as the set of all subsets of
W . On each element of the set 2W , the basic probability
assignment or mass function, denoted as m, is defined as
m : 2W → [0, 1], where

∑
A∈2W m(A) = 1 and m(∅) = 0.

Basic probability assignment is used in order to define be-
lief and plausibility functions, on a subset B ⊆ W , which
constitute lower and upper probability measures:

Bel(B) =
∑
A⊆ B

m(A), P l(B) =
∑

A
⋂

B �=∅
m(A)

Dempster’s rule of Combination (Sentz and Ferson 2002)
is defined on two basic probability assignments m1, m2, de-
rived from independent sources:

m1

⊕
m2(B) =

∑
Ai

⋂
Aj=B m1(Ai)×m2(Aj)

1−
∑

Ai
⋂

Aj=∅ m1(Ai)×m2(Aj)

Unifying Dempster Shafer and Logic or relate Dempster
Shafer with Logic have been studied in a variety of works

(Provan 1990; 1989; Saffiotti 1992; Pearl 1990; Zhu and Lee
1993). An approach for relating Belief Functions and Logic
is described in (Saffiotti 1992). In this work, bf-formulas are
considered, which are formulas of the form F : [a, b], where
F is a classical first-order sentence and [a, b] constitutes
a Belief-Plausibility interval, in a Dempster-Shafer frame-
work. From semantics point of view, a set of classical first-
order interpretations I is considered, and a bf-interpretation
is defined as M : 2I → [0, 1]. that can be used to define a
Belief function.

Our approach: Dempster-Shafer DL

Knowledge Bases

In this Section, we present our approach which introduces
the concept of the Dempster-Shafer DL Knowledge Base,
based on the logic defined in (Saffiotti 1992). In order to do
this, we extend classical DL axioms with Belief degree con-
ditions and Plausibility degree conditions. Then, we inter-
pret these axioms to hold with a Belief degree lower bound
or Plausibility degree lower bound.

Following, we define our DS −ALC syntax and seman-
tics.

Syntax of DS −ALC
A Dempster-Shafer DL knowledge base is described by the
following:
• A set Φ = {p1, p2, . . . , pn}, where pi is a basic crisp DL
ALC assertional axiom.

• Any assertion φ is an atomic assertion, or a boolean com-
bination of assertions.

• A set of constraints:
– Belief Constraints: They have the form φ B ≥ α, and

interpreted as φ is true with Belief degree at least α.
– Plausibility Constraints: They have the form φ P ≥
α, and interpreted as φ is true with Plausibility degree
at least α.

Definition 1. A Dempster-Shafer DL Knowledge Base is
defined as a set of Belief Constraints B and a set of Plausi-
bility Constraints P , denoted as KB = (B,P).

Semantics of DS −ALC
Before defining the semantics of our framework, we intro-
duce the concept of a possible world I to be a subset of the
set of basic crisp DL assertions Φ. In that sense, a possi-
ble world I specifies the set of assertions that are true in
that world. We denote as W the set of possible worlds I , i.e
W = 2Φ. Since Φ is finite, W is also finite. Given a crisp
DL Knowledge Base, KBcrisp, and a possible world I , the
satisfaction of KBcrisp is defined as:

Definition 2. A possible world I satisfies (or it is a model
of) KBcrisp iff {pi | pi ∈ I} ∪ KBcrisp is satisfiable.

Next, we will prove that the satisfaction (entailment) of a
KBcrisp is a necessary and sufficient condition for the ex-
istence of a model I of this Knowledge Base. Our proof is
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based on the one defined in (Lukasiewicz 2008), adapted in
our DL.

Proposition 1. Let Φ be a finite set of DL assertions and
let KBcrisp be a crisp ALC Knowledge Base out of Φ. Then
KBcrisp has a model I = (ΔI , ·I) iff there exists a possible
world I that satisfies KBcrisp.

