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Abstract

This paper presents a general framework for analyzing heuris-
tics for constraint solving, including backtracking and arc
consistency algorithms. It will emphasize heuristics for vari-
able selection during search, since this is where major dif-
ferences are found. In earlier work two basic approaches to
this problem were developed. The first was a general theoret-
ical framework for different types of heuristics, which char-
acterized ideal performance so that the actual performance of
heuristics could be compared to this standard. The second in-
volved the discovery that, while there are a large number of
features that can be used for heuristic decisions in variable or-
dering, differences in effectiveness boil down to only two ba-
sic “heuristic actions”. The present paper applies basic ideas
from decision analysis to characterize these two approaches
to better understand their status and interrelations. It shows
that the first is essentially a normative decision analysis, and
that models of this sort imply general prescriptive principles
(notably the Fail-First Principle). The second is concerned
with descriptive models of actual performance.

Introduction

Although heuristic decisions play a critical role in search al-
gorithms for constraint satisfaction problems (CSPs), their
analysis has lagged behind other aspects such as the anal-
ysis of local consistencies. In fact, the evaluation of CSP
heuristics, especially for variable ordering, is an area of con-
straint programming that has remained strangely resistant to
the kind of formal analysis that has come to characterise the
field overall.

The present paper argues that the analysis of heuristics is
a much different problem than the usual analysis of algo-
rithms. Therefore, it requires different methods. This paper
will outline a general framework for heuristic analysis, in-
spired by the scheme that has grown up around the analysis
of decision making in the decision sciences. This will serve
to clarify the various research strands that exist in the liter-
ature, whose relations have heretofore remained fairly ob-
scure. And with a coherent framework in hand, one can see
more clearly where the gaps are that remain to be filled in.

In the present work the focus is on variable ordering
heuristics for complete algorithms, both because of their sig-
nal importance in CSP search and because their analysis is
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especially interesting. However, I will touch on heuristics
for value ordering as well as queue ordering for certain arc
consistency algorithms. The framework presented here can
also be extended to branching rules for Boolean satisfiability
(SAT) algorithms, although they will not be discussed here.

Most of the work on variable ordering heuristics has con-
cerned itself with finding new and better heuristics. In this
work, little or no thought has been given to understanding
and analysing why some heuristics lead to greater efficiency,
or even to how an analysis might be carried out. However,
over the years there have been occasional contributions that
are pertinent to untangling this problem.

Perhaps the first example was the introduction of the Fail-
First Principle (Haralick and Elliott 1980). Interestingly, un-
til recently the status of this principle was not clear; in
some cases, it has been confused with the minimum domain
heuristic, which has been called the fail-first heuristic. As
will be seen, there is a sense in which minimum domain can
be construed as a fail-first heuristic, but that does not make
it equivalent to the Fail-First Principle.

The next relevant contribution occurred in connection
with “branching heuristics” for SAT problems. (Branch-
ing heuristics in fact refer to both variable and value or-
dering; here, we emphasize the former.) To explain a rule
based on a formula that favoured literals appearing in many
short clauses, it was suggested that it worked because it
created subproblems that were more likely to be satisfiable
(Jeroslow and Wang 1990). Later this rationale was ques-
tioned (since the rule worked even for unsatisfiable prob-
lems); the latter authors suggested that branching rules im-
prove search efficiency by creating “simpler” subproblems.
By simplification, they meant the degree that the size of the
formula was reduced (Hooker and Vinay 1995).

Toward the end of the 1990s, Smith and Grant carried out
an ingenious analysis of ‘fail-firstness’ (Smith and Grant
1998). After deriving a formula that predicted immediate
failure after variable selection, they devised a set of heuris-
tics based on successive approximations to the formula, be-
ginning with minimum domain. Since the relative perfor-
mance of the heuristics did not match the degree of approx-
imation, they concluded that the Fail-First Principle was not
a sufficient explanation for differences in performance due
to heuristic choice.

During the last decade, Beck et al. introduced what they



called the Policy Framework for analyzing CSP variable or-
dering (Beck, Prosser, and Wallace 2003; 2005). This was
meant to extend earlier ideas about fail-firstness in order to
provide a fuller account. A few years after that, Wallace pre-
sented work that analysed heuristic performance using sta-
tistical techniques for discovering underlying “factors” that
accounted for differences in heuristic performance (Wallace
2005). This work led to the notion of “heuristic actions”;
roughly speaking, these are effects on features of search
when a given heuristic is used that can have marked effects
on algorithm performance.

