
Optimizing Expected Utility and Stability
in Role Based Hedonic Games

Matthew Spradling
University of Michigan - Flint

mjspra@umflint.edu

Abstract

In the hedonic coalition formation game model Roles Based
Hedonic Games (RBHG), agents view teams as compositions
of available roles. An agent’s utility for a partition is based
upon which roles she and her teammates fulfill within the
coalition. I show positive results for finding optimal or sta-
ble role matchings given a partitioning into teams. In set-
tings such as massively multiplayer online games, a central
authority assigns agents to teams but not necessarily to roles
within them. For such settings, I consider the problems of op-
timizing expected utility and expected stability in RBHG. I
show that the related optimization problems for partitioning
are NP-hard. I introduce a local search heuristic method for
approximating such solutions. I validate the heuristic by com-
parison to existing partitioning approaches using real-world
data scraped from League of Legends games.

Introduction

In coalition formation games, agents from a population have
various utilities for different partitions, where a partition is a
set of teams (subsets of agents). Hedonic games are coalition
formation games in which an agent’s preference for a parti-
tion is determined only by the coalition to which the agent
is assigned (Sung and Dimitrov 2010). Hedonic games are
used to model matching of agents to teams when agents only
care about the utility of their own teams, not others.

Stability of an assignment is of primary importance when
agents are able to leave the team if they are not satisfied
(Spradling and Goldsmith 2015). While a utility-function
maximizing partition is attractive, forming such a partition
is not helpful if the agents cannot be guaranteed to keep the
assignment. An optimal assignment may not be stable. It has
been observed that, for some stability measures, there may
be multiple stable assignments with variable utility levels
(Spradling et al. 2013). A stable assignment is not guaran-
teed to have an optimal utility among all stable assignments.

In this paper, I consider the variant Role Based Hedonic
Game (RBHGs) (Spradling and Goldsmith 2015). In this
model, an agent’s utility for a partitions is based upon the
role it fulfills on its team and the roles fulfilled by its team-
mates. The multiset of roles fulfilled by a team is termed its
composition.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Table 1: Ex. RBHG instance with |P | = 4, R = {A,B}
〈r, c〉 up0(r, c) up1(r, c) up2(r, c) up3(r, c)

〈A,AA〉 2 2 0 0
〈A,AB〉 0 3 2 2
〈B,AB〉 3 0 3 3
〈B,BB〉 1 1 1 1

As per (Spradling and Goldsmith 2015), a Role Based He-
donic Game (RBHG) instance consists of:

• P : A population of players
• R: A set of roles
• C: A set of compositions, where a composition c ∈ C is

a multiset (bag) of roles from R.
• U : P × R × C → Z defines the utility function ui(r, c)

for each player pi. Generally, I assume that for all pi ∈ P
and for all r ∈ R, ui(r, {r}) = 0.

A solution to an RBHG instance is a partition π of each
agent into a team (set of agents) t and a matching M of
agents to roles in R. Because RBHG is a hedonic game, util-
ity of a player for a partition π and matching M is equal to
that player’s utility for (π(pi),M(pi)) = (ri, ci, ti). I will
refer to a player pi’s utility for (π,M) as ui(r

i, ci).
This work is motivated by team formation among au-

tonomous drones (Hock and Schoellig 2016) and by hu-
man team formation in massively multiplayer online games
(MMOs). A drone may be specially suited to fulfilling a sub-
set of roles needed by a local swarm. It must efficiently de-
termine which group to assist and in what capacity as new
tasks arise. In the paradigm of MMOs, the top five online
games in the world each incorporate some variation of role
based team formation. Including Overwatch and League of
Legends, these games accounted for 259.22 million hours of
combined viewing over the Twitch streaming service world-
wide in January, 2017 alone (Gamoloco 2017). In both set-
tings, role assignments are chosen by the agents after teams
or coordinates are determined by a central authority. An
agent then chooses a role depending upon an internal utility
function. For this reason, I focus on the problems of finding
partitions which have optimal expected stability and optimal
expected utility over the possible matchings.