Proof (⇒)Suppose that KBcrisp has a model. This means
that an interpretation I = (ΔI , ·I) exists. Then, the set of
DL assertions that are satisfiable under I constitutes a subset
of Φ, i.e a possible world I . This means that KBcrisp has
also a model I . (⇐)Suppose that there exists a I model of
KBcrisp. This means that KBcrisp is satisfiable, so a model
I exists. �

The set of possible worlds W can be considered as a
Dempster-Shafer frame of discernment, since the elements
of W are mutually exclusive. We define a Dempster-Shafer
interpretation m, as a basic probability assignment function
on subsets of the set W . Based on this assignment, we de-
fine belief and plausibility degrees, induced from bpa’s on
sets T ⊆ W . In addition, the power set of W , denoted as
PW is defined over the following function:

PW = 2W

In this context, we consider that a crisp ALC axiom can
be true in a subset of W . We define this subset as a set-
interpretation, i.e:

Definition 3. Let us consider the set of all possible worlds
(or interpretations) W , with power-set 2W . Any K ∈ 2W is
called a set-interpretation.

Our set-interpretation is defined in an analogous way to a
hyper-interpretation (Saffiotti 1992).

The entailment of an axiom φ under a set-interpretation is
defined as:

Definition 4. An entailment of an axiom φ from a set-
interpretation K, where K ∈ 2I is defined as:

K |= φ iff , ∀ I ∈ K, I |=DL φ

K �|= φ iff , ∃ I ∈ K, I �|=DL φ

K |= ¬φ iff , ∀ I ∈ K, I �|=DL φ

In the definition above, |=DL denotes classical crisp DL
entailment.

Definition 5. A Dempster-Shafer interpretation m is de-
fined as a basic probability assignment, as m : 2W → [0, 1].

As we operate on a Dempster-Shafer framework, a con-
straint that we have to preserve is the following:

∑

T∈ 2W
m(T ) = 1

Our Dempster-Shafer DL knowledge base assumes a set
of possible worlds W and assigns a Dempster-Shafer in-
terpretation to subsets of this set. Any A ⊆ W such that

m(A) > 0 constitutes a focal set-interpretation. Following,
we define Belief and Plausibility Degrees of assertions φ
from these focal interpretations, based on entailment notion
related to PW .

Definition 6. The Belief Degree of an axiom φ under a
Dempster-Shafer interpretation m is defined as:

Belm(φ) =
∑

PW |=φ

m(PW ), PW ∈ PW

Definition 7. The Belief Degree of an axiom ¬φ under a
Dempster-Shafer interpretation m is defined as:

Belm(¬φ) =
∑

PW �|=φ

m(PW ), PW ∈ PW

In a Dempster-Shafer framework, the following relation
holds for an axiom φ:

Plm(φ) = 1−Belm(¬φ)
Proposition 2. Based on the previous definition and accord-
ing to Belief - Plausibility relation, we have that a Plausibil-
ity Degree for an axiom φ is equal to:

Plm(φ) = 1−
∑

PW �|=φ

m(PW ), PW ∈ PW

Definition 8. The truthness of a Dempster-Shafer axiom φ
under a Dempster-Shafer interpretation m is defined as:

m |= φ B ≥ α iff Bel(φ) ≥ α

m |= φ P ≥ α iff Pl(φ) ≥ α

A Dempster-Shafer interpretation m is a model of a
Dempster-Shafer DL Knowledge Base KB = (B,P) iff
m |= U , ∀U ∈ B ∪ P . A Dempster-Shafer axiom φ is
a logical consequence of a Dempster-Shafer DL Knowledge
Base KB, denoted as KB |= φ, iff every model of KB is
also a model of φ. A Dempster-Shafer DL Knowledge Base
is consistent if a model exists for KB.

Finally, in an analogous way defined in (Straccia 1998),
since a crisp DL interpretation can be considered as a
Dempster-Shafer interpretation (with constraints of value
1.0), we have the following proposition:

Proposition 3. Let KB a Dempster-Shafer DL Knowledge
Base. Then, we define as the crisp counterpart of KB the
crisp Knowledge Base KB = {a : a B ≥ n | a P ≥
m}. If KB |= a B ≥ n (or KB |= a P ≥ m), then
KB |=crisp a.

In addition, as in (Straccia 1998), we define as
︷︸︸︷
KB =

{a B ≥ 1}∪{a P ≥ 1}, a ∈ KBc, whereKBc is a crisp
Knowledge Base. Then, the following holds:

If KBc |=crisp a then
︷︸︸︷
KB |= a B ≥ 1 and
︷︸︸︷
KB |= a P ≥ 1

For a detailed proof of the proposition above, see (Straccia
1998).
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An important issue considers consistency checking.
Knowledge Base consistency partially stems from the rela-
tion between Belief and Plausibility degrees, i.e:

Bel(φ) = 1− Pl(φ)

Consistency checking refers to the Belief - Plausibility
Degrees of a formula φ and its negation ¬φ.

