
Online Proactive Escalation in
Multi-Modal Automated Assistants

Cynthia Freeman, Ian Beaver
NextIT Corporation,

12809 E Mirabeau Pkwy, Spokane Valley WA 99216 USA
http://www.nextit.com

Abstract

Existing research on escalation recommendation often relies
on acoustic features, obtainable in Spoken Dialog Systems
(SDS). It is less understood how multi-modal dialog systems
can recommend escalations online without access to such fea-
tures. Several machine learning techniques are evaluated us-
ing only text features common to all dialog systems. We then
present and implement a general criteria for online escalation
recommendation based on the conversation structure, pres-
ence of correctional language, user request repetition, user
intent, and polarity. Our method is designed to work with any
automated assistant using text or speech input, even where in-
puts can alternate between text and speech. We achieve higher
precision using less training data than several standard ma-
chine learning techniques on a dataset consisting of 7,754
conversations with live multi-modal automated assistants.

Introduction

To maintain quality of service, users are sometimes di-
rected to human representatives when a conversation be-
tween the user and an automated assistant cannot be re-
solved. This transfer is known as an escalation. Escalations
may be user or system-initiated depending on which party
first determines that progress in completing a task is not be-
ing achieved. We focus on the topic of system-initiated es-
calation and how to determine which conversations should
escalate.

Our company creates Intelligent Virtual Assistants (IVAs)
on behalf of other organizations for the purposes of product
support and customer service. These IVAs range from infor-
mation retrieval (IR) agents for tasks such as finding insur-
ance or financial forms to large scale mixed-initiative dialog
systems containing hundreds of tasks and tens of thousands
of user intents. User interaction may occur through voice
input, text input, or fully multi-modal interfaces that allow
for any combination of voice, text, clicking-on-controls, and
web content.

Many IVAs provide the means to escalate a conversation
to a human operator if necessary. Our task is to build a sys-
tem to recommend when an escalation should occur, regard-
less of the input channel, to prevent user abandonment. Dia-
log systems contain a component for Natural Language Un-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

derstanding (NLU) which maps a textual representation to
a representation of the meaning, or intent, expressed by the
user (Lison 2013). As the textual input to the NLU is the
lowest common denominator of the various interfaces sup-
ported by multi-modal IVAs, we use this textual form for
escalation recommendation. In this way, we ensure that re-
gardless of the channel employed by the user, the recom-
mendation system can still function.

In reviewing current literature on proactive escalation
methods, we found no method suitable for our applica-
tion. All existing methods rely to some extent on acous-
tic features generated by the Automatic Speech Recognition
(ASR) component or other features dependent on language
model implementation. Such features may not be present in
a multi-modal IVA. Therefore, we set out to create a method
with no reliance on features specific to channel; only the
input and output of the NLU are consulted. We first eval-
uated several standard Machine Learning (ML) techniques
but were not satisfied with their performance. We developed
an algorithm that not only outperforms the ML approaches
using textual features but also does not require a large la-
beled training set for each language domain and is consider-
ably more time efficient.

We begin with a review of the literature involving the rec-
ommendation of escalations. We discuss our data and the
evaluation of several standard ML techniques. However, we
obtain even higher precision on an escalation criteria we de-
velop, discussed in Algorithm 1. We also detail how this al-
gorithm is implemented. Finally, we discuss the results, ad-
dressing limitations and outlining future work.

Related Works

Similar research on recommending escalations typically in-
volves Spoken Dialogue Systems (SDS) such as AT&T’s
How May I Help You (HMIHY) application (Gorin, Ric-
cardi, and Wright 1997). These systems have access to a
wide range of acoustic features that are used in machine
learning to identify problematic conversations and transfer
a customer to a human customer care representative before
the conversation fails. In (Langkilde et al. 1999), a machine
learning program, RIPPER, achieved an accuracy of 72%
in identifying problematic dialogues after the very first ex-
change and 86.7% accuracy given the whole conversation.
However, over 50 features were available from spoken di-

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

215

alogues, of which almost a quarter were acoustic and ASR
features. Acoustic features were also used in (Schmitt et al.
2010) where 55% accuracy was achieved on over 40,000
phone calls and (Walker et al. 2000) where 92.9% accuracy
was achieved on 4,692 dialogues collected with the HMIHY
system. A slightly higher accuracy of 93% was obtained
using JRip in (Meena, Skantze, and Gustafson 2015), but
this is for offline detection of miscommunication which con-
sumes the completed conversation whereas we are attempt-
ing online recommendation of escalation.