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

134

I provide polynomial time algorithms for finding optimal
and stable matchings M given a partitioning π of agents
into teams. I consider the complexity of recognizing parti-
tions with optimal expected stability and optimal expected
utility, both of which I prove to be NP-complete for Max-
Sum and MaxMin optimization. I introduce a greedy local
search heuristic which runs in polynomial time. I validate
the heuristic by comparison to “what if analysis” and a pre-
viously described greedy voting heuristic (Spradling et al.
2013) using real world matchmaking data from League of
Legends games. The experiments show improvements to ex-
pected utility, expected stability, and to the percentage of
teams with a stable matching. In particular, greedy local
search identifies stable role and team recommendations for
over 50% of players in the test population. These results in-
dicate that greedy local search can be applied to real world
RBHG matchmaking scenarios.

Related Work: Stability and Optimization in

Coalition Formation Games

In economics, hedonic coalition formation games model sit-
uations where agents join teams to collaboratively produce
goods for themselves (Drèze and Greenberg 1980). Hedonic
game models have been applied wide ranging fields, includ-
ing distributed task allocation in wireless agents (Saad et al.
2011a), communications networks (Saad et al. 2010), vehic-
ular networks (Saad et al. 2011b; Xu et al. 2015), adaptive
smart grid management (Kim 2014), federation formation
among cloud providers (Guazzone, Anglano, and Sereno
2014), and measuring impact on perceived learning out-
comes (Alexiou and Doerga 2015).

For general hedonic games, finding a core stable coalition
structure is NP-complete (Ballester 2004). Farsighted stabil-
ity in general hedonic games considers a case where agents
avoid defecting from a team if the defection would induce a
worse change by agents on their new or former team (Dia-
mantoudi and Xue 2003). It has been shown that core stable
and Nash stable solutions are farsighted stable while individ-
ually stable and contractually individually stable solutions
do not guarantee this (Diamantoudi and Xue 2003).

Work in role based hedonic games first considered the
roles and teams hedonic game (RTHG) model, a special case
of RBHG in which all compositions are of equal size. Even
under this constraint, finding a perfect, maxsum, or maxmin
optimal partition is NP-hard (Spradling et al. 2013). While
optimization would be valuable, agents in online games may
choose not to play and reject an unstable partition.

For general RBHG several stable partitioning problems
are NP-complete or coNP-complete (Spradling and Gold-
smith 2015). Similar results have been found for stability
and optimization problems related to additively separable
hedonic games (Sung and Dimitrov 2010; Aziz, Brandt, and
Seedig 2010; 2011), hedonic games represented by an in-
dividually rational list of coalitions (Ballester 2004), anony-
mous hedonic games (Banerjee, Konishi, and Sönmez 2001)
the Group Activity Selection Problem (GASP) (Darmann et
al. 2012), and hedonic games with dichotomous preferences
among others (Peters 2016). Altruistic hedonic games pro-

vide a model in which stable partitions of several forms can
be found when the agents seek to help or avoid harming al-
lies in the network (Nguyen et al. 2016).

Past work considers a scenario where all partitioning is
performed by the central authority. In massively multiplayer
online games, agents may be partitioned to teams by the
server but not necessarily the roles within them. Once parti-
tioned, the matching is determined by the agents while the
game is in progress. Even if agents are assigned to a par-
tition which contains an optimal and stable matching, it is
not guaranteed that the agents will stabilize on that partic-
ular matching. The match may end, or someone may quit
playing, before agents discover how they can collaborate.

For human agents, I consider the problem of finding par-
titions in which players are most likely to stabilize upon a
matching. I call this the optimal expected stability partition.
Similarly, I consider the problem of finding the optimal ex-
pected utility partition in which the average optimal compo-
sition utility for each team is maximized.

Expected Utility and Stability

Given a partition of agents to a particular team t, the utilities
of the agents within t over the roles within some composi-
tion c can be stored in a |t| x |t| matrix. One such matrix for
each of C compositions represents the utilities of the agents
of t for each composition.

Definition 1 Given a partition π of an instance B of RBHG,
a team t ∈ π, and a composition c ∈ C, the optimal utility
of t given c is the matching of agents to roles within c which
maximizes the sum of the utilities for all agents on that team.