In this work there are still many loose ends to tie up. How-
ever, in the last decade there has been little or no progress
at the level of conceptualization. Instead, the field has con-
tinued using empirical, seat-of-the-pants approaches, con-
cocting new strategies, such as search with heuristic pro-
files or various statistical approaches to heuristic decisions
(e.g. (Phillips et al. 2015)). Part of the problem may be
that the various fundamental contributions to the analysis of
CSP heuristics have not been put together into one coherent
framework. So it has been difficult for workers in the field
to get a handle on this material or to see how it might be
extended. This is the motivation for the present paper.

Here, I argue that the status and character of these various
contributions can be greatly clarified by placing them within
a decision theoretic framework. This will show how they are
related to each other. It also shows that we now have the
skeleton of an account of heuristics in this domain that is
in some sense complete. In a real sense, this is the piece of
the puzzle that allows us to arrange the other pieces into a
coherent whole.

Background Concepts for CSPs

A constraint satisfaction problem (CSP) is defined as a tu-
ple (V, D,C) where: V = {V1, ....., V. } is a set of variables
which must be assigned values; D = {Dy, ....., D,, } is a set
of domains, where D; is the set of possible values which
may be assigned to the variable V;; and C = {C4, .....,C},, }
is the set of constraints that indicate which combinations of
values can go together in a solution. A solution to a problem
is an assignment of a value to every variable such that no
constraint is violated.

Complete algorithms in this area are all extensions of
depth-first backtrack search. This procedure involves deci-
sions at various points that are not specified algorithmically,
hence the opportunity for devising heuristics in order to
make decisions that speed up search. In addition, the typi-
cal interleaving of search and local consistency processing
involves other non-deterministic decisions. In this paper, we
are mostly concerned with heuristics for selecting the next
variable to assign a value to. This is because the order in
which variables are selected for instantiation during search
can have a marked effect on overall performance.

Heuristics are based on features of the situation that serve
to distinguish choices. Examples of such “rules” for vari-
able ordering include selecting the variable with the small-
est domain first, or the variable with the maximum degree
or one for which the ratio of domain size to degree is min-
imized. Specific rules for value selection include the min-
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imum number of conflicts, or the maximum minimum do-
main size after some form of propagation, etc. The rationale
usually given for variable ordering heuristics is based on the
Fail-First Principle (discussed below), while that for value
ordering is related to the total number of values still allowed
after a particular value is chosen.

Relevant Concepts from Decision Analysis

In the study of decision making it is usual to divide the field
of endeavour into three parts, called normative, prescriptive,
and descriptive decision analysis. Normative analysis is con-
cerned with characterising rational decision making accord-
ing to first principles. Descriptive decision analysis is con-
cerned with decision making as an empirical phenomenon. It
tries to characterize how decision makers actually go about
making decisions, either under laboratory conditions or in
the field. Prescriptive decision analysis falls in between the
other two. It is concerned with the application of formal or
semi-formal procedures, based in part on assumptions about
rationality, in order to help the decision maker make real-
world decisions in line with rational principles.

As the reader undoubtedly knows, the central concept in
decision analysis is that of preference. Usually, this is rep-
resented by a preference relation over a set of alternatives.
Secondarily, there may be a utility function defined over the
same set and a representation theorem relating the function
to the preference relation. As far as I can discern, none of this
apparatus is especially useful in the present domain. This is
simply because preferences do not have to be defined apart
from the basic efficiency measures, which can be assessed
directly. So all that is needed for our purposes is the basic
tripartite distinction described above. This curious state of
affairs will be clarified as I describe the different lines of
work alluded to in the Introduction.

A Normative Framework for Variable
Ordering Heuristics

For search problems, there is an overall goal of minimizing
search effort in terms of the number of decisions that must
be made. This, therefore, provides the basis for any sensi-
ble framework for evaluating heuristics. For variable order-
ing heuristics, the most straightforward global measure of
search effort is the number of nodes in the search tree. A
“search node” is a partial instantiation of the variables. Thus,
every time an assignment is extended by assigning a value to
another variable (variable k+1), and every time the current
variable (k) is given a different assignment, we consider that
an additional search node has been generated.