Syntactic Consistency: Let us consider a Dempster-
Shafer DL Knowledge Base KB with the following Belief
and Plausibility constraints:

φ B ≥ α, φ P ≥ β

¬φ B ≥ γ, ¬φ P ≥ δ

The syntactic consistency can be proved by employing the
Belief-Plausibility relation. Thus, we conclude that a consis-
tent Knowledge Base should be aligned with the following:

β ≤ (1− γ) δ ≤ (1− α)

We can prove syntactic consistency, by checking whether the
equations above hold.

Semantic Consistency: From a semantics point of view,
if m a model of KB, i.e:

m |= φ B ≥ α, m |= φ P ≥ β

m |= ¬φ B ≥ γ, m |= ¬φ P ≥ δ

Then, following our semantics definition, we conclude
that:

Bel(φ) ≥ α, Bel(φ) ≥ β,

P l(¬φ) ≥ γ, P l(¬φ) ≥ δ

For KB being a consistent Knowledge Base, we have al-
ways to preserve that Bel(φ) + Pl(¬φ) = 1.

Example In order to illustrate our method, let us consider
the following Dempster-Shafer DL Knowledge Base:

< Hotel � ∃cost. ≤100 (h1) > B ≥ 0.5

< Hotel � ∃cost. ≤100 (h1) > P ≥ 0.7

Our knowledge base is consistent, based on consistency
checking formulas, defined in the previous section. Now, let
us suppose that we add the following axiom:

¬ < Hotel � ∃cost. ≤100 (h1) > B ≥ 0.9

Based on the consistency checking, we must have 0.7 ≤
0.1, which makes our knowledge base inconsistent.

Combined Dempster-Shafer entailment

In this Section, a new notion of entailment, named
Combined Dempster-Shafer entailment and denoted as
|=DScombined

is defined. The Combined Dempster-Shafer
entailment is applied on two different independent Knowl-
edge Bases, named KB1 = (B1,P1) and KB2 = (B2,P2)
and combine assertions that are entailed (with a Belief-
Plausibility degree) by both Knowledge Bases. The intuition

behind this entailment resides in the fact that we can de-
rive the truthness of a statement, based on different sources
(KBs) that entail this statement.

Let us suppose that the following hold:

KB1 |= φ : B ≥ γ ,KB2 |= φ : B ≥ δ

This means that, if m1 is a model of KB1 and m2 is a
model of KB2, then we have the following:

Bel1(φ) ≥ γ, Bel2(φ) ≥ δ

In addition, we consider Ti, i = 1, . . . , n the focal set-
interpretations of KB1 and Tj , j = 1, . . . ,m, the focal set-
interpretations of KB2.

In our framework, Dempster’s rule of Combination is ap-
plied in order to define a Combined Belief Degree. This rule
provides for combination of a set of bpa’s m1, . . . ,mn. In
our approach, the Belief Degree of φ equals its bpa value,
as subsets of φ are not feasible to be defined, i.e. Bel(φ) =
m(φ). Belief and Plausibility degrees can be defined as a
combination of m1,m2. We apply our Combined Belief De-
gree based on Def.6 and by considering intersections of the
form Ti ∩ Tj just like in Dempster’s rule of combination.
Then, we introduce the following definition:

Definition 9. The Combined Belief Degree Bel1,2 over
models m1 and m2, is defined as:

Bel1,2(φ) =

∑
Ti∩Tj |=φ m1(Ti)×m2(Tj)

1−
∑

Ti∩Tj=∅ m1(Ti)×m2(Tj)

The Combined Plausibility Degree Pl1,2 over models m1

and m2, is derived from the following formula:

Pl1,2(φ) = 1−Belcombined(¬φ)
Let us considerKB1 with model m1 andKB2 with model

m2. Then, the Dempster-Shafer Combined entailment is de-
fined as follows:

Definition 10. An axiom φ B ≥ ε is Dempster-Shafer
Combined entailed, under KB1 and KB2, denoted as
KB1 ⊕ KB2 |=DScombined

φ B ≥ ε, iff ε ≥ Bel1,2(φ).