In (Horvitz and Paek 2003), call duration was used as an
indicator for when to escalate, and probabilistic models were
constructed to generate policies identifying the best point in
time to transfer callers to human operators. Although a use-
ful feature for auditory assistants, duration of a conversation
is not applicable to textual assistants; some customers may
read or type more slowly than others, and pauses between
turns are common. To demonstrate this, we collected a set
of 8k conversations with a text-based IVA that logged ex-
plicit user escalation requests in order to measure correlation
with duration. A correlation coefficient of .269 (calculated
using the Scipy stats module) was obtained. Alternatively,
one might consider the number of turns in the conversation
before escalation. For this, we obtained a correlation coeffi-
cient of .26; therefore, turn or duration based strategies alone
do not appear fruitful in predicting escalation.

Our strategy for recommending escalation is inspired
by (Krahmer et al. 1999) where a SDS provides train
timetable information. Although their goal was to detect a
single misunderstood turn and not necessarily recommend
escalations, we find that the negative cues used by these au-
thors are helpful in the recommendation of escalation. The
authors assume the Principle of Minimal Collaborative Ef-
fort; both the user and system want the dialogue to be fin-
ished as efficiently as possible and with success. Cues are ex-
amined and certain combinations of cues have the best pre-
dictive potential for discovering the presence or absence of
problematic conversations. Cues include turn length, marked
or unmarked word order (topicalization or extraposition),
confirmation, the presence or absence of an answer, correc-
tions or repetitions, and new information. The highest preci-
sion is achieved with a combination of correction and repeti-
tion cues on a small set of 120 dialogues; users tend to repeat
their requests and correct the system in its interpretation of
these requests when there are communication problems. Our
criteria for escalation recommendation is heavily influenced
by this work.

Methods
We collected 7,754 conversations (20,808 user turns) across
two commercial multi-modal IVAs deployed on corporate
travel websites and mobile applications. The IVAs help with
booking and changing flights and answer various travel-
related queries. The conversations were manually tagged for
whether or not they should have escalated by 2 reviewers,
generating a Cohen’s κ of .6. A third reviewer was used to
break ties in cases of disagreement, and the majority deter-
mined the final tag. In addition to determining if a conver-
sation should escalate, reviewers also notated the turn on

which an escalation should occur. The escalation point, if
existent, was averaged between the reviewers and rounded
down to the nearest integer. Rounding down favors the user
as he or she will be escalated faster. Rounding up benefits
the company by saving money from delaying the use of hu-
man customer assistants. Of the 7,754 conversations, 1,268
were marked for escalation by a majority. A random 80-20
split was used to create training and testing sets. The training
set consisted of 6,203 conversations of which 1,027 should
escalate. The testing set consisted of 1,551 conversations of
which 241 should escalate.

Preliminary Experiments

We initially experimented with several standard machine
learning algorithms. As we were not only interested in a
model’s ability to determine if an escalation should oc-
cur but also when, the models were trained and tested on
a cumulative turn basis. For example, if a conversation in
the training set is four turns long and is tagged for es-
calation on the final turn, the model will be trained on
(turn1, 0), (turn1+turn2, 0), ..., (turn1+ ...+turn4, 1).