Other measures of search effort have been suggested, such
as number of backtracks or number of search nodes associ-
ated with a domain wipeout. But these measures are either
not monotonic in the number of search nodes or simply give
a subset of nodes without explaining why this is superior to
counting all of them.

Moreover, all these methods of counting are simple em-
pirical measures of search effort. Next I will outline an al-
ternative approach, based on an abstract model of perfect
search. This allows us to evaluate performance quality in a



way that is much more general. More importantly, on this ba-
sis we can develop a more articulated assessment of search
effort grounded on a rational model.

A new framework based on ideal policies

Some years ago (Beck, Prosser, and Wallace 2003) intro-
duced what they called the Policy Framework as a means of
characterising performance quality when variables are cho-
sen using a given heuristic. This framework has two basic
elements, called policies and heuristics. Both are concerned
with selecting the next variable to instantiate during search.
Heuristics are defined as before. Policies, on the other hand,
define decisions in terms of goals or end-results. Moreover,
policies are to be construed as characterizing ideal (or if you
like, optimal) decisions. They can be thought of as carried
out under conditions of perfect information regarding which
choice should be made at a given point in search.

From the perspective of decision analysis, the Policy
Framework is a normative model of variable selection,
which describes how decisions should be made under ideal
conditions. As with all normative models of decision mak-
ing, the purpose of this approach is to characterize the
quality of actual decision rules in terms of a reasonable
ideal. This is analogous to the situation in ordinary Deci-
sion Theory where one makes decisions in accordance with
a well-defined utility function. Here, the model describes an
ideal case in which one has complete information about the
preferability of each possible choice.

Now, what are the actual policies? In the present context,
where the decision is what variable to choose next for as-
signment, two policies can be distinguished, which depend
on the state of search. When search is in a state that has
solutions in its subtree, effort will be minimized by making
decisions that remain on a path to a solution. As this involves
making decisions that are most promising in that regard, this
is called the promise policy. However, when search is in a
subtree that does not contain solutions, this policy obviously
cannot hold. In this case, to minimize search effort, choices
should be made so as to fail as quickly as possible so that
search can return to a path that leads to a solution. This is
called the fail-first policy.

Notice that the two policies are based on a partition of
search nodes into those that have solutions in their subtree
(“good” nodes) and those which do not (“bad” nodes). If
the partition that a node is in is known, the policy which
leads to minimal search effort is given. Achieving that goal
in practice usually involves heuristics because, (i) typically
since we do not know whether the current node is good or
bad, we do not know which policy to adhere to, (ii) even
knowing a policy, we do not know how to adhere to it.

The Fail-First principle

Harralick and Eliot were the first to knowingly apply the
Fail-First Principle to CSP search (Haralick and Elliott
1980). Their original statement of the principle was (p. 302):

The fail first principle states that we should first try
those tests in the given set of tests that are most likely
to fail since if they do fail we do not have to do the
remainder of tests in the set.
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In the context of CSP search, a “test” is a choice of the next
variable to make assignments to.

First of all, it should be noted that the Fail-First Princi-
ple is not the same as the fail-first policy. From the perspec-
tive of decision analysis, the Fail-First Principle is a gen-
eral prescriptive rule rather than a search heuristic, although
as noted earlier this has not always been recognized. When
Harralick and Eliot introduced their prescriptive rule, there
was no normative theory to serve as a framework. But given
the Policy Framework, we can recast this principle in terms
of the policies we have described, thus showing more clearly
what it is meant to convey.

Put in these terms, the principle says that in choosing the
next variable to instantiate, one should always act as if the
fail-first policy is in force. Under this assumption, a good
heuristic is one that conforms to this policy. In this form,
the Fail-First Principle can be viewed as a kind of ideal
metaheuristic that specifies which policy to take into ac-
count during search. It is ideal because one does not actually
know which policy is in force at a given point during search.
Nonetheless, it can serve as a general guide in heuristic de-
sign. This was demonstrated by Harralick and Eliot when
they showed that min domain size has properties that con-
form to general expectations under the Fail-First Principle.

