
Automated Waypoint Generation with the Growing Neural Gas Algorithm

Brian Dellinger
Department of Computer Science

Grove City College
Grove City, PA 16127

Ronald Jenkins
Department of Electrical Engineering

Pennsylvania State University
University Park, PA 16802

Joshua Walton
Insight Global

Cherry Hill, NJ 08003

Abstract

Autonomous navigation in complex continuous spaces
often requires the presence of navigation meshes or
other methods of determining traversable paths. At
present, many navigation meshes are created via a time-
consuming manual process. We propose a novel ap-
proach for automated generation of waypoints using
the Growing Neural Gas algorithm, which generates a
graph approximating a complex surface. We illustrate
the use of this algorithm on a number of simple two-
dimensional mazes and suggest further application for
more complex surfaces.

Introduction

Polygon maps are common in games, simulations, and other
applications that require automated navigation. As contin-
uous spaces, such maps admit an infinite number of paths
between any two points, making automated path generation
difficult. Thus, polygon maps are often approximated by fi-
nite graphs of waypoints; in exchange for some loss of op-
tions, such a navigation mesh permits rapid navigation via
A* (Hart, Nilsson, and Raphael 1968) or similar algorithms.
Unfortunately, manually creating a large navigation mesh
from a continuous space can be time-consuming, and so au-
tomating the task of mesh generation may save significant
labor.

The Growing Neural Gas (GNG) algorithm (Fritzke and
others 1995) is designed to create a finite graph approxi-
mating a complex continuous space. Traditionally, this al-
gorithm has been used to approximate high-dimensional
topologies with lower-dimensional graphs. We propose to
use the GNG algorithm to automatically create a network
of navigable paths for a given polygon map. The waypoints
resulting from this algorithm could then be used for navigat-
ing the map as usual, but without the need for direct human
labor.

Related Works

The original implementation of the GNG algorithm (Fritzke
and others 1995) leaves several details of the design open

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for different implementations, resulting in a family of re-
lated algorithms. Noteworthy variations include GNG with
Utility Factor (GNG-U) (Holmström 2002), which adapts to
changes in the distribution of navigable space, and Robust
GNG (Qin and Suganthan 2004), which reduces the time re-
quired to form a solution by adjusting the algorithm’s re-
sponse to outliers and grouped nodes. Other variations mod-
ify the balance between old and new observations; thus, In-
cremental GNG (Prudent and Ennaji 2005) adds a learning
rule to better incorporate new input data, and TreeGNG (Do-
herty, Adams, and Davey 2005) keeps a version history to
help correct for early mistakes in mapping.

Automated waypoint generation is not a new topic, with
notable existing methods including decomposition, which
reduces polygon meshes to simpler networks of vertices and
edges (Hale and Youngblood 2009). A more recent paper
from the same author (Hale 2011) proposes several algo-
rithms to progressively grow waypoint graphs, an approach
similar to a GNG’s gradual expansion. Alternatively, vox-
elization (Oliva and Pelechano 2013) identifies a world’s
walkable areas before connecting them together to form a
navigation mesh.

Others have used Neural Gas algorithms to emulate player
behavior in a game map (Thurau, Bauckhage, and Sagerer
2004). In particular, the Stable GNG (SGNG) algorithm
(Tencé et al. 2013) was developed specifically to use the
GNG algorithm for waypoint generation. To create a nav-
igation mesh producing believable motion, SGNG samples
the movement of human players, and its authors consider
the effect of a range of parameters on the resulting mesh.
While our approach also depends on GNG, our focus was to
enable mesh generation with little to no human interaction.
We thus sample the underlying polygon map directly; unlike
existing approaches, this permits mesh generation even for
procedurally-generated spaces or other maps where no prior
human navigation records exist.

The Growing Neural Gas Algorithm

The GNG algorithm iteratively approximates topologies
with simple finite graphs. Traditionally, such approxima-
tions have been used effectively to model continuous spaces.
In this paper, we seek to demonstrate GNG’s ability to gen-
erate a waypoint graph from an arbitrary polygon mesh.

