
Enforcing Relational Matching Dependencies
with Datalog for Entity Resolution

Zeinab Bahmani, Leopoldo Bertossi∗
Carleton University, Ottawa, Canada.

zbahmani@connect.carleton.ca, bertossi@scs.carleton.ca

Abstract

Entity resolution (ER) is about identifying and merging
records in a database that represent the same real-world en-
tity. Matching dependencies (MDs) have been introduced and
investigated as declarative rules that specify ER policies. An
ER process induced by MDs over a dirty instance leads to
multiple clean instances, in general. General answer sets pro-
grams have been proposed to specify the MD-based cleaning
task and its results. In this work, we extend MDs to relational
MDs, which capture more application semantics, and identify
classes of relational MDs for which the general ASP can be
automatically rewritten into a stratified Datalog program, with
the single clean instance as its standard model.

1 Introduction
The presence in a database of duplicate, but non-identical
representations of the same external entity leads to uncer-
tainty. Applications running on top of the database or
a query answering process may not be able to tell them
apart, and the results may lead to ambiguity, semantic prob-
lems, such as unintended inconsistencies, and erroneous re-
sults. In this situation, the database has to be cleaned. The
whole area of entity resolution (ER) deals with identifying
and merging database records in a database that refer to
the same real-world entity (Bleiholder and Naumann 2008;
Elmagarmid, Ipeirotis and Verykios 2007). In so doing, du-
plicates are eliminated from the database, while at the same
time new tuples are created through the merging process. ER
is one of the most common and difficult problems in data
cleaning.

In the last few years there has been strong and increas-
ing interest in providing declarative and generic solutions to
data cleaning problems (Bertossi and Bravo 2013), in par-
ticular, in logical specifications of the ER process. In this
direction, matching dependencies (MDs) have been proposed
(Fan 2008; Fan et al. 2009). They are declarative rules that
assert that certain attribute values in relational tuples have
to be merged, i.e. made identical, when certain similarity
conditions hold between possibly other attribute values in
those tuples.

∗Contact author. Research funded by NSERC Discovery.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Example 1. Consider the relational predicate R(A,B), with
attributes A and B. The symbolic rule R[A] ≈ R[A] →
R[B]

.
= R[B] is an MD specifying that, if for any two

database tuples R(a1, b1), R(a2, b2) in an instance D, when
A-values are similar, i.e. a1 ≈ a2, then their B-values have
to be made equal (merged), i.e. b1 or b2 (or both) have to be
changed to a value in common.

Let us assume that ≈ is reflexive and symmetric, and that
a2 ≈ a3, but a2 �≈ a1 �≈ a3. The table on the left-hand
side (LHS) below provides the extension for predicate R in
D. In it some duplicates are not “resolved”, e.g. the tuples
(with tuple identifiers) t1 and t2 have similar – actually equal
– A-values, but their B-values are different.

R(D) A B
t1 a1 b1
t2 a1 b2
t3 a2 b3
t4 a3 b4

R(D′) A B
t1 a1 b1
t2 a1 b1
t3 a2 b5
t4 a3 b5

D does not satisfy the MD, and is a dirty instance. After
applying the MD, we could get the instance D′ on the right-
hand side (RHS), where values for B have been identified.
D′ is stable in the sense that the MD holds in the traditional
sense of an implication and “=” on D′, which we call a clean
instance. In general, for a dirty instance and a set of MDs,
multiple clean instances may exist. Notice that if we add
the MD R[B] ≈ R[B] → R[A]

.
= R[A], creating a set of

interacting MDs, a merging with one MD may create new
similarities that enable the other MD. �

A dynamic semantics for MDs was introduced in (Fan et
al. 2009), that requires pairs of instances: a first one where
the similarities hold, and a second where the mergings are
enforced, e.g. D and D′ in Example 1. MDs, as introduced
in (Fan et al. 2009), do not specify what values to use when
merging two attribute values.

The semantics was refined and extended in (Bertossi, Ko-
lahi and Lakshmanan 2012) by means of matching functions
(MFs) providing values for equality enforcements. An MF
induces a lattice-theoretic structure on an attribute’s domain.
Actually, a chase-based semantics for MD enforcement was
proposed. On this basis, given an instance D and a set Σ of
MDs, wrt. which D may contain duplicates, the chase proce-
dure may lead to several different clean and stable solutions
D′. Each of them can be obtained by means of a provably
terminating, but non-deterministic, iterative procedure that

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

718



enforces the MDs through application of MFs. The set of
all such clean instances is denoted by C(D,Σ). Each clean
instance can be seen as the result of an uncertainty reduc-
tion process. If at the end there are several possible clean
instances, uncertainty is still present, and expressed through
this class of possible worlds. Identifying cases for which a
single clean instance exists is particularly relevant: for them
uncertainty can be eliminated.