Definition 11. An axiom φ P ≥ ε is Dempster-Shafer
Combined entailed, under KB1 and KB2, denoted as
KB1 ⊕ KB2 |=DScombined

φ P ≥ ε, iff ε ≥ Pl1,2(φ).

Example Continuing the previous example, let us suppose,
that we have two Dempster-Shafer DL Knowledge Bases,
KB1 and KB2 consisting of the following axioms:

KB1 : < Hotel � ∃cost. ≤100 (h1) > B ≥ 0.5

KB2 : < Hotel � ∃cost. ≤100 (h1) > B ≥ 0.7

We consider W = {I1, I2}, two possible worlds, where
< Hotel � ∃cost. ≤100 (h1) > is false in I1 and true in I2,
i.e, there exist two DL interpretations, I1 and I2 such that:

I1 �|=< Hotel � ∃cost. ≤100 (h1) >

I2 |=< Hotel � ∃cost. ≤100 (h1) >
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Table 1: Dempster-Shafer Interpretation
PW |= φ m1 m2

{I1} 0 0.3 0.2
{I2} 1 0.5 0.7

{I1, I2} 0 0.2 0.1

We consider two Dempster-Shafer interpretations,
m1,m2 as described in Table 3. Also, we consider m1 a
model ofKB1 and m2 a model ofKB2. For our convenience
we name < Hotel � ∃cost. ≤100 (h1) > as φ.

By applying the Combination, based on our formula
defined in the previous section, we derive a result of
Belcombined(φ) of 0.78.

Based on the Dempster-Shafer Combined entailment, the
following holds:

KB1 ⊕KB2 |=DScombined

< Hotel � ∃cost. ≤100 (h1) > B ≥ 0.78

Decidability and Reasoning in

Dempster-Shafer Description Logics

In this Section, we provide a method for reasoning over a
Dempster-Shafer DL Knowledge Base, KBDL, which ac-
tually contains ABox. Reasoning in DLs is usually accom-
plished through tableaux procedures (Buchheit, Donini, and
Schaerf 1993). The decidability problem in our framework
can be reduced in finding a method for deciding whether
KBDL |= τ , where τ is a Dempster-Shafer assertion axiom.
Deciding satisfiability in a Dempster-Shafer DL Knowledge
Base should take into account a basic probability assignment
on subsets of interpretations (or possible worlds). It has to be
noted that our axioms are described by Belief and Plausibil-
ity conditions in a similar way to axioms defined in (Straccia
1998) where axioms are annotated with membership degree
conditions. Having taken this into consideration, we adapt
the method described in (Straccia 1998) and extend it in or-
der to capture Belief and Plausibility conditions.

More precisely, we consider O as an alphabet of symbols
(DL individuals) in the same way as it is referred in (Buch-
heit, Donini, and Schaerf 1993). Moreover, we consider an
alphabet of variable symbols V along with an ordering ≺ on
V . Also, the common term object is employed for describ-
ing either a DL individual or a V variable, in other words an
object is an element of O ∪ V . The symbols s, t are used to
denote an object element. A constraint σ is defined as s : C
or sP t, where C is a DL concept and P is a DL role. Fol-
lowing, a constraint system is defined as a finite nonempty
set of constraints. Also, by ¬σ, we denote s : ¬C or s¬Pt.

Based on these concepts, we define a Belief constraint as
an expression of the following forms:

σ B �� n

where �� is one of <,>,≤,≥.
The Plausibility constraints are defined in an analogous

way. A Dempster-Shafer constraint system is defined as a

set of Belief and Plausibility constraints. An interpretation
m satisfies a Belief Constraint

s : C B �� n (sP t B �� n)

iff Belm(C(s)) �� n (Resp. Belm(P (s, t)) �� n). Also,
m satisfies a constraint system S iff m satisfies every
Dempster-Shafer constraint in it.

A Dempster-Shafer DL Knowledge Base KBDS can be
mapped into a Dempster-Shafer constraint system SKB, de-
fined as:

SKB = {a : C B ≥ n | C(a) B ≥ n} ∪
{a : C P ≥ n | C(a) P ≥ n} ∪
{aPb B ≥ n | R(a, b) B ≥ n} ∪

{aPb P ≥ n | R(a, b) P ≥ n}
Then, we have that KBDS |= C(a) B ≥ n iff SKB ∪ a :

CB < n is not satisfiable. Similarly, we operate on Plausi-
bility conditions.