We begin by using the GNG algorithm to approximate the

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

404

walkable area of a hallway maze; while the maze walls are
technically three-dimensional, its floor is a two-dimensional
surface without stairs, pits, or other vertical elements. The
approximation produces an undirected graph, consisting of
a set of edges E and a set of nodes N . All edges in E have
an associated age, initialized to 0, and all nodes in N have an
associated error, also initialized to 0. A series of randomly-
generated points called signals are chosen from the walkable
space of the maze floor; signals are never chosen from points
that would lie outside the maze or inside a wall. Through
successive iterations of the algorithm, these signals are used
to draw the nodes of N closer to the walkable surface of the
maze and thereby better approximate the maze topology.

Formally, the base GNG algorithm consists of the follow-
ing steps:

1. Create two initial nodes a and b at random points within
the maze plane, and place them in the set N .

2. Generate a new signal ξ from the walkable area.

3. Find the two nodes s1, s2 ∈ N that are closest to ξ; let s1
be the closer of the two nodes to ξ. Let δξ be the distance
from s1 to ξ.

4. Increment the age of each edge in E connecting s1 to one
of its neighbors.

5. Add δ2ξ to s1’s error.

6. Move s1 a distance of εbδξ towards ξ, where 0 ≤ εb ≤ 1.
Likewise, move all of s1’s neighbors towards ξ by some
fraction εn of their respective distances from ξ, where 0 ≤
εn ≤ 1.

7. If s1 and s2 are connected by an edge, set the age of that
edge to zero. Otherwise, create an edge between them
with an age of 0 and add it to E.

8. Remove all edges in E which have an age larger than
some nonnegative value amax. If any node in N has a
degree of 0, remove that node.

9. If this is the first pass through algorithm, or if some num-
ber λ of signals have been generated since the last node
was added, add a new node in the following manner:

• Find the node q1 ∈ N with the largest error. Then, from
q1’s neighbors, find the node q2 with the largest error.

• Create a new node r halfway between q1 and q2, and
add it to N .

• Create new edges between q1 and r, and between r and
q2, both with an age of 0. Add these edges to E. Re-
move the original edge from q1 to q2.

• Scale the errors of both q1 and q2 by some α, where
0 < α < 1. Then set r’s error to that of q1.

10. Reduce the error value of each node by multiplying them
by some d, where 0 < d < 1.

11. If a stopping criterion for the algorithm has not yet been
met, return to step 2. Otherwise, the algorithm halts, re-
turning the current graph.

Implementation Details

Mazes seemed an appropriate initial testing ground for the
GNG algorithm. While a simple two-dimensional maze does
not verify the algorithm’s suitability for vertical environ-
ments, it does allow easy visual inspection of the result-
ing graph. Furthermore, a maze provides ample opportunity
for a graph to produce errors such as disconnections, paths
through walls, or empty regions, which again can be intu-
itively understood from the maze overlay.

As signals are only generated in the walkable area of a
maze, the walkable surfaces must first be identified, a pro-
cess which runs counter to our goal of automation. In many
cases, however, the walkable surfaces of a map are simply
those oriented roughly horizontally, and so the normal to
such polygons will be roughly vertical. In such cases, we
automate the process of marking all polygons whose normal
is within some angle θ of vertical as walkable, optionally
pruning small polygons to remove trivial terrain features.

As noted above, the original GNG algorithm allows dif-
ferent implementations to choose their own stopping condi-
tions. Additionally, in adapting the algorithm to our objec-
tive, we found it helpful to make some slight adjustments to
the original design. We summarize our choices and modifi-
cations below.

Scaling Node Generation

Broadly speaking, the size of a graph needed to approximate
a continuous space tends to increase with the size and com-
plexity of that space. As the number of connected nodes in
the graph grows, the time required for each iteration of the
algorithm increases as well. One way to mitigate this slow-
down is to reduce the rate at which new nodes are created
based on the current number of nodes; as the graph grows,
the number of iterations before creating a new node likewise
becomes larger. Formally, we replace the value λ (that is,
the number of iterations before a new node is created) by a
function λ(N) that is linear on the size of N ; in the pages
that follow,

λ(N) = 100|N |.
Intuitively, the algorithm spends more time attempting to op-
timize a larger graph before adding another node. In prac-
tice, we find that this change tends to produce a sparser
graph without sacrificing the approximation.