As high accuracy was achieved using JRip in (Meena,
Skantze, and Gustafson 2015), we tried WEKA (Hall et al.
2009) JRip. Preprocessing of conversations was done using
WEKA String to Word Vector. Fourteen rules were gener-
ated from the training set. A precision of .387 and recall of
.051 was obtained on the test set for escalations. We also
experimented with WEKA’s Random Forest (RF) (with 100
trees), resulting in higher precision (.735) but equally ter-
rible recall (.036). WEKA’s SVM had better recall (.562)
and precision (.317) compared to JRip. Default parameters
were used. We then trained a Convolutional Neural Network
(CNN) inspired by (Kim 2014) using Keras. We used the
same parameters and CNN build in (Rakhlin 2016). Gen-
Sim’s Word2Vec was used to preprocess data. Over 100
epochs on CNN-rand, we obtained .776 precision and .718
recall on escalations. We also tried several Recurrent Neu-
ral Network (RNN) methods, but it appeared there was not
enough data to train a useful model.

Point of Escalation

If a model chooses to escalate a conversation earlier than the
tagged turn, the model is aligned with the customer as the
customer will be escalated faster. If the model escalates a
conversation later than the tagged turn, the model is aligned
with the company. Alignments were calculated from conver-
sations where the model and reviewer majority agreed that
the conversation should escalate (even though the point of
escalation may differ). So either reviewer 1 and reviewer 2
both believe the conversation should escalate, or they dis-
agree, but reviewer 3 believes the conversation should esca-
late. In both cases, there are two reviewers that tag a 1 for the
conversation. Suppose conversation Z has a majority vote to
escalate, and the model chooses to escalate Z also. Suppose
reviewer A and reviewer B tag Z for escalation, forming the
majority. Let

X = model’s Predicted Turn − A’s tagged turn

Y = model’s Predicted Turn − B’s tagged turn

216

Figure 1: Alignments of CNN, SVM, and Algorithm 1

The alignment for a model on Z is the average of X and Y .
Thus, if an alignment is negative, the model prefers es-

calating early and favors the customer. If the alignment
is positive, the company is favored. The number of con-
versations where the model and reviewer majority agreed
that the conversation should escalate will be notated by
agreemodel. All frequencies were normalized by their re-
spective agreemodel. Figure 1 includes alignment charts for
the CNN (agreeCNN = 173) and SVM (agreeSVM =
130) discussed above. JRip and RF were not included due
to exceptionally poor recall.

CNN is more fair to both the customer and company
whereas the SVM tends to favor the customer and esca-
late earlier. Indeed the skew value (calculated using SciPy)
is .444 for the CNN and 6.96 for the SVM. A skew value
greater than 0 indicates left skew whereas a skew value less
than 0 represents right skew. A normally distributed dataset
should have close to 0 skew. The alignment of our escalation
algorithm (agreeEA = 156) is also shown in Figure 1 and
will be discussed in the following sections.

Escalation Algorithm Development

While the CNN model produced nearly acceptable results,
the number of false positives was still too high for produc-
tion use. In addition, the burden of collecting and tagging
sufficient data from each IVA in order to train a CNN for
its language domain was too great. For example, a model
trained from insurance claims language cannot be reused in
product support, so a new model must be constructed. We
require an approach that can be reapplied to any IVA with a
minimal amount of language domain specific tuning.

Inspired by (Krahmer et al. 1999), which achieved good
results on single turn misunderstanding detection, albeit on
a small test set, we construct a similar detection strategy
for escalation. Using only the set of 6,203 training con-
versations, we performed a manual analysis to determine if
there were common structures in the conversations or user
turns that would indicate persistent communication issues.
If problems are detected, the system should perform an es-

User Turn Intent Hit

1 im trying to buy upgrade,
cant find it

Paid Up-
grades

2 its not allowing me to buy an
upgrade. Im already checked
in

Paid Up-
grades

3 this virtual assistant is NO
assistance

IDK

4 I want to buy an upgrade for
my flight today. Your links
are not allowing me to do it

Paid Up-
grades

Table 1: A customer clarifying his or her request with repe-
tition, ultimately ending with frustration.

calation before the user explicitly asks for one. As false pos-
itives would be very confusing to the users and expensive
for the company, we must be conservative in our approach
by favoring precision over recall. The result of this manual
analysis is presented below in Algorithm 1 and is hereafter
referred to as the Escalation Algorithm (EA).