An optimal composition of t is a composition ct
o ∈ C for

which the optimal utility of t for all c ∈ C is maximized.

Theorem 1 When agents are matched into roles by a cen-
tral authority, an optimal or stable composition for a team t
can be identified in polynomial time.

Proof 1 The optimal utility of a team t given a composi-
tion c can be computed in time O(|t|3) by application of
the Kuhn Munkres algorithm for optimizing square matrices
(Edmonds and Karp 1972).

The optimal composition ct
o ∈ C of t can be identified in

time O(|C| · |t|3) by computing optimal utility for each c ∈
C. When agents have 1-0 “accept/-reject” utilities, a stable
composition will have optimal utility 1 for each pi ∈ t. �

Without a central authority to assign agents to roles within
a team t, agents in t will either stabilize upon a composition
c or one or more agents will defect from the team t. There-
fore, I consider evaluating the quality of a team t by either
its expected utility or expected stability across compositions.

Definition 2 An acceptable composition ct
a for a team t is

one for which up(r, ct
a) > 0 for at least one agent in p ∈ t.

For a 0-1 instance of RBHG where agents either accept or
reject each role and composition pair, a stable composition
ct

s for a team t is one for which up(r, ct
s) = 1 for each

agent p ∈ t given an optimal utility matching of roles.
Observe that any stable composition is also an acceptable

composition but that the reverse is not necessarily the case.

135

Definition 3 Let qts be the quantity of stable compositions
for t and qt

a be the quantity of acceptable compositions for
t. The expected stability of t is 0 if qta = 0 or the ratio
qt

s/qt
a for qta > 0.

Let ut
a be the sum of optimal utilities for all qt

a ac-
ceptable compositions for t. The expected utility of t is 0
if qta = 0 or the ratio ut

a/qt
a for qta > 0.

The goal it this setting is to select a partition π which
optimize expected utility, expected stability, or the percent
of teams for which there is a stable composition.

Complexity of Optimization

In this section, I define the decision problems related to find-
ing optimal expected utility and optimal expected stability
partitions in RBHG. I prove each to be NP-complete by re-
duction from PERFECT RBHG.

Definition 4 An instance of Binary RBHG is an instance of
RBHG such that for each agent p ∈ P , for each c ∈ C, for
each r ∈ c, up(r, c) → {0, 1}.

A perfect solution (π,M) of an instance of Binary RBHG
has the property that, for each p ∈ P , up(r

p, cp) = 1.

Definition 5 The language PERFECT RBHG consists of
those instances of RHBG for which a perfect solution ex-
ists. PERFECT BINARY RBHG consists of those instances
of Binary RBHG for which a perfect solution exists.

Observation 1 An instance A = 〈P,R,C, U,m〉 of RTHG
is an instance B = f(A) = 〈P,R,C, U〉 of RBHG where
the set C of compositions consists of all multisets of m roles
within R. Therefore, an instance A of RTHG has a perfect
solution iff B = f(A) has the same perfect solution. There-
fore PERFECT RTHG ≤P

m PERFECT RBHG.

Observation 2 PERFECT RTHG is NP-complete even for
special cases where utilities are binary (Spradling et al.
2013). Therefore PERFECT RBHG and PERFECT BINARY
RBHG are both NP-hard.

Definition 6 The language MAXMIN ES RBHG consists
of pairs (B, k), where B is an instance of RBHG, k is an
integer, and there exists a partition π of B such that for each
t ∈ π expected stability is ≥ k.

Theorem 2 MAXMIN ES RBHG is NP-complete.

Proof 2 To show that MAXMIN ES RBHG is in NP, con-
sider the following NP algorithm. Given an instance of
MAXMIN ES RBHG, guess a partition π and evaluate the
average expected stability value. This can be computed in
time O(|P | · |C| · MAX(|t|)2). Observe that 1 ≤ |P | and
that there are at most |P | teams. Observe that |C| is polyno-
mial in the size of the instance B of RBHG. For each team
t ∈ π, for each composition c ∈ C, compute the optimal
expected stability value of t for each p ∈ t given c. Each of
the (|P | · |C|)/t square matrices can be optimized in time
O(|t|3). Stop and reject if the sum total expected stability
value of all teams < k, otherwise accept. This checking is in
time polynomial in the size of the input.