Stopping Criterion

The original GNG algorithm does not define a specific stop-
ping criterion, leaving the choice up to the implementor. To
that end, every 500 iterations, we generate a fixed number of
random input signals. For each signal, we locate the nearest
node in N and calculate the distance to that node; we then
sum all of these distances. One can think of the resulting sum
as a measure of how well the points of N cover the walka-
ble area of the map. We call this sum the coverage error,
denoted C.

Initially, as the graph changes rapidly, the coverage error
tends to decrease sharply; as the number of nodes increases
and the graph becomes more settled, the rate of change of C
declines. We use the rate of change of this sum as a stopping

405

(a) After 5,000 iterations. (b) After 50,000 iterations.

(c) After 200,000 iterations.

Figure 1: Progressive iteration over the same graph. Graph
(a) is a roughly uniform distribution of nodes over the entire
maze area. Graph (b) is largely correct, but still has a number
of “wall-crossing” edges, eliminated in (c).

condition; once the rate of change drops below a predefined
threshold, execution halts. In other words, given two subse-
quent coverage errors Ci and Ci+1, execution halts if

|Ci − Ci+1| < σ (1)
for some predefined threshold coverage rate of change σ. In
our research, we found that the optimal value of σ varied
from maze to maze.

Results
We ran the GNG algorithm on a variety of mazes, varying
the algorithm parameters to search for a workable approxi-
mation. We present several notable results below, including
the type of each maze, the algorithm parameters chosen, and
the number of iterations required for the algorithm to termi-
nate. The walkable area of each maze is a light gray; walls
are white, and the graph produced is black.

Iterative Algorithm Progress

Figure 1 illustrates how a GNG graph develops across suc-
cessive iterations on a braid maze; the three images show
the development of a single graph through first 5,000, then
50,000, and finally 200,000 iterations. Note that the 1a is a
largely even distribution of nodes, including many nodes in-
side walls. Such errors are often caused when a single node
is “pulled” by signals on either side of a wall, particularly
when the graph is still sparse. In 1b, the graph approximates
the shape of the maze, though several edges still cross walls.
At 1c, the number of nodes has increased further, producing
a dense and properly-connected graph with no wall-crossing
edges.

Figure 2: A 3D object with traversable area mapped.

Maze-Dependent Parameter Choice

We next considered the effect of the GNG algorithm on a
maze whose length and width were both doubled, producing
a maze with many more twists and bends than in preceding
examples. Initially, parameters were set to the relatively low
values of εβ = 0.2 and εN = 0.006. The result was striking;
while the algorithm required only a relatively small increase
in the number of iterations, the result was effectively useless.
As in the partially-complete graph in Figure 1a, nodes were
distributed roughly evenly across the maze, with edges that
had little resemblance to the underlying maze. This suggests
that there is no single “best answer” set of parameters, even
for a domain as restricted as maze navigation; the GNG al-
gorithm must be tuned for its particular target environment.
To produce a more meaningful maze required reducing the
threshold value σ from 10−3, to 10−6. The resulting graph
provides a solid basis for navigation, with no wall-crossing
edges or other major undesirable features, but it required
well over a million iterations to produce.

Three-Dimensional Figures

While our research primarily focused on two-dimensional
mazes, we briefly considered navigating three-dimensional
constructions as well. Given a three-dimensional polygon
map, we used automated generation of the normals to each
polygon to determine which polygons were approximately
horizontal, identifying any such polygons as “traversable,”
and ran the GNG algorithm. Figure 2 shows a typical result;
while the figure may be difficult to interpret in two dimen-
sions, it includes a long vertical spiral at the right, followed
by several narrow catwalks and an ending half-cylindrical
area. The GNG algorithm generally correctly traverses the
spiral and catwalks, filling the wider traversable areas with
small sub-graphs. There remains a slight tendency for the al-
gorithm to cut across corners, which might have unfortunate
consequences for anyone relying on it to traverse the verti-
cal spiral; we suggest some remedies for this problem in the
next section.

406

Future Work

While the preceding tests suggest that the GNG algorithm
can be configured to produce results in a variety of mazes,
there remain a number of ways in which its behavior might
be improved. We consider several of these below.