The present analysis is the first to place this well-known
principle within a general framework and thus to give it a
coherent characterization. This is further evidence that the
Policy Framework is a sensible one as well as showing the
usefulness of formulating a normative model.

Policies and performance measures

The policy framework is intended to provide a more coher-
ent analysis of the quality of heuristic performance than can
be provided by measures of overall effort alone. But for this
purpose, measures are needed to assess the degree to which
a heuristic adheres to each policy.

A measure of adherence of a variable ordering heuristic to
the promise policy must be based on the mean likelihood of
choosing a value that will lead to a solution across all paths
in the (all-solutions) search tree (Beck, Prosser, and Wallace
2003). Although we initially used Monte Carlo methods to
estimate such probabilities, a better measure can be obtained
by carrying out an exhaustive search while collecting sums
of products that are returned at successively higher levels of
the search tree. Summing is done across the values at a given
level of search, and products are taken along search paths.

For the fail-first policy, an adequate measure must be
based on the average size of the subtree associated with an
assignment that does not lead to a solution, i.e. the average
size of an insoluble subtree rooted at the first bad assign-
ment. This is called a “mistake-tree” to distinguish it from
insoluble trees in the ordinary sense (Beck, Prosser, and
Wallace 2005). By specifying the root as the first ‘bad’ as-
signment, we produce an intensity measure, and we are able
to compare heuristics across soluble and insoluble problems
with respect to the intensity of fail-firstness.

Other candidate measures of fail-firstness such as aver-
age depth of failure and number of failures are affected by
promise as well as fail-firstness and for this reason are not
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able ordering heuristics and anti-heuristics.

adequate. Fail-length, which is the difference in depth be-
tween the initial mistake and an actual failure, avoids this
problem; since it is an average value, it is also a true inten-
sity measure. However, tests have shown that it is essential
to take the branching factor into account in measuring fail-
firstness as well as rapidity of failure (Beck, Prosser, and
Wallace 2005).

It is not yet clear how best to combine such data to make
a global measure, as we can with the promise measure. To
date, it has been found sufficient to consider mean mistake-
tree size for single levels or averaged across the first & levels.

Insights obtained with the Policy Framework

These tools can be used to demonstrate basic properties of
heuristics as well as elucidating specific puzzles. An ex-
ample of the former is the demonstration made early in
our investigations that in general good heuristics not only
have superior fail-firstness but also superior promise. This
is shown in Figure 1, based on (Beck, Prosser, and Wallace
2003). This means that a complete account of heuristic per-
formance must pay attention to both policies; the fail-first
policy by itself does not give a complete account of why
one heuristic outperforms another. Note also that this in it-
self does not contradict the prescriptive Fail-First Principle,
although it suggests that the Principle may have limitations
in practice.

Occasionally, one finds that a heuristic based on a com-
plex of problem features shows good fail-firstness and at the
same time poor promise. This occurs in the fail-first series
of (Smith and Grant 1998). These authors derived a series of
heuristics (called min-domain, FF2, FF3 and FF4) that gave
successively better approximations to a formula for the like-
lihood of failure. Nonetheless, when these were used with
the forward-checking algorithm, performance did not match
the degree of approximation. With the policy measures it can
be shown that fail-firstness does improve successively as ex-
pected, but FF3 and FF4 show poor adherence to the promise
policy in comparison with FF1 and 2 (Table 1, from (Wal-
lace 2006)). These results also show that, contrary to initial
expectations, adherence to the promise policy is important
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FC MAC
heur  promise ff promise ff
dom .0007475 206 .006807 30.9
ff2 .0006783 115 .007337 19.0
ff3 .0000028 87 .007221 16.5
ff4 .0000002 47 .007494 12.7

Note. <30,8,0.31,0.34> problems. Means for 100
problems. ff measure is mean mistake-tree size.

Table 1: FF Series: Policy Adherence with FC and MAC

even when problems are in a critical complexity region.

Descriptive Analyses of Heuristic Performance

The normative-prescriptive framework just described does
not give direct insight into why heuristics actually work.
Given the scheme proposed here, we can see why this is so;
it is because this question must be answered at the descrip-
tive level of decision analysis. But to answer this question
properly, we must consider more carefully what the actual
problem is.