At the heart of the EA is the presence or absence of a clar-
ify section. A clarify section consists of an explanation of the
problem, an optional reaction to the automated assistant’s
response, and a restatement of the first explanation (lines 1-
10 in Algorithm 1). Notice that a clarification is not consid-
ered an exact repeat of the previous input (lines 3,8). Clarify
sections occur frequently since many customers initially do
not know they are speaking to an automated assistant. Upon
this realization, customers tend to repeat and clarify their
requests (Table 1). If the assistant is not providing an appro-
priate response to the user’s question, a customer typically
responds with correctional language (e.g. “No, that is not
what I meant.”). If a clarify section is found, we determine
if it is followed by the presence of correctional language,
an explicit escalation request, remarks on the uselessness of
the assistant, or anger. Otherwise, we check if there are 3
or more user turns following the clarify section that contain
similar requests. If so, we choose to escalate the conversa-
tion as, by this point, the automated assistant has returned an
unsatisfactory response at least 4 times.

For the same reason, if no clarify section is present,
recommend escalation if there are 4 or more similar re-
quests, or if correctional language, explicit escalation re-
quests, remarks on the uselessness of the assistant, or anger
are present in the conversation after the first turn. We make
these checks after the first turn to give the automated assis-
tant a chance to rectify the situation if the customer begins
the conversation frustrated or immediately requests to speak
to a different party. Finally, we check if the agent has re-
turned the same response multiple times (lines 1,2,4 in Ta-
ble 1), or has responded with an I Don’t Know (IDK) mul-
tiple times. An IDK response occurs when the IVA cannot
determine with high confidence what the user means and
will reply with something like “I’m sorry I didn’t understand
you, try rewording your question” (line 3 in Table 1).

217

Algorithm 1: Escalation Recommendation Algorithm
1 clarify = false;
2 sim = calcSimilarity(userTurns[0],userTurns[1]);
3 if sim �= 1 and sim ≥ simThresh:
4 clarify = true;
5 index = 2;
6 else:
7 sim = calcSimilarity(userTurns[0],userTurns[2]);
8 if sim �= 1 and sim ≥ simThresh:
9 clarify = true;

10 index = 3;
11 if clarify == true:
12 afterClarify = userTurns[index:];
13 if detectCorrectionLang(afterClarify):
14 return true;
15 if detectEscalationLang(afterClarify):
16 return true;
17 if minSent(afterClarify) ≤ sentThresh:
18 return true;
19 sameReq = countSame(afterClarify,simThresh);
20 if sameReq ≥ 3:
21 return true;
22 else:
23 sameReq = countSame(userTurns,simThresh);
24 if sameReq ≥ 4:
25 return true;
26 if detectCorrectionLang(userTurns[1:]):
27 return true;
28 if detectEscalationLang(userTurns[1:]):
29 return true;
30 if minSent(userTurns[1:]) ≤ sentThresh:
31 return true;
32 if numRepeats(agentTurns) ≥ rptThresh:
33 return true;
34 if numIDKs(agentTurns) ≥ idkThresh:
35 return true;
36 return false;

Implementation Details

To determine the presence of correctional language (lines
13 and 26 in Algorithm 1), a set of 34 regular expressions
was created from manual analysis of our training data1. For
example, to detect the correctional language in line 2 of Ta-
ble 2, a pattern such as “ˆyou did(not|nt) answer
(my|the) question.+” could be used. User turn was
case-normalized, and punctuation was stripped prior to cor-
rectional language determination.

For the determination of explicit escalation requests (lines
15,28), two methods can be used. If the IVA understands es-
calation language, we can simply test if the IVA detected this
in any of the user turns so far. If not, a stand-alone classifier
for escalation language can be used. For our experiments,
we implemented the latter exactly as described in (Beaver

1https://s3-us-west-2.amazonaws.com/anon-share/
FLAIRS2017 correctional res.txt

User Turn Intent Hit

1 Hi -agent-, the seat map only shows
rows D to F. Where did A to C go?

Seating Chart

2 you did not answer my question. Rows
A, B and C are not visible on the web-
site.