In (Bahmani et al. 2012), a declarative specification of
this procedural data cleaning semantics was proposed. More
precisely, a general methodology was developed to produce,
from D, Σ and the MFs, an answer set program (ASP) (Gel-
fond and Lifschitz 1991; Brewka, Eiter and Truszczynski
2011) whose models are exactly the clean instances in the
class C(D,Σ). The ASP enables reasoning in the presence of
uncertainty due to multiple clean instances. Computational
implementations of ASP can be then used for reasoning, for
computing clean instances, and for computing certain query
answers (aka. clean answers), i.e. those that hold in all the
clean instances (Bahmani et al. 2012). Disjunctive ASPs, aka.
disjunctive Datalog programs with stable model semantics
(Eiter, Gottlob and Mannila 1997), are used (and provably
required) for this task.

For some classes of MDs, for any given initial instance
D, the class C(D,Σ) contains a single clean instance that
can be computed in polynomial time in the size of D. Some
sufficient syntactic and MF-dependent conditions were iden-
tified in (Bertossi, Kolahi and Lakshmanan 2012). In this
work we identify a new important “semantic” class of MDs,
where the initial instance is also considered. This is the
similarity-free attribute intersection class (the SFAI class)
of combinations of MDs and initial instances. Members
of this class also have (polynomial-time computable) sin-
gle clean instances. For all these classes, we show that the
general ASP mentioned above can be automatically and syn-
tactically transformed into an equivalent stratified Datalog
program with the single clean instance as its standard model,
which can be computed bottom-up from D in polynomial
time in the size of D (Abiteboul, Hull, and Vianu 1995;
Ceri, Gottlob and Tanca 1989).

Relational ER has been approached by the machine learn-
ing community (Bhattacharya and Getoor 2007). The idea
is to learn from examples a classifier that can be used to de-
termine if an arbitrary pair of records (or tuples), r1, r2, are
duplicates (or each other) or not. In order to speed up the pro-
cess of learning and applying the classifier, usually blocking
techniques are applied (Whang et al. 2009). They are used
to group records in clusters (blocks), for further comparison
of pairs within clusters, but never of two records in different
clusters. Interestingly, as reported in (Bahmani, Bertossi, and
Vasiloglou 2015), MDs can be used in the blocking phase.
As expected, MDs were also used during the final merging
phase, after the calls to the classifier. However, the use at
the earlier stage is rather surprising. The kind of MDs in
this case turn out to belong, together with the initial instance,
to the SFAI class. Actually, this allowed implementation of
MD-based blocking by means of Datalog.

The reason for using MDs at the blocking stage is that
they may convey semantic relationships between records for

different entities, and can then be used to collectively block
records for different entities (Bhattacharya and Getoor 2007):
blocking together two records for an entity, say of books,
may depend on having blocked together related records for
a different entity, say of authors. For these kinds of applica-
tions, to capture semantic relationships, MDs were extended
with relational atoms (conditions) in the antecedents, leading
to the class of relational MDs.

In this work we also introduce and investigate the class of
relational MDs, we extend the single-clean instance classes
mentioned above to the relational MD case, and we obtain in
a uniform manner Datalog programs for the enforcement of
MDs in these classes. For lack of space, our presentation is
based mainly on representative examples.

2 Background
We consider relational schemas R with a possibly infinite
data domain U , a finite set of database predicates, e.g. R,
and a set of built-in predicates, e.g. =, �=. Each R ∈ R
has attributes, say A1, . . . , An, each of them with a domain
DomAi

⊆ U . We may assume that the Ais are different,
and different predicates do not share attributes. However,
different attributes may share the same domain.

An instance D for R is a finite set of ground atoms (or
tuples) of the form R(c1, . . . , cn), with R ∈ R, ci ∈ DomAi .
We will assume that tuples have identifiers, as in Example 1.
They allow us to compare extensions of the same predicate
in different instances, and trace changes of attribute values.
Tuple identifiers can be accommodated by adding to each
predicate R ∈ R an extra attribute, T , that acts as a key. Then,
tuples take the form R(t, c1, . . . , cn), with t a value for T .
Most of the time we leave the tuple identifier implicit, or we
use it to denote the whole tuple. More precisely, if t is a tuple
identifier in an instance D, then tD denotes the entire atom,
R(c̄), identified by t. Similarly, if A is a list of attributes
of predicate R, then tD[A] denotes the tuple identified by t,
but restricted to the attributes in A. We assume that tuple
identifiers are unique across the entire instance.