In order to examine constraint satisfiability of SKB , we
consider a set of constraint propagation rules. These rules
actually add constraints to SKB until a contradiction (or
clash) happens or the current constraint system is complete
(i.e an m that satisfies SKB plus a constraint to be added can
be obtained from the current constraint system).

A set of Dempster-Shafer constraints S contains a contra-
diction iff it contains one of the following:

1. �,⊥ contradictions:

s : ⊥B ≥ n, s : ⊥P ≥ n, s : ⊥B > n, n > 0

s : ⊥P > n, s : ⊥B < 0, s : ⊥P < 0, n > 0

s : �B ≤ n, n < 1, s : �P ≤ n, n < 1, s : �B < n

s : �P < n, s : �B > 1, s : �P > 1

2. <,>,≤,≥ relationships contradictions:

σ B ≥ n and σ B < m and n ≥ m

σ B ≥ n and σ B ≤ m and n > m

σ B > n and σ B < m and n ≥ m

σ B > n and σ B ≤ m and n ≥ m

In the similar way we denote plausibility contradictions.
As in (Straccia 1998), the propagation rules can have one

of the following forms:

Φ→ Ψ if Γ Φ⇒ Ψ if Γ

where Φ, Ψ are sequences of Dempster-Shafer constraints
and Γ is a condition. A rule fires if the condition Γ holds and
the current set of Dempster-Shafer constraints contains a set
of constrains that match Φ. After firing the first rule deletes
Φ from S and both rules add Ψ.

Since the constraints can be one of >,<,≥,≤, connec-
tives �,�,¬, ∀, ∃ and we consider two types of constraints
(Belief and Plausibility), then we have a total of 40 rules. As
an example, next, we will show the case for ¬ ≥ for Plausi-
bility constraint. In this case, we have the following rule:

(¬ ≥) < s : ¬C P ≥ n >→< s : C B ≤ (1− n) >
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Example Let us consider the following Knowledge Base:

KB = {C(a) B ≥ 0.7, ¬D(a) P ≥ 0.9}
In addition we consider the following assertions:

γ1 : C(a) B ≥ 0.5 γ2 : ¬D(a) P ≥ 0.8

We will show that KB |= γ1 and KB |= γ2.
In the first case, we can derive a clash for the SKB ∪ {a :

C B < 0.5}. Based on the relationships contradictions and
assigning n = 0.7 and m = 0.5, we immediately derive
a clash. Hence, KB |= γ1. In the second case, we can de-
rive a clash for the SKB ∪ {a : ¬D P < 0.8}. We apply
the following substitutions, based on the ¬ ≥ rule defined
previously:

a : ¬D P ≥ 0.9→ a : D B ≤ 0.1 (1)
a : ¬D P < 0.8→ a : D B > 0.2 (2)

Hence, we have clash, i.e KB |= γ2.
As a final point, we consider complexity issues of our

framework. In Proposition 3, we have proved the relation-
ship between Dempster-Shafer DL satisfiability and crisp
DL satisfiability. This reduces the Dempster-Shafer ALC
satisfiability in ALC satisfiability, and considering that en-
tailment problem in ALC is PSPACE-complete (Schmidt-
Schaubßand Smolka 1991), we have that Dempster-Shafer
entailment decidability is PSPACE-complete. Concerning
Dempster’s rule of Combination complexity in cases of
Combined entailment, this according to (Orponen 1990), can
be considered as #P -complete problem. In addition, in (Wil-
son 2000) a set of algorithms is proposed in order to manage
better complexity.

Conclusion

In our paper, we have defined a Dempster-Shafer DL Knowl-
edge Base, in order to represent uncertainty in a Description
Logics framework. In addition, a combination method of in-
dependent Dempster-Shafer DL Knowledge Bases has been
proposed, based on Dempster’s rule of Combination. Hav-
ing defined our framework, we also examine decidability
and reasoning issues. As a next step, focusing on reasoning
methods, we shall examine cases where better complexity
results can be achieved. Finally, we shall consider the exten-
sion of our Dempster-Shafer DL Knowledge Base in order
to capture Fuzzy Concepts.
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