To show NP-hardness, I show that PERFECT BINARY
RBHG ≤P

m MAXSUM ES RBHG. It other words, given an

instance A = 〈P,R,C, U〉 of PERFECT BINARY RBHG,
I construct an instance f(A) = 〈P ′, R′, C ′, U ′, k〉 of
MAXMIN ES RBHG such that A ∈ PERFECT BINARY
RBHG iff f(A) ∈ MAXMIN ES RBHG.

Let B = 〈P,R,C, U〉 be an instance of PER-
FECT BINARY RBHG. I construct an instance f(B) =
〈P ′, R′, C ′, U ′, k〉 of MAXMIN ES RBHG as follows. Let
P ′ = P , R′ = R, C ′ = C, U ′ = U , and let k = 1/|C|.

I claim that there is a π′ of f(B) s.t. each t ∈ π′ has
expected stability ≥ k iff there is a (π,M) of B s.t. B ∈
PERFECT BINARY RBHG.

Suppose there is a solution π′ of f(B) such that f(B) ∈
MAXMIN ES RBHG. Then I construct a solution (π,M) of
B as follows. Let π = π′. For each t ∈ π′, for each c ∈ C,
find the optimal role assignment m for (c, t) in time O(|t|3)
and add m to M . Given the assumption that each t ∈ π′
has expected stability ≥ 1/|C|, there must be at least one of
the |C| compositions which has a perfect assignment for t.
Therefore (π,M) is a perfect solution for B. Thus f(B) ∈
MAXMIN ES RBHG implies that B ∈ PERFECT BINARY
RBHG.

Suppose there is a solution (π,M) of B such that B ∈
PERFECT BINARY RBHG. Then I construct a solution π of
f(B) as follows. Let π′ = π. Given the assumption that M
is a perfect matching, it must be the case that each t ∈ π has
a perfect assignment for as least one of the |C| composi-
tions. Therefore π′ is a partition of f(B) s.t. each t ∈ π has
expected stability ≥ 1/|C|. Thus B ∈ PERFECT BINARY
RBHG implies that f(B) ∈ MAXMIN ES RBHG.

Therefore MAXMIN ES RBHG is NP-hard. �
Definition 7 The language MAXSUM ES RBHG consists
of pairs (B, k), where B is an instance of RBHG, k is an
integer, and there exists a partition π of B such that the sum
total expected stability of all t ∈ π is ≥ k.

Theorem 3 MAXSUM EU RBHG is NP-complete.

Proof Sketch To show that MAXSUM ES RBHG is in NP,
consider the following NP algorithm. Given an instance of
MAXSUM ES RBHG, guess a partition π and evaluate the
sum total expected stability over all teams in π. This can be
computed in time O(|P | · |C| ·MAX(|t|)2). Stop and reject if
the average expected utility value is < k, otherwise accept.
This checking is in time polynomial in the size of the input.

To show NP-hardness, I show that PERFECT BINARY
RBHG ≤P

m MAXSUM ES RBHG. The reduction is similar
to PERFECT BINARY RBHG ≤P

m MAXMIN ES RBHG. �
Definition 8 The language MAXMIN EU RBHG consists
of pairs (B, k), where B is an instance of RBHG, k is an
integer, and there exists a partition π of B such that for each
t ∈ π expected utility is ≥ k.

The language MAXSUM EU RBHG consists of pairs
(B, k), where B is an instance of RBHG, k is an integer,
and there exists a partition π of B such that the sum total
expected utility of all t ∈ π is ≥ k.

Theorem 4 MAXSUM EU RBHG and MAXMIN EU
RBHG are both NP-complete.

Proof Sketch Both MAXSUM EU RBHG and MAXMIN
EU RBHG are polynomial time verifiable by algorithms

136

similar to those utilized for MAXSUM ES RBHG and
MAXMIN ES RBHG. Guess a partition then verify the ex-
pected utility of each team, which can be computed in time
polynomial in the size of the input.