For a schemaR with predicates R1[L̄1], R2[L̄2], with lists
of attributes L̄1, L̄2, resp., a matching dependency (MD) (Fan
et al. 2009) is an expression of the form:

ϕ : R1[X̄1] ≈ R2[X̄2] −→ R1[Ȳ1]
.
= R2[Ȳ2]. (1)

Here, X̄1, Ȳ1 are sublists of L̄1, and X̄2, Ȳ2 sublists of L̄2.
The lists X̄1, X̄2 (also Ȳ1, Ȳ2) are comparable, i.e. the at-
tributes in them, say Xj

1 , X
j
2 , are pairwise comparable in the

sense that they share the same data domain Domj on which
a binary similarity (i.e. reflexive and symmetric) relation ≈j

is defined.
The MD (1) intuitively states that if, for an R1-tuple t1 and

an R2-tuple t2 in an instance D the attribute values in tD1 [X̄1]
are similar to attribute values in tD2 [X̄2], then the values
tD1 [Ȳ1] and tD2 [Ȳ2] have to be made identical. This update
results in another instance D′, where tD

′
1 [Ȳ1] = tD

′
2 [Ȳ2]

holds. W.l.o.g., we may assume that the list of attributes on
the RHS of MDs contain only one conjunct (attribute).

For a set Σ of MDs, a pair of instances (D,D′) satisfies Σ
if whenever D satisfies the antecedents of the MDs, then D′

719



satisfies the consequents (taken as equalities). If (D,D) �|=
Σ, we say that D is “dirty” (wrt. Σ). On the other hand, an
instance D is stable if (D,D) |= Σ (Fan et al. 2009).

We now review some elements in (Bertossi, Kolahi and
Lakshmanan 2012). In order to enforce an MD on two tu-
ples, making values of attributes identical, we assume that
for each comparable pair of attributes A1, A2 with domain
(in common) DomA, there is a binary matching function
(MF) mA : DomA × DomA → DomA, such that mA(a, a

′)
is used to replace two values a, a′ ∈ DomA whenever nec-
essary. MFs are idempotent, commutative, and associative.
Similarity relations and MFs are treated as built-in relations.

A chase-based semantics for entity resolution with MDs is
as follows: starting from an instance D0, we identify pairs
of tuples t1, t2 that satisfy the similarity conditions on the
left-hand side of an MD ϕ, i.e. tD0

1 [X̄1] ≈ tD0
2 [X̄2] (but not

the identity in its RHS), and apply an MF on the values for
the right-hand side attribute, tD0

1 [A1], t
D0
2 [A2], to make them

both equal to mA(t
D0
1 [A1], t

D0
2 [A2]). We keep doing this on

the resulting instance, in a chase-like procedure (Abiteboul,
Hull, and Vianu 1995), until a stable instance is reached (cf.
(Bertossi, Kolahi and Lakshmanan 2012) for details), i.e. a
clean instance. An instance D0 may have several (D0,Σ)-
clean instances. C(D0,Σ) denotes the set of clean instances
for D0 wrt. Σ.

For given D and Σ, the class of clean instances can be spec-
ified as the stable models of a logic program Π(D0,Σ) in
Datalog∨,not , i.e. a disjunctive Datalog program with weak
negation and stable model semantics (Gelfond and Lifschitz
1991; Eiter, Gottlob and Mannila 1997), with rules of the
form: A1 ∨ . . .∨An ← P1, . . . , Pm, not N1, . . . , not Nk.
Here, 0 ≤ n,m, k, and Ai, Pj , Ns are (positive) atoms.
Rules with n = 0 are called program constraints and have
the effect of eliminating the stable models of the program
(without them) that make their bodies (RHS of the arrow) true.
When n = 1 and k = 0, we have (plain) Datalog programs.
When n ≥ 1 and not is stratified, we have disjunctive, strati-
fied Datalog programs, denoted Datalog∨,not,s. The subclass
with n = 1 is stratified Datalog, denoted Datalognot,s.

We now introduce general cleaning programs by means
of a representative example (for full generality and details,
see (Bahmani et al. 2012)). Let D0 be a given, possibly dirty
initial instance wrt. a set Σ of MDs. The cleaning program,
Π(D0,Σ), that we will introduce here, contains an (n+ 1)-
ary predicate R′

i, for each n-ary database predicate Ri. It will
be used in the form R′

i(T, Z̄), where T is a variable for the
tuple identifier attribute, and Z̄ is a list of variables standing
for the (ordinary) attribute values of Ri.

For every attribute A in the schema, with domain DomA,
the built-in ternary predicate MA represents the MF mA, i.e.
MA(a, a

′, a′′) means mA(a, a
′) = a′′. X �A Y is used as

an abbreviation for MA(X,Y, Y ). For attributes A without a
matching function,�A becomes the equality, =A. For lists of
variables Z̄1 = 〈Z1

1 , . . . Z
n
1 〉 and Z̄2 = 〈Z1

2 , . . . Z
n
2 〉, Z̄1 �

Z̄2 denotes the conjunction Z1
1 �A1

Z1
2 ∧ . . .∧Zn

1 �An
Zn
2 .