-agent-’s Mis-
understanding

3 Seat A, B and C are not visible on the
online seating chart.

Seating Chart

4 what is the telephone number to contact
a human?

Contact Phone
Numbers

Table 2: A customer clarifies his or her request with repeti-
tion, corrects the automated assistant, and ends the conver-
sation with an explicit request for escalation.

and Freeman 2016) so that we did not rely on any specific
IVA implementation.

Our algorithm makes use of thresholds for similarity
and sentiment polarity, as well as number of repeated an-
swers and IDKs. These are tuned using grid search and dis-
cussed in the following section. Polarity was measured us-
ing TextBlob’s sentiment classifier, and a threshold is set
for what constitutes an escalation (sentThresh in Algo-
rithm 1). Sentence similarity is used to determine the num-
ber of same requests in a conversation or if a clarify sec-
tion is present (lines 2,7,19,23). The similarity threshold
is tunable to the sensitivity of the method in use (called
simThresh in Algorithm 1).

Two methods for measuring similarity were compared:
cosine similarity and Elasticsearch. A simple implementa-
tion of cosine similarity, which ranges from 0 (least simi-
lar) to 1 (identical), was used to measure surface similarity
without considering semantics. We also experimented with
Elasticsearch where every user turn was stored in an index
along with the conversation ID and the order it appeared in.
To measure the similarity between two turns, A and B, we
queried the index using the text of A, the conversation ID of
B, and the order ID of B. This results in a single match, the
turn B, along with a relevance score. We treated relevance
as a measure of similarity. The relevance score was calcu-
lated by the practical scoring function within Lucene, the
underlying engine used by Elasticsearch. A relevance score
can be 0 (no similarity) or any positive number. The greater
the value, the more similar. Score thresholds are very spe-
cific to the query structure, and data and must be optimized
appropriately. We did not observe a statistically significant
difference between Elasticsearch and cosine similarity per-
formance. As cosine similarity is both faster and less com-
plex, we choose it as the similarity function in our algorithm.

Determination of Optimal Conversation Features

In order to determine the optimal values for the four thresh-
olds in Algorithm 1, we perform a grid search on the
training dataset. We set the values of the thresholds to
be all combinations of the following: sentThresh ∈
{−0.3,−0.4, . . . ,−1}, simThresh ∈ {0.4, 0.5, . . . , 1},
rptThresh ∈ {1, 2, . . . , 6}, and idkThresh ∈
{1, 2, . . . , 6}. Running the EA against the 6, 203 conversa-

218

Model PE RE F1E PNE RNE F1NE

EA .876 .647 .744 .938 .983 .960
CNN .776 .718 .746 .942 .957 .950
JRip .387 .051 .090 .834 .983 .902
SVM .317 .562 .405 .892 .750 .815
RF .735 .036 .069 .833 .997 .908

Table 3: Precision (P), recall (R), and the F1 score (F1) for
all models. A subscript of E indicates a metric for the esca-
lation class whereas NE represents no escalation.

% Training Data EA Time (s) CNN Time (s) Increase

1 11 70 6.36x
5 94 339 3.61x
10 139 619 4.45x
25 361 1, 466 4.06x
50 672 2, 881 4.23x
100 1, 375 6, 469 4.71x

Table 4: Time needed to either tune the thresholds for EA or
train the CNN given a percentage of the training set.

tions in the training set, we measure the precision, recall,
and F-1 score of each combination.

To determine the optimal values over the 2, 016 combi-
nations we first rounded the F-1 scores of the results to the
nearest hundredth. As many combinations of precision and
recall can create similar F-1 scores, we simply selected the
values with the highest precision (.883) in the top F-1 score
(.75). As previously stated, precision is by far more impor-
tant than recall as false positives are confusing to users and
expensive for the companies. False negatives, on the other
hand, are less essential as they present no difference to the
user experience with the addition of our system. The optimal
values selected were sentThresh = −0.7, simThresh
= 0.4, rptThresh = 4, and idkThresh = 4. These are
the threshold values used to measure EA performance on the
test set in Table 3.