To show NP-hardness, I show that MAXSUM ES RBHG
≤P

m MAXSUM EU RBHG and that MAXMIN EU RBHG
≤P

m MAXMIN ES RBHG. �

Heuristic Matchmaking Methods

In this section I outline three matchmaking methods for
RBHG: “What if” analysis, greedy voting (Spradling et al.
2013), and greedy local search.

“What if” Analysis

“What if” analysis generates a partition uniformly at random
and computes the value of expected stability, expected util-
ity, or some other optimization criteria. If there is improve-
ment over the previous best the new partition is kept. This
procedure is repeated with a new partition until all |P |! par-
titions have been enumerated, until some threshold value δ
is met for the optimization criteria, or until some maximum
number of partitions Δ have been evaluated.

Each iteration of “what if” analysis requires O(|P |/m)
computations of the optimization metric being considered,
where m is the maximum team size. Given that comput-
ing expected utility or stability for a team has a cost of
O(|C| · m3), the total cost of considering one partition for
this optimization goal is O(|P | · |C| · m2). If Δ is left un-
capped, this algorithm is guaranteed to return a partition
nearest to δ. In the worst case, this requires O(|P |!) itera-
tions to enumerate all partitions of P .

Greedy Voting

Greedy voting considers agent utilities as scoring rule
style votes in an election over the available compositions
(Conitzer and Sandholm 2005). Agent utilities for each com-
positions, over the roles within that composition, are added
together. The composition c ∈ C with the highest total score
is selected along with the |c| agents that most preferred c.
This team is added to the partition and their scores for all
compositions are subtracted from the totals. The procedure
repeats with a new vote over the compositions and a new
team being formed until all players have been matched. The
greedy voting heuristic has a running time of O(|P |2/m),
or O(|P | · |C| ·m) if |P | < |C| ·m2 (Spradling et al. 2013).

Greedy Local Search

I compare to the following greedy local search heuristic. Se-
lect an agent p ∈ P as the pivotal agent and locally opti-
mize the chosen metric for the team t including p and some
new agent p′ ∈ P . The local search continues to add agents
to the team t until no local improvement is available or all
positions have been filled, at which point t is added to the
final partition. A new pivotal agent is then selected, form-
ing a new team around the pivot. This procedure is repeated
for each of |P |/MAX(|t|) teams. In the following implemen-
tation (Algorithm 1) I optimize expected utility, though an-
other utility function f may be substituted in place.

Algorithm 1 GreedyLocalSearch(RBHG instance B, empty
partition π, MAX(|t|) = m)

for |P |/m teams do
select a pivotal agent p
for m− 1 positions do

set max index iMAX to null
set max score sMAX to MIN(up(r, c)) · |P |
for |P |/m remaining agents do

calculate expected utility s′p for t ∪ p′ (in time
O(|C| · |m|3))
if s′p > sMAX, set iMAX = p′ and sMAX = s′p

end for
set t = t ∪ p′

end for
set π = π ∪ t

end for

Observation 3 The time complexity of greedy local search
is O(|P |2/m · f), where f is the running time of the opti-
mization function. In the case of optimizing expected utility
or expected stability, f = O(|C| ·m3) and the total run time
is O(|P |2 · |C| ·m2).

For a special case of RBHG which I call soul mates
RBHG, greedy local search always returns a perfect parti-
tion. For each agent in such an instance, there is a unique set
of agents perfectly complimenting its preferences.

Definition 9 An instance B of soul mates RBHG is a 0-1 in-
stance of RBHG which has the property that, for each agent
p ∈ P , there is a unique set of agents P ′ ⊆ P such that each
acceptable composition is also a stable composition. I call a
set t = p ∪ P ′ having this property soul mates.

Theorem 5 For any instance B of soul mates RBHG,
Greedy Local Search always returns a perfect partition.