Moreover, for each attribute A, there is a built-in binary
predicate ≈A. For two lists of variables X̄1 = 〈X1

1 , . . . X
l
1〉

and X̄2 = 〈X1
2 , . . . X

l
2〉 representing comparable attribute

values, X̄1 ≈ X̄2 denotes the conjunction X1
1 ≈1 X1

2 ∧ . . .∧
X l

1 ≈l X
l
2.

In intuitive terms, program Π(D0,Σ) has rules to implic-
itly simulate a chase sequence, i.e. rules that enforce MDs on
pairs of tuples that satisfy certain similarities, create newer
versions of those tuples by applying matching functions, and
make the older versions of the tuples unavailable for other
rules. The main idea is making stable models of the pro-
gram correspond to valid chase sequences leading to clean
instances.

When the conditions for applying an MD hold, we have
the choice between matching or not.1 If we do, the tuples
are updated to new versions. Old versions are collected in a
predicate, and tuples that have not participated in a matching
that was possible never become old versions (see the last
denial constraint under 2. in Example 2, saying that the RHS
of the arrow cannot be made true).

The program eliminates, using program constraints, in-
stances (models of the program) that are the result of an ille-
gal set of applications of MDs, i.e. they cannot put them in a
linear (chronological) order representing chase steps. This
occurs when matchings use old versions of tuples that have
been replaced by new versions. To ensure that the matchings
are enforced according to an order that correctly represents
a chase, pairs of matchings are stored in an auxiliary rela-
tion, Prec. The last two program constraints under 6. in the
example make Prec a linear order. In particular, matchings
performed using old versions of tuples are disallowed.

Example 2. Consider relation R(A,B) with extension in D0
as below; and assume that exactly the following similarities
hold: a1 ≈ a2, b2 ≈ b3; and the MFs are as follows:

MB(b1, b2, b12),
MB(b2, b3, b23),
MB(b1, b23, b123),
MB(b3, b4, b34).

R(D0) A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

Σ contains the MDs:
ϕ1 : R [A] ≈ R [A] → R [B]

.
= R [B],

ϕ2 : R [B] ≈ R [B] → R [B]
.
= R [B],

which are interacting in that the set of attributes in the RHS
of ϕ1, namely {R[B]}, and the set of attributes in the LHS
of ϕ2, namely {R[B]}, have non-empty intersection. For the
same reason, ϕ2 also interacts with itself. Enforcing Σ on D0

results in two alternative chase sequences, each enforcing the
MDs in a different order, and two final stable clean instances
D1 and D′

2.
D0 A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

⇒ϕ1

D1 A B
t1 a1 b12
t2 a2 b12
t3 a3 b3

D0 A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

⇒ϕ2

D′
1 A B

t1 a1 b1
t2 a2 b23
t3 a3 b23

⇒ϕ1

D′
2 A B

t1 a1 b123
t2 a2 b123
t3 a3 b23

The cleaning program Π(D0,Σ) is as follows:

1Matching is merging, or making identical, two attribute values
on the basis of the MDs.

720



1. R′(t1, a1, b1). R
′(t2, a2, b2). R

′(t3, a3, b3). (plus MB facts)

2. Matchϕ1(T1, X1, Y1, T2, X2, Y2) ∨
NotMatchϕ1(T1, X1, Y1, T2, X2, Y2) ←

R
′
(T1, X1, Y1), R

′
(T2, X2, Y2), X1 ≈ X2, Y1 �= Y2.

Matchϕ2(T1, X1, Y1, T2, X2, Y2) ∨
NotMatchϕ2(T1, X1, Y1, T2, X2, Y2) ←

R
′
(T1, X1, Y1), R

′
(T2, X2, Y2), Y1 ≈ Y2, Y1 �= Y2.

Matchϕi(T1, X1, Y1, T2, X2, Y2) ←
Matchϕi(T2, X2, Y2, T1, X1, Y1). (i ∈ {1, 2})

OldVersion
R
(T1, Z̄1) ← R

′
(T1, Z̄1), R

′
(T1, Z̄

′
1),

Z̄1 � Z̄
′
1, Z̄1 �= Z̄

′
1.

← NotMatchϕi(T1, X1, Y1, T2, X2, Y2),

not OldVersion
R
(T1, X1, Y1),

not OldVersion
R
(T2, X2, Y2). (i ∈ {1, 2})

3. R
′
(T1, X1, Y3) ← Matchϕ1(T1, X1, Y1, T2, X2, Y2),

MB(Y1, Y2, Y3).