Heuristic features versus heuristic effects

Almost all work in the field of heuristic studies has focused
on finding metrics that can be used to make heuristic deci-
sions. An important early discovery was that features can be
either static or dynamic, the latter referring to features that
change during the course of search. A standard static feature
is the degree of a variable. Two classical dynamic features
are the current size of a variable’s domain and the “forward
degree” of a variable, that is, the number of adjacent vari-
ables not yet assigned values. One of the most interesting
early empirical discoveries is that great improvements in ef-
ficiency can be obtained when metrics are based on dynamic
features such as these. A major recent advance in this depart-
ment was the introduction about ten years ago of adaptive
heuristics such as impact or weighted degree (Boussemart
et al. 2004; Refalo 2004). These heuristics use information
gathered during search in order to make finer discrimina-
tions among variables than is possible with either static or
dynamic features.

However, none of this work serves to explain why heuris-
tics are effective. To answer this question properly, we must
first deal with a more general question, which is: how many
ways are there in which variable ordering heuristics can im-
prove search? Given that several dozen variable ordering
heuristics have been proposed over the past 50 years, one
can pose a question that is roughly equivalent: to what de-
gree are these heuristics actually doing different things in
order to improve search? Or are they doing the same thing
with varying degrees of efficiency?

Factor analytic studies of heuristic action

Answers to these questions can be obtained using the well-
known statistical technique of factor analysis (FA). Most
people in AI know this method mainly through principle
components analysis. The difference between the two is that



with FA one is trying to find a particular model with m fac-
tors that explains an appreciable amount of the variance in n
measures, where m << n.

Patterns of performance across a set of (homogeneous)
random binary CSPs having the same basic parameter val-
ues (i.e. same number of variables, domain size, etc.) for
the same algorithm, but with twelve different heuristics,
were subjected to factor analysis. By combining this tech-
nique with various experimental controls, it was possi-
ble to show that over 90% of the variance in the results
could be explained with only two factors (Wallace 2005;
2008). All heuristics tested showed higher correlations with
one or the other of the two factors. Thus, heuristics could be
classified according to the factor they ‘favoured’. It is criti-
cal to note, however, that there were usually definite positive
loadings on both factors (typically, .45 versus .85 for a given
heuristic).

Now, since all that factor analysis does is extract patterns
of variation, further analysis (both conceptual and experi-
mental) is necessary to determine the cause of this varia-
tion and whether it is of scientific significance. In the present
case, there is compelling evidence that these two factors re-
flect two distinct heuristic actions. The distinctness is also
indicated by the fact that factor analysis in its usual form
extracts uncorrelated factors.

The most compelling evidence for this comes from ex-
periments in which heuristics were based on additive com-
binations of rankings derived from two or more of the basic
heuristics used in the original experiments (Wallace 2006). It
was shown that combinations of heuristics that loaded most
heavily on the different factors served to enhance search,
so that performance was better than the best heuristic used
singly. This effect was called “heuristic synergy”. If heuris-
tics favoured the same factor, results for the combination
were in between those for the heuristics used singly. More-
over, synergistic effects were as great for appropriate com-
binations of two heuristics as for combinations of three or
more, which supports the hypothesis that there are only two
basic kinds of heuristic action for these problems (and pos-
sibly only two fundamental heuristic actions in general).

Table 2. Development of Promise with Successive
Correct Assignments for Different Heuristics

level
mean
heur nodes 0 1 2 3 4
d/dg 103 .083 .167 500  1.000 1.000
fd 69 .048 .333 1.000 1.000 1.000

A <30,8,0.31,0.37> problem with two heuristics.
“level” is assignments before promise calculation.

Further evidence comes from the fact that the two heuris-
tic actions have different performance signatures (Wallace
2008). That is, measures such as average depth of failure or
average branching factor show striking differences between
the two groups. In addition, although the usual fail-first
measure does not distinguish between the two actions, the
promise measure can be used to discriminate between them.
If one measures promise at successive levels of search, one
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finds that the rate of increase in this measure is much greater
for the forward-degree type of heuristic, and again there is
no overlap in the averages. Thus, with 100 30-variable prob-
lems, the mean search level at which the promise measure
first equalled 1.0 varied between 4.5 and 9.5 for the min-
domain type of heuristics and 3.5 and 4.1 for forward-degree
heuristics. An example for one problem in this set is shown
in Table 2 from (Wallace 2008).