Proof Sketch Consider the first iteration of greedy local
search heuristic on an instance B of soul mates RBHG. Se-
lect some agent p as the pivotal agent. By definition, there
is a unique set of agents P ′ ⊆ P which are soul mates with
p. When selecting the first agent p′ who locally optimizes
expected stability of tp = p ∪ p′, the agent must be some
p′ ∈ P ′.

Observe that, by the distributive property, p ∪ P ′ = (p ∪
p′)∪ (P ′ ∩ p′) given that p′ ∈ P ′. Therefore, the soul mates
property is preserved between p ∪ p′ and P ′ ∩ p′. In sub-
sequent iterations, the remaining members of P ′ ∩ p′ will
be iteratively selected and added to the team tp until it is
completely formed and added to the partition π.

Scraping League of Legends Game Data

For my experiments, I consider a population of League of
Legends players where |P | = 1081. I considered a set
|R| = 5 of popular champion roles, Jungler, AD Carry,
Tank, Support, and Middle. These roles were identified as the
most common roles of champions (game avatars) selected by
the players. I scraped data from the most recent 20 matches
for each player p ∈ P from www.lolking.net, storing the

137

roles, compositions, and win/loss records for each match. I
selected players uniformly at random by generating account
numbers from 20,000,000 to 60,000,000. This gives a range
of accounts having been created roughly between the years
2012 and 2014. Active accounts having played 10 matches
within the last 7 days were kept for further scraping, with
new matches identified by the match date.

I applied frequent item set mining over team compositions
to identify those compositions which were used in at least
3% of matches, and rejected other compositions. This left a
set |C| = 8 of compositions used in more than 60% of all
scraped matches combined.

To compute a player’s utilities for role and composition
pairs I used the following wins and losses utility function.

Definition 10 Wins and losses utility function: For each
agent p ∈ P , for each c ∈ C set up(r, c) = 1 if the agent
won more matches with (r, c) than they lost, up(r, c) = −1
if the agent lost more matches with (r, c) than they won, and
up(r, c) = 0 otherwise.

I consider an agent to accept a pair (r, c) if up(r, c) = 1
and otherwise to reject it.

Testing and Results

Mean results of the experiments are presented in Table 2
while standard deviations are presented in Table 3. I per-
formed matchmaking using “what if” analysis (W), greedy
voting (V) (Spradling et al. 2013), and greedy local search
(L). I compare the algorithms in terms of run time (in sec-
onds) to form the partition π (RT), the percent of teams in π
with at least one stable matching (%S), mean expected util-
ity (ĒU), median expected utility (ẼU), mean expected sta-
bility (ĒS), and median expected stability (ẼS). Expected
utility ranges from −5 to 5 while expected stability ranges
from 0 to 1. I consider 50 of the 52 trials performed, drop-
ping the two with highest and lowest %S for each method.

For “what if” analysis, I consider three different opti-
mization goals; maximizing percent of teams with at least
one stable matching (%S), maximizing mean expected util-
ity (ĒU), and maximizing mean expected stability (ĒS).
For each optimization goal, “what if” analysis was given
a threshold of δ = |P | (perfect utility 1 for each agent)
and a cap of Δ = |P | partitions. Note that |P | iterations
of “what if” analysis on these optimization functions will
run in O(|P |2 · |C| ·m2). This matches the running time of
greedy local search on the same optimization functions.

For greedy local search, I used expected utility as the op-
timization goal and considered three methods of selecting a
pivotal agent: random pivoting where an agent is selected
i.i.d. from P , max first pivoting which pivots around the
agent maximizing qp =

∑
B up(r, c), and min first pivoting

which minimizes qp =
∑

B up(r, c).
Computations were run on a machine using 16 GB of

RAM and a 2.50 GHz Intel(R) Core(TM) i7-4710MQ CPU.
All algorithms were implemented in Python 3.5.