R
′
(T1, X1, Y3) ← Matchϕ2(T1, X1, Y1, T2, X2, Y2),

MB(Y1, Y2, Y3).

4. Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y
′
1 , T3, X3, Y3) ←

Matchϕi(T1, X1, Y1, T2, X2, Y2),

Matchϕj(T1, X1, Y
′
1 , T3, X3, Y3),

Y1 � Y
′
1 , Y1 �= Y

′
1 . (i, j ∈ {1, 2})

5. Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y1, T3, X3, Y3) ←
Matchϕi(T1, X1, Y1, T2, X2, Y2),

Matchϕj(T1, X1, Y1, T3, X3, Y3), MB(Y1, Y3, Y4),

Y1 �= Y4. (i, j ∈ {1, 2})

6. Prec(T1, Z̄1, T2, Z̄2, T1, Z̄1, T2, Z̄2) ←
Matchϕi(T1, Z̄1, T2, Z̄2). (i ∈ {1, 2})

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),

Prec(T1, Z̄
′
1, T3, Z̄3, T1, Z̄1, T2, Z̄2),

(T1, Z̄1, T2, Z̄2) �= (T1, Z̄
′
1, T3, Z̄3).

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),

Prec(T1, Z̄
′
1, T3, Z̄3, T1, Z̄

′′
1 , T4, Z̄4),

not Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′′
1 , T4, Z̄4).

7. R
c
(T1, X1, Y1) ← R

′
(T1, X1, Y1),

not OldVersion
R
(T1, X1, Y1).

The program constraint under 2. (last in the list) ensures
that all new, applicable matchings have to be eventually car-
ried out. The last set of rules (one for each database predicate)
collect the final, clean extensions of them.

Program Π(D0,Σ) has two stable models, whose Rc-
atoms are shown below:
M1 = {..., Rc(t1, a1, b12), R

c(t2, a2, b12), R
c(t3, a3, b3)},

M2 = {..., Rc(t1, a1, b123), R
c(t2, a2, b123), R

c(t3, a3, b23)}.

From them we can read off the two clean instances D1, D′
2

for D0 that were obtained from the chase. �

The cleaning program Π(D0,Σ) allows us to reason in
the presence of uncertainty as represented by the possibly
multiple clean instances. Actually, it holds that there is a
one-to-one correspondence between C(D0,Σ) and the set
SM (Π(D0,Σ)) of stable models of Π(D0,Σ). Furthermore,
the program Π(D0,Σ) without its program constraints be-
longs to the class Datalog∨,not,s, the subclass of programs in
Datalog∨,not that have stratified negation (Eiter and Gottlob
1995). As a consequence, its stable models can be computed
bottom-up by propagating data upwards from the underlying
extensional database (that corresponds to the set of facts of
the program), and making sure to minimize the selection
of true atoms from the disjunctive heads. Since the latter
introduces a form of non-determinism, a program may have
several stable models. If the program is non-disjunctive, i.e.
belongs to the Datalognot,s, it has a single stable model that
can be computed in polynomial time in the size of the ex-
tensional database D. The program constraints in Π(D0,Σ)
make it unstratified (Gelfond and Kahl 2014). However, this
is not a crucial problem because they act as a filter, eliminat-
ing the models that make them true from the class of models
computed with the bottom-up approach.

3 Relational MDs
We now introduce a class of MDs that have found useful
applications in blocking for learning a classifier for ER (Bah-
mani, Bertossi, and Vasiloglou 2015). They allow bringing
additional relational knowledge into the conditions of the
MDs. Before doing so, notice that an explicit formulation of
the MD in (1) in classical predicate logic is:2

ϕ : ∀t1t2 ∀x̄1x̄2 (R1(t1, x̄1) ∧R2(t2, x̄2) ∧
∧

j

xj
1 ≈j xj

2 −→ y1
.
= y2), (2)

with xj
1, y1 ∈ x̄1, x

j
2, y2 ∈ x̄2. The ti are variables for tuple

IDs. LHS (ϕ) and RHS (ϕ) denote the sets of atoms on the
LHS and RHS of ϕ, respectively. Atoms R1(t1, x̄1) and
R2(t2, x̄2) contain all the variables in the MD; and similarity
and identity atoms involve one variable from each of R1, R2.