It is possible to associate one of these two heuristic ac-
tions with the simplification idea of (Hooker and Vinay
1995); hence, it is referred to as the “simplification factor”.
The other factor is referred to as the “contention factor”
(Wallace 2008). Another way of describing these actions is
to say that the latter focuses on immediate failure (i.e. failure
of the current variable), while the former focuses on future
failure (Wallace 2005).

Note that the proposal is not that there are two classes of
heuristics, although an important question is why heuristics
tend to fall into two classes with respect to basic heuristic
actions. In fact, a heuristic based on more than one problem
feature may be more highly associated with one or the other
action depending on the kind of problem. Thus, two heuris-
tics in the aforementioned FF series of (Smith and Grant
1998), FF2 and FF3, are contention heuristics when used
on random CSPs and simplification heuristics when used on
random k-colouring problems (Wallace 2008).

Figure 2 shows a comparison between a ‘simplification
heuristic’ (max forward degree, fd) and a ‘contention heuris-
tic’ (the fail-first heuristic ff2), which have roughly similar
efficiency in a given sample of homogeneous random CSPs.
Here, two samples were culled from a larger set of problems;
these were the problems in which one type of heuristic or
the other was most strongly favoured. Each heuristic has a
characteristic performance signature which is found whether
or not it performs efficiently. For the simplification heuris-
tic most of the work is done at lower levels of the search
tree, while for the contention heuristic most work occurs at
deeper levels and is more spread out. When problems are
amenable to one heuristic action the curve of effort is greatly
reduced, but the shape of the curve remains the same.

All this should not be taken to mean that different heuris-
tics are not useful for different problem classes. This is be-
cause with problems with heterogeneous features different
parts of the problem may be differentially amenable as well.
In particular, heuristics that use different metrics may se-
lect different parts of the problem at the beginning of search.
Then, if that part of the problem is amenable to the kind of
heuristic action produced by that heuristic, then these heuris-
tics will outperform other heuristics that either do not choose
this part of the problem first or do not effect an appropriate
action. Evidence for this has been obtained using heteroge-
neous random problems (Wallace 2008).

Other Kinds of Heuristics

The same tripartite approach presented here may also be
useful in the analysis of, (i) value ordering heuristics, (ii)
heuristics for selecting the next queue element in certain arc
consistency algorithms such as AC-3. In the latter case, what
was in fact a prescriptive rule was suggested by Waltz when
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higher curve is for performance on the set of problems that
it did poorly on. Hence, each problem set is associated with
a higher curve and a lower curve of the alternative type.

he introduced the idea of arc consistency (Waltz 1975). The
rule was simply to delete values as quickly as possible in
order to process the problem more efficiently. This was re-
named the ASAP Principle by (Wallace and Freuder 1992),
and although there it was distinguished from AC heuristics
by calling it a “performance principle”, its status as an ideal
meta-heuristic was not yet recognized.

Concluding Comments

With this decision theoretic framework, we can now or-
ganize previous advances in the scientific analysis of CSP
heuristics in a coherent fashion. Of course, we are still far
from the ultimate goal of heuristic design from first princi-
ples. Nonetheless, this goal can only be achieved after devel-
oping a coherent framework. The claim made in this paper is
that the basic elements of this framework are now in place.

However, there are still many unanswered questions and
major gaps to be filled. Perhaps the most important question
is the nature of these heuristic actions. As yet, our under-
standing is largely intuitive. An answer to this fundamental
question should also answer the following:

e What is the basis for the characteristic signature of each
of the two types of heuristic action?

e Why is balancing heuristic actions so effective and why
do adaptive heuristics facilitate this balancing?

There are also questions about the relation between the
normative model and the number and nature of the heuris-
tic actions that are still unresolved. As already indicated, the
relation between these levels of analysis is not straightfor-
ward. It may be that significant relations exist with respect
to dynamic changes in promise and fail-firstness as search
continues, but this is a line of inquiry that has not yet been
explored.
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Finally, I think it is interesting in itself that the classical
tripartite decision theoretic framework has proven to be use-
ful in this context. It raises the question of whether a similar
approach would be useful in other cases of algorithmic non-
determinism.
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