Testing on Randomized RBHG instances

I tested greedy local search on randomly generated RBHG
instances for population sizes from 100 to 1000. The test-

Table 2: Algorithm mean results over 50 trials

Method RT %S ĒU ẼU ĒS ẼS
W (%S) 207.4 22.4% 2.09 2.08 0.03 0
W (ĒU) 207.8 16.0 2.13 2.13 0.02 0
W (ĒS) 207.8 22.3 2.09 2.09 0.03 0

V 3.8 34.3 2.10 2.13 0.05 0
L (rand) 236.6 55.5 2.75 2.78 0.10 0.13
L (max) 245.9 57.4 2.75 2.8 0.10 0.13
L (min) 230.5 50.5 2.78 2.82 0.09 0.13

Table 3: Algorithm std deviations of results over 50 trials

Method RT %S ĒU ẼU ĒS ẼS
W (%S) 4.3 0.9% 0.01 0.06 0.00 0
W (ĒU) 4.6 2.3 0.01 0.01 0.00 0
W (ĒS) 5.0 0.8 0.01 0.06 0.00 0

V 0.1 0.0 0.00 0 0.00 0
L (rnd) 4.6 1.8 0.02 0.04 0.00 0.01
L (max) 4.8 0.0 0.00 0.00 0.00 0
L (min) 4.8 0.0 0.00 0.00 0.00 0

ing showed improved optimization results for the heuristic
versus random partitioning as the population size increased.
My experiments tested several different formulas for how
to randomize the utilities of agents. It became clear that the
availability of high quality results depended on how the util-
ity matrix was formed. I saw that the algorithm generally
found higher utility solutions on the scraped instances, per-
haps because it leveraged the underlying structure of real
human preferences.

Rate of growth for “what if” analysis

As part of the “what if” analysis procedure I logged the num-
ber of partitions considered at each point that a new local
optima was discovered. I observed that the number of new
partitions which had to be considered to find an improve-
ment increased by approximately O(2n) on these experi-
ments, where n is the number of improvements found so far.
Each improvement costs exponentially more time.

Conclusions

Over the League of Legends data set, greedy local search
out-performs both greedy voting and “what if” analysis on
all optimization measures I considered. As previously ob-
served, the cap of Δ = |P | partitions for “what if” analysis
gives it a similar running time to greedy local search with a
slightly smaller constant. In addition to improving expected
utility, greedy local search is the only one to achieve a non-
zero median expected stability. In its favor, greedy voting is
significantly faster and still out-performs “what if” analysis
in terms of percent of teams with a stable matching (%S).
Greedy voting could used as an alternative for split-second
changes to a partition.

On these experiments, greedy local search optimizes ex-
pected utility and expected stability at roughly the same

138

quality whether I used min first or max first pivoting. The
difference between the two is no more than the standard de-
viation of randomized pivoting. Pivot choice shows a more
significant variance on the percent of teams with a stable
matching (%S). Here, max first pivoting improves by 1.9
percentage points over random pivoting and by 6.9 percent-
age points over min first pivoting.

The percent of teams which can be stabilized is valuable
to optimize when direct role assignment is possible, such
as with drones being issued commands by home base. High
expected utility and stability are valuable optimization goals
when a central authority cannot assume direct control of role
matching, such as with human players in an online gaming
environment. These experiments provide some positive re-
sults for both settings. Even when direct role assignment is
not possible or desirable, the optimal role assignments for a
partition may be offered as recommendations to the agents
once teams have been assigned. In the case of a League of
Legends game, this could take the form of suggesting par-
ticular champions (avatars) the players have used well in the
past and which compliment their team’s overall preferences.
Software could say, for example, “Your team could use a
great Support like you. Why not play Blitzcrank this round?”

Future work will test live matchmaking scenarios where
agents are assigned to teams and are alternatively matched
to recommended roles or allowed to select roles freely. This
user study will test the acceptance of recommendations, the
quality of partitioning, and the accuracy of various utility
functions for computing role and composition preferences.