Now, relational MDs may have in their LHSs, in addi-
tion to the two leading atoms, as R1, R2 in (2), additional
database atoms, from more than one relation, that are used
to give context to similarity atoms in the MD, and capture
additional relational knowledge via additional conditions.
Relational MDs extend “classical” MDs.
Example 3. With predicates Author(AID ,Name, PTitle,
ABlock), Paper(PID ,PTitle,Venue,PBlock) (with ID and
block attributes), this MD, ϕ, is relational:
Author(t1, x1, y1, bl1) ∧ Paper(t3, y

′
1, z1, bl4) ∧ y1 ≈ y′

1 ∧
Author(t2, x2, y2, bl2) ∧ Paper(t4, y

′
2, z2, bl4) ∧ y2 ≈ y′

2 ∧
x1 ≈ x2 ∧ y1 ≈ y2 −→ bl1

.
= bl2,

with implicit quantifiers, and underlined leading atoms (they
contain the identified variables on the RHS). It contains sim-
ilarity comparisons involving attribute values for both rela-
tions Author and Paper. It specifies that when the Author-
tuple similarities on the LHS hold, and their papers are similar

2Similarity symbols can be treated as regular, built-in, binary
predicates, but the identity symbol, .

=, would be non-classical.

721



to those in corresponding Paper-tuples that are in the same
block (an implicit similarity captured by the join variable bl4),
then blocks bl1, bl2 have to be made identical. This blocking
policy uses relational knowledge (the relationships between
Author and Paper tuples), plus the blocking decisions already
made about Paper tuples. �

4 Single-Clean-Instance Classes
First we introduce some notation. For an MD ϕ, ALHS (ϕ)
denotes the set of (non-tid) attributes (with predicates) ap-
pearing in similarities in the LHS of ϕ (including equal-
ities, implicit or not). Similarly, ARHS (ϕ) contains the
attributes appearing in identities in the RHS. In Example
3: ALHS(ϕ) = {Author [Name], Author [PTitle], Paper [PTitle],

Paper [PBlock ]}, ARHS(ϕ) = {Author [ABlock ]}.
As shown in (Bertossi, Kolahi and Lakshmanan 2012), for

the classical case of similarity-preserving MDs (i.e. whose
MFs satisfy a ≈A a′ implies a ≈ mA(a

′, a′′)), the chase-
procedure computes a single clean instance in polynomial
time in the size of the initial instance. The same holds for the
classical case of non-interacting MDs. Now, a set Σ of possi-
bly relational MDs is non-interacting if there are no ϕ1, ϕ2∈
Σ (possibly the same), with ARHS (ϕ1) ∩ ALHS (ϕ2) �= ∅.
Relational similarity-preserving MDs are trivially defined by
using similarity preserving MFs. Through simple changes in
the proofs given in (Bertossi, Kolahi and Lakshmanan 2012)
for classical similarity-preserving and non-interacting MDs,
it is possible to prove that, for both classes, for a given initial
instance D, there is a single resolved instance that can be
computed in polynomial time in the size of D. We say that
these classes of MDs have the single-clean instance property,
in short, they are SCI.

There is another class of combinations of relational MDs
Σ and initial instances D that lead to a single clean instance:3
That of similarity-free attribute intersection (SFAI) combina-
tions (Σ, D).

Definition 1. Let Σ be a set of relational MDs and D an
instance. The combination (Σ, D) has the SFAI property (or
is SFAI) if, for every ϕ1, ϕ2 ∈ Σ (which could be the same)
and attribute R[A] ∈ ARHS (ϕ1) ∩ ALHS (ϕ2), it holds: If
S1, S2 ⊆ D with R(c̄) ∈ S1 ∩ S2, then LHS (ϕ1) is false in
S1 or LHS (ϕ2) is false in S2.4 �

Non-interacting sets of MDs are trivially SFAI for every
initial instance D. In general, different orders of MD en-
forcements may result in different clean instances, because
tuple similarities may be broken during the chase with in-
teracting MDs and non-similarity-preserving MFs, without
reappearing again (Bertossi, Kolahi and Lakshmanan 2012).
With SFAI combinations, two similar tuples, i.e. with similar
attribute values, in the original instance D -or becoming sim-
ilar along a chase sequence- may have the similarities broken
in a chase sequence, but they will reappear later on in the
same and the other chase sequences. Thus, different orders

3More precisely, it is duplicate-free wrt. the MDs, i.e. no
additional enforcements thereof are possible

4We informally say that ϕ1 is not applicable in S1, etc.

of MD enforcements cannot lead in the end to different clean
instances.