Results

Precision and recall for both classes (E and NE) are dis-
played for all models in Table 3. Although CNN perfor-
mance may increase if given more training data than we
collected, it is important to realize that our EA has two ad-
vantages over the CNN. One, the EA needs considerably
less training data for threshold tuning. To discover this, we
took random samples from the training data and used them
to both train a CNN and tune the EA thresholds. We then
measured their performance on the test set (Figure 2). The
EA precision remains stable as the training set decreases un-
til more than 98% of training data is removed, whereas the
CNN drops steadily until around 9% where performance be-
comes unpredictable. This also demonstrates that EA thresh-
old tuning is not sensitive to overfitting. By 4% of training
data (248 conversations), EA precision is still identical to
that of 100% of training data! Two, the EA requires less
time for threshold tuning than CNN training time (Table 4).
Times were generated from training the CNN and tuning the
EA on a server with 48 2.2GHz cores and 64 GB of RAM.

Figure 2: Precision and recall for CNN and EA on the test
set given a random sample of the training set.

A 4.5x average increase may not seem significant until one
considers that this step will be required for every IVA de-
ployed, and periodic retraining/retuning may be needed.

We include the alignment graph for the EA in Figure 1.
The EA appears to be somewhat fair to both the customer
and company, although with a skew value of −1.52, there is
a slight right skew, showing favor to the company.

Discussion and Future Work

Some limitations of our work and different methods to de-
tect features were considered, and a few are worthy of dis-
cussion.

For sentiment polarity, a Naive Bayes classifier was
trained using Twitter data from (Sanders 2011). Of the 5,513
manually tagged tweets available from (Sanders 2011), only
3,648 could still be accessed (due to deleted or banned ac-
counts), and 80% were used as training data. Accuracy on
the remaining 20% was 72%. TextBlob’s sentiment classi-
fier was used in our study instead as it demonstrated better
performance in our system. However, TextBlob’s sentiment
classifier is pre-trained on a movie reviews corpus which
may differ significantly from automated assistant chats. Al-
ternative data for training a sentiment classifier could be ad-
dressed in future work as well as improved methods for sen-
timent analysis ((Ding, Liu, and Yu 2008), for example).

In our algorithm, polarity is determined on a by-turn ba-
sis. It would be interesting to split a turn into emotionally
homogenous parts and assign a sequence of emotions to a
turn like in (Roy et al. 2016), as we have observed that many
longer turns are multipart with respect to sentiment. Also
in (Roy et al. 2016), we could potentially add to our algo-
rithm by determining common conversational structure se-
quences for sessions that do not escalate and detect devia-
tions from this order.

There are limitations to using regular expressions (REs) to
detect correctional language; variation in word ordering or
spelling is difficult to account for. More sophisticated meth-
ods for this detection such as tagging data for correctional

219

language and training a classifier for this task could be ad-
dressed in future work. However, the check for correctional
language can be a considered a minor optimization. Care
was taken to only construct REs that did not include any
IVA or domain specific language to maximize re-usability.
We disabled lines 13 and 26 in Algorithm 1 so that the REs
are not even used. We measured no loss of precision and
only a 4% drop in recall on the test set from this removal.
As this is the only component of the EA that may require
manual analysis for a new language domain, it is important
to note it has a minor role.

Finally, both IVAs considered in this paper are in the do-
main of travel. We would like to extend our study to include
other language domains and then compare it to our results.

Our algorithm features many strengths. As clearly dis-
played in Figure 2 and Table 4, significantly less training
data and time is needed to achieve precision and recall com-
parable to that of standard machine learning techniques. We
observed that reviewers tagged 5.1 conversations per minute
on average. The EA may require only a few hours of human
time in tagging to tune for each IVA. The CNN method may
require over 20 times more tagged data and, therefore, car-
ries a much higher human cost. With significantly lower tun-
ing time for the EA, it is conceivable that humans could tag
a number of conversations, re-tune the weights, and deploy
them within a single day if needed. Also, our system only re-
lies on conversational structure and text features which will
be present in both speech and text based agents, and multi-
modal agents. Regardless of which channel the human is us-
ing, it must be in text form by the time it reaches the NLU
where our system would receive its input. Even in simple IR
tasks such as a request for a specific document, we observed
users restating their request if they were misunderstood and
using correctional language.