Wall-Crossing Edge Elimination

It seems reasonable that any path in a navigation mesh
should also be traversable in the original polygon map, and
so any wall-crossing edges produced by the GNG algorithm
must be eliminated. Unfortunately, as the relative thickness
of walls to corridors decreases, the base GNG algorithm be-
comes increasingly likely to produce exactly such edges. In
general terms, to avoid wall-crossing edges, the density of
nodes must be so great that every node is closer to other
nodes in the same “hallway” than to other nodes across the
wall from it. In an environment with infinitely-thin planar
walls, the required density of nodes would become infinite.

One modification of the GNG algorithm to resolve this
problem would be to accept the presence of wall-crossing
edges during the algorithm’s run, focusing on a desirable
distribution of nodes rather than elimination of all unde-
sirable edges. The final graph could then be checked for
collisions between edges and non-walkable polygons, with
any wall-crossing edges culled. We anticipate that the result
would produce a useful, sparser map after a relatively low
number of iterations.

Disjoint Graph Detection

A second concern is that the GNG algorithm might terminate
while areas that are connected in the original polygon map
are still disconnected in the navigation mesh. While such a
mesh might fulfill all other stopping criteria, it would ob-
viously be undesirable for agents to fail to reach clearly-
accessible areas. We thus suggest that the stopping criteria
for the algorithm be expanded to include graph connectivity.

Need-Based Node Creation

As maze complexity and size increases, the number of nodes
required to fully approximate the maze increases dramati-
cally. As noted above, our implementation waits for a num-
ber of iterations linearly proportionate to the number of ex-
isting nodes before introducing an additional node; equiva-
lently, the number of iterations required to produce a given
graph is proportionate to the square of the number of nodes
in that graph. For larger graphs, this may be too steep of an
increase. A function λ(N) whose growth was logarithmic
or exponential in the size of N , rather than linear, might per-
form better.

Another alternate approach would be to base the rate of
node creation on the rate of change of the coverage error
C; intuitively, while the value of C is changing rapidly, the
graph is not well fit to its space and so could benefit from
additional nodes. Once the rate of change of C drops and
the graph stabilizes, the rate of node creation should drop to
allow better fitting of the existing nodes.

Benchmarking

A major need at present is some form of benchmarking
to compare the GNG algorithm to existing alternatives on
a variety of reasonable polygon maps. To this point we
have shown only that the algorithm can reliably produce
appropriate-seeming navigation meshes; it remains to be
seen how its performance compares to alternatives.

Conclusion

We have demonstrated that, with only minor adjustments,
the Growing Neural Gas algorithm produces plausible way-
point graphs for two-dimensional mazes. Further, initial ev-
idence suggests that the algorithm would also produce ap-
propriate graphs for three-dimensional spaces. We suggest
that further investigation be made to determine the whether
the GNG algorithm is a plausible alternative for navigating
artificial spaces.

References

Doherty, K.; Adams, R.; and Davey, N. 2005. Hierarchical
growing neural gas. In Adaptive and Natural Computing
Algorithms. Springer. 140–143.
Fritzke, B., et al. 1995. A growing neural gas network learns
topologies. Advances in neural information processing sys-
tems 7:625–632.
Hale, D. H., and Youngblood, G. M. 2009. Full 3d spatial
decomposition for the generation of navigation meshes. In
AIIDE.
Hale, D. H. 2011. A growth-based approach to the automatic
generation of navigation meshes.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2):100–107.
Holmström, J. 2002. Growing neural gas–experiments with
gng–gng with utility and supervised gng.
Oliva, R., and Pelechano, N. 2013. Neogen: Near optimal
generator of navigation meshes for 3d multi-layered envi-
ronments. Computers & Graphics 37(5):403–412.
Prudent, Y., and Ennaji, A. 2005. An incremental growing
neural gas learns topologies. In Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, 2005.,
volume 2, 1211–1216. IEEE.
Qin, A. K., and Suganthan, P. N. 2004. Robust growing neu-
ral gas algorithm with application in cluster analysis. Neural
Networks 17(8):1135–1148.
Tencé, F.; Gaubert, L.; Soler, J.; De Loor, P.; and Buche,
C. 2013. Stable growing neural gas: A topology learning
algorithm based on player tracking in video games. Applied
Soft Computing 13(10):4174–4184.
Thurau, C.; Bauckhage, C.; and Sagerer, G. 2004. Learn-
ing human-like movement behavior for computer games. In
Proc. Int. Conf. on the Simulation of Adaptive Behavior,
315–323.

407