Contrary to the syntactic class of non-interacting (re-
lational) MDs and the MF-dependant class of similarity-
preserving MDs, SFAI is a semantic class that depends on
the initial instance (but not on subsequent instances obtained
through the chase). Checking the SFAI property for (Σ, D)
can be done by posing Boolean conjunctive queries (with
similarity built-ins) to D; actually for each pair ϕ1, ϕ2 in Σ,
a query, QA

ϕ1,ϕ2
, if A ∈ ARHS (ϕ1) ∩ ALHS (ϕ2), and a

query, QB
ϕ2,ϕ1

, if B ∈ ARHS (ϕ2) ∩ ALHS (ϕ1).5

Example 4. (ex. 2 cont.) Consider the same classical MDs
and MFs, but now with a1 ≈ a2, b3 ≈ b4, and new instance:

R(D) A B
t1 a1 b1
t2 a2 b2
t3 a3 b3
t4 a4 b4

The MDs are interacting,
and both applicable on D,
i.e. their LHSs are true.
We can check the SFAI
property for the

combination (Σ, D) posing the following, implicitly existen-
tially quantified, Boolean conjunctive queries to D:6

QR[B]
ϕ1,ϕ2

: R(t1, x1, y1) ∧ R(t2, x2, y2) ∧ x1 ≈ x2 ∧
R(t3, x3, y3) ∧ y2 ≈ y3,

QR[B]
ϕ2,ϕ2

: R(t1, x1, y1) ∧ R(t2, x2, y2) ∧ y1 ≈ y2 ∧
R(t3, x3, y3) ∧ y2 ≈ y3.

which take the value false
in D. Then, (Σ, D) is
SFAI. This is consistent
with the easily verifiable
observation that, no matter

R(D′) A B
t1 a1 b12
t2 a2 b12
t3 a3 b34
t4 a4 b34

how the MDs are applied, a single clean instance, D′ above,
is always achieved. �

The example shows that it is possible to decide in polyno-
mial time in the size of D if a combination (Σ, D) is SFAI:
The number of queries does not depend on D, and they can
be answered in polynomial time in data. Furthermore, it is
possible to prove from the definition and the chase that SFAI
(sets of) MDs are also SCI. However, in Section 5 we will in-
directly show that this holds, by presenting stratified Datalog
programs that implicitly represent the chase procedure based
on them. The SCI property follows also from this.

5 Datalog Programs for SRI Classes
The general ASPs for classical MDs can be easily changed
to deal with relational MDs, by including in the rule bodies
the new relational atoms as extra conditions.

It is possible to take a set of MDs of the three kinds intro-
duced in Section 4, generate an ASP for them of the general
form of Section 2, and next, appealing to a general semantic
property in common for those three classes, automatically
rewrite the program into a stratified Datalog program.

5E.g. R [B] ≈ R [B] → R [A]
.
= R [A] , R [A] ≈ R [A] →

R [B]
.
= R [B] give rise to two SFAI tests (two queries).

6For each of the intersections: ARHS(ϕ1) ∩ ALHS(ϕ2) =
{R[B]}, and ARHS(ϕ2) ∩ ALHS(ϕ2) = {R[B]}.

722



The rewriting is based on the facts that: (a) We do not need
rules or constraints for the Prec predicate, because imposing
a linear order of matchings is not needed; basically all MDs
can be applied in parallel. (b) For the same reason, we do not
need disjunctive heads, as each applicable MD can be applied
without affecting the results obtained by the applications of
the others. That is, we do not have to withhold any matchings
(via the NotMatch predicates). (c) Old versions of tuples can
be used in future MDs enforcements without any undesirable
impact on the result.

In essence, the semantic property of the three classes,
which can be expressed and used as a systematic rewrit-
ing mechanism of the general cleaning ASP, is that: When
confronted with match or not match, we can safely match;
and the matchings do not need to be linearly ordered. Also,
old versions of tuples can be still used for matchings. The
general transformation is illustrated by means of an example.

Example 5. (ex. 4 cont.) The general cleaning program for
Σ in Example 2 depends on the initial instance only through
the program facts. Then, the same program can be used
in Example 4, but with the facts corresponding to R(D0)
replaced by those corresponding to R(D). Since (Σ, D) is
SFAI, the cleaning program can be automatically rewritten
into the following residual program (with enumeration as
Example 2):
1. R(t1, a1, b1). R(t2, a2, b2). R(t3, a3, b3). R(t4, a4, b4).

2. Matchϕ1(T1, X1, Y1, T2, X2, Y2) ← R(T1, X1, Y1),

R(T2, X2, Y2), X1 ≈ X2, Y1 
= Y2.

Matchϕ2(T1, X1, Y1, T2, X2, Y2) ← R(T1, X1, Y1),

R(T2, X2, Y2), Y1 ≈ Y2, Y1 
= Y2.

OldVersion(T1, X1, Y1) ← R(T1, X1, Y1),

R(T1, X1, Y
′
1 ), Y1 � Y ′

1 , Y1 
= Y ′
1 .

3. R(T1, X1, Y3) ← Matchϕ1(T1, X1, Y1, T2, X2, Y2),

MB(Y1, Y2, Y3).