Conclusion

Our results show that it is possible to achieve high precision
(.876) in the recommendation of escalations without access
to acoustic features. Whereas the techniques in (Gorin, Ric-
cardi, and Wright 1997; Walker et al. 2000) are applicable
to only systems that have access to acoustic features, our
methodology can apply to systems with and without such
features. For such a subjective task as determining when a
conversation should escalate (recall we obtained a Cohen’s
κ of .6), our escalation algorithm performs better than sev-
eral standard machine learning techniques and requires con-
siderably less data and time for parameter tuning.

Many of the reviewed papers on alternative systems report
only accuracy measurements instead of precision and recall.
As the accuracy in our system was 93.1%, it is compara-
ble to the accuracies reported in systems relying on acoustic
features (55 to 93%). As our method only considers con-
versational structure and text features, it is less restrictive
and can even work in multi-modal environments where turns
can alternate between text and speech. Avenues for future re-
search remain such as determining more sophisticated meth-
ods for detecting correctional language and training a senti-
ment classifier more suited to customer requests. This paper

has, however, presented an accurate and effective algorithm
for escalation recommendation that can be broadly applied.

References

Beaver, I., and Freeman, C. 2016. Detection of user esca-
lation in human-computer interactions. In INTERSPEECH,
2075–2079.
Ding, X.; Liu, B.; and Yu, P. S. 2008. A holistic lexicon-
based approach to opinion mining. In Proceedings of the
2008 International Conference on Web Search and Data
Mining, 231–240. ACM.
Gorin, A. L.; Riccardi, G.; and Wright, J. H. 1997. How
may I help you? Speech communication 23(1):113–127.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The weka data mining software:
an update. ACM SIGKDD explorations newsletter 11(1):10–
18.
Horvitz, E., and Paek, T. 2003. Utility-directed coupling of
spoken dialog systems and human operators for call routing.
Technical report, MSR Technical Report 2003.
Kim, Y. 2014. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Krahmer, E.; Swerts, M.; Theune, M.; and Weegels, M.
1999. Problem spotting in human-machine interaction.
Langkilde, I.; Walker, M.; Wright, J.; Gorin, A.; and Lit-
man, D. 1999. Automatic prediction of problematic human-
computer dialogues in How May I Help You. In Proceedings
of the IEEE Workshop on Automatic Speech Recognition and
Understanding, ASRUU99, 1–4. Citeseer.
Lison, P. 2013. Structured Probabilistic Modelling for Dia-
logue Management. Ph.D. Dissertation, University of Oslo.
Meena, R.; Skantze, J. L. G.; and Gustafson, J. 2015. Au-
tomatic detection of miscommunication in spoken dialogue
systems. In 16th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, 354.
Rakhlin, A. 2016. Cnn for sentence classifi-
cation in keras. https://github.com/alexander-rakhlin/
CNN-for-Sentence-Classification-in-Keras.
Roy, S.; Mariappan, R.; Dandapat, S.; Srivastava, S.; Galho-
tra, S.; and Peddamuthu, B. 2016. Qa rt: A system for real-
time holistic quality assurance for contact center dialogues.
In Thirtieth AAAI Conference on Artificial Intelligence.
Sanders, N. 2011. Twitter sentiment corpus. http://www.
sananalytics.com/lab/twitter-sentiment/. accessed 2016-05-
19.
Schmitt, A.; Scholz, M.; Minker, W.; Liscombe, J.; and
Sündermann, D. 2010. Is it possible to predict task com-
pletion in automated troubleshooters?. In INTERSPEECH,
94–97.
Walker, M.; Langkilde, I.; Wright, J.; Gorin, A.; and Litman,
D. 2000. Learning to predict problematic situations in a
spoken dialogue system: experiments with how may i help
you? In Proceedings of the 1st North American chapter of
the Association for Computational Linguistics conference,
210–217. Association for Computational Linguistics.

220