References

Alexiou, A., and Doerga, A. 2015. Sprites and stories: The
impact of hedonic game elements on perceived learning out-
comes. In Academy of Management Proceedings, volume
2015, 17225. Academy of Management.
Aziz, H.; Brandt, F.; and Seedig, H. G. 2010. Optimal parti-
tions in additively separable hedonic games. arXiv preprint
arXiv:1005.4540.
Aziz, H.; Brandt, F.; and Seedig, H. G. 2011. Stable par-
titions in additively separable hedonic games. In Proc. AA-
MAS ’11, 183–190.
Ballester, C. 2004. Np-completeness in hedonic games.
Games and Economic Behavior 49(1):1–30.
Banerjee, S.; Konishi, H.; and Sönmez, T. 2001. Core in a
simple coalition formation game. Social Choice and Welfare
18(1):135–153.
Conitzer, V., and Sandholm, T. 2005. Communication com-
plexity of common voting rules. In Proceedings of the 6th
ACM conference on Electronic commerce, EC ’05, 78–87.
New York, NY, USA: ACM.
Darmann, A.; Elkind, E.; Kurz, S.; Lang, J.; Schauer, J.; and
Woeginger, G. 2012. Group activity selection problem. In
Internet and Network Economics. Springer. 156–169.
Diamantoudi, E., and Xue, L. 2003. Farsighted stability in
hedonic games. Social Choice and Welfare 21(1):39–61.
Drèze, J., and Greenberg, J. 1980. Hedonic coalitions: Op-
timality and stability. Econometrica 48(4):987–1003.

Edmonds, J., and Karp, R. M. 1972. Theoretical improve-
ments in algorithmic efficiency for network flow problems.
Journal of the ACM (JACM) 19(2):248–264.
Gamoloco. 2017. Leading gaming content on
twitch worldwide in january 2017, by number of hours
viewed in millions. Statista - The Statistics Por-
tal. https://www.statista.com/statistics/507786/leading-
game-content-twitch-by-number-hours-viewed/.
Guazzone, M.; Anglano, C.; and Sereno, M. 2014. A game-
theoretic approach to coalition formation in green cloud fed-
erations. In Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on, 618–
625. IEEE.
Hock, A., and Schoellig, A. P. 2016. Distributed iterative
learning control for a team of quadrotors. In Decision and
Control (CDC), 2016 IEEE 55th Conference on, 4640–4646.
IEEE.
Kim, S. 2014. An adaptive smart grid management
scheme based on the coopetition game model. ETRI Journal
36(1):80–88.
Nguyen, N.-T.; Rey, A.; Rey, L.; Rothe, J.; and Schend, L.
2016. Altruistic hedonic games. In Proceedings of the 2016
International Conference on Autonomous Agents & Multi-
agent Systems, 251–259. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Peters, D. 2016. Complexity of hedonic games with di-
chotomous preferences. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence. AAAI Press.
Saad, W.; Han, Z.; Basar, T.; Hjorungnes, A.; and Song,
J. B. 2010. Hedonic coalition formation games for sec-
ondary base station cooperation in cognitive radio networks.
In Wireless Communications and Networking Conference
(WCNC), 1–6.
Saad, W.; Han, Z.; Basar, T.; Debbah, M.; and Hjorungnes,
A. 2011a. Hedonic coalition formation for distributed task
allocation among wireless agents. In Proc. IEEE Transac-
tions on Mobile Computing.
Saad, W.; Han, Z.; Hjørungnes, A.; Niyato, D.; and Hossain,
E. 2011b. Coalition formation games for distributed coop-
eration among roadside units in vehicular networks. IEEE
Journal on Selected Areas in Communications (JSAC), Spe-
cial issue on Vehicular Communications and Networks.
Spradling, M., and Goldsmith, J. 2015. Stability in role
based hedonic games. In Proc. FLAIRS-28. Springer.
Spradling, M.; Goldsmith, J.; Liu, X.; Dadi, C.; and Li, Z.
2013. Roles and teams hedonic game. In Proc. Algorithmic
Decision Theory. Springer. 351–362.
Sung, S.-C., and Dimitrov, D. 2010. Computational com-
plexity in additive hedonic games. European Journal of Op-
erational Research 203(3):635–639.
Xu, K.; Wang, K.-C.; Amin, R.; Martin, J.; and Izard, R.
2015. A fast cloud-based network selection scheme us-
ing coalition formation games in vehicular networks. IEEE
Transactions on Vehicular Technology 64(11):5327–5339.

139