R(T1, X1, Y3) ← Matchϕ2(T1, X1, Y1, T2, X2, Y2),

MB(Y1, Y2, Y3).

7. Rc(T1, X1, Y1) ← R(T1, X1, Y1),

not OldVersion(T1, X1, Y1).

This program does not have disjunctive heads or program
constraints. We still need the OldVersion predicate to collect
(the final versions of) the tuples in a clean instance. �

The general ASP programs of Section 2 can be run on
ASP solvers, such as DLV (Leone et al. 2006; Bahmani
et al. 2012). However, the specialized stratified Datalog
programs of this section can be run with implementations of
Datalog. Actually, for their use in classification-based ER
reported in (Bahmani, Bertossi, and Vasiloglou 2015), the
programs were specified using LogicQL and run on top of the
Datalog-supporting LogicBlox platform (Aref et al. 2015).

6 Conclusions
Matching dependencies (MDs) are an important addition to
the declarative approaches to data cleaning, in particular,
to the common and difficult problem of entity resolution
(ER). We have shown that MDs can be extended to capture

additional semantic knowledge, which is important in appli-
cations, in particular, to machine learning.

Computing with MDs has a relatively high data complexity
(Bertossi, Kolahi and Lakshmanan 2012), but some classes
of MDs (possibly in combination with an instance) can be
identified for which ER can be done in polynomial time in
data. Even more, it is possible to automatically produce
Datalog programs that can be used to do ER with them.

References
Abiteboul, S., Hull, R. and Vianu, V. Foundations of Databases.
Addison-Wesley, 1995.
Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D.,
Pasalic, E., Veldhuizen, T., and Washburn, G. Design and Im-
plementation of the LogicBlox System. Proc. SIGMOD 2015, pp.
1371-1382.
Bahmani, Z., Bertossi, L., Kolahi, S. and Lakshmanan, L. Declara-
tive Entity Resolution via Matching Dependencies and Answer Set
Programs. Proc. KR’12, AAAI Press, 2012, pp. 380-390.
Bahmani, Z., Bertossi, L. and Vasiloglou, N. ERBlox: Combining
Matching Dependencies with Machine Learning for Entity Resolu-
tion. Int. J. of Approximate Reasoning, 2017, 83:118–141.
Bertossi, L. and Bravo, L. Generic and Declarative Approaches to
Data Quality Management. In S. Sadiq (ed.), Handbook of Data
Quality - Research and Practice, Springer, 2013, pp. 181-212.
Bertossi, L., Kolahi, S. and Lakshmanan, L. Data Cleaning and
Query Answering with Matching Dependencies and Matching Func-
tions. Theory of Computing Systems, 2013, 52(3):441-482.
Bhattacharya, I. and Getoor, L. Collective Entity Resolution in
Relational Data. TKDD, 2007, 1(1).
Bleiholder, J. and Naumann, F. Data Fusion. ACM Computing Sur-
veys, 2008, 41(1).
Brewka,G., Eiter, T. and Truszczynski, M. Answer Set Programming
at a Glance. Comm. of the ACM, 2011, 54(12), pp. 93-103.
Ceri, S., Gottlob, G. and Tanca, L. Logic Programming and
Databases. Springer, 1989.
Eiter, T., Gottlob, G. and Mannila, H. Disjunctive Datalog. ACM
Trans. Database Syst., 1997, 22(3):364-418.
Eiter, T. and Gottlob, G. On the Computational Cost of Disjunctive
Logic Programming: Propositional Case. Annals of Math. and Artif.
Intell., 1995, 15(3-4):289-323.
Elmagarmid, A., Ipeirotis, P. and Verykios, V. Duplicate Record
Detection: A Survey. IEEE Transactions in Knowledge and Data
Engineering, 2007, 19(1):1-16.
Fan, W. Dependencies Revisited for Improving Data Quality. Proc.
PODS 2008, pp. 159-170.
Fan, W., Jia, X., Li, J. and Ma, S. Reasoning about Record Matching
Rules. PVLDB, 2009, 2(1):407-418.
Gelfond, M. and Lifschitz, V. Classical Negation in Logic Pro-
grams and Disjunctive Databases. New Generation Computing,
1991, 9(3/4):365-386.
Gelfond, M. and Kahl, J. Knowledge Representation, Reasoning,
and the Design of Intelligent Agents. Cambridge U. Press, 2014.
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and
Scarcello, F. The DLV System for Knowledge Representation and
Reasoning. ACM Trans. Comput. Log., 2006, 7(3):499-562.
Whang, S.E., Menestrina, D., Koutrika, G., Theobald, M. and
Garcia-Molina, H. Entity Resolution with Iterative Blocking. Proc.
Sigmod, 2009, pp. 219-232.

723




