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Abstract 
This study examines how differences in corpus size influence the 
accuracy of Latent Semantic Analysis (LSA) spaces and Latent 
Dirichlet Allocation (LDA) spaces in two tasks: a word 
association task and a vocabulary definition test. Specific 
optimizations were considered in building each semantic model. 
Initial results indicate that larger corpora lead to greater accuracy 
and that LDA probabilistic models, similar to LSA vector spaces, 
can provide insights into cognitive processing at semantic levels. 

Introduction  
The statistical redundancies found in language afford the 
opportunity to model higher order representations of word 
meaning using unsupervised learning techniques (Kintsch, 
2001). The majority of this work was completed in the 
1990s and centered around Latent Semantic Analysis 
(LSA; Landauer and Dumais, 1997) models, which derives 
semantic representations of words from large corpora of 
texts. The central notion of LSA semantic models is that 
the combined contexts in which a word occurs provide a 
set of mutual constraints that can be used to estimate a 
word’s meaning based on context (Jones and Mewhort, 
2007). LSA models have replicated human judgments of 
semantic similarity (Landauer and Dumais, 1997), 
judgments of word synonyms, and judgments of essay 
quality (Landauer, Laham, Rehder, and Schreiner, 1997). 

One consideration for deriving accurate semantic 
representations using LSA is the size of the corpus. 
Deerwester et al. (1990) suggested a reasonably sized 
corpus should comprise about 1,000-2,000 documents and 
contain about 5,000-7,000 words. Such a corpus would be 
representative of natural language and contain sufficient 
redundancies (i.e., enough conceptually related terms 
appearing together). Landauer and Dumais (2008) 
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suggested that the overall minimum size of the initial term-
document matrix should be at least 20,000 terms with 
20,000 passages. Following this trend, the most commonly 
used corpus to derive LSA spaces is the Touchstone 
Applied Science Association (TASA) corpus 
(http://lsa.colorado.edu/spaces.html), which comprises 
about 38,000 documents and 92,000 terms.  

Corpus size is a concern because large, heterogeneous 
corpora may provide more noise or too much specific 
information from a single domain, reducing the accuracy 
of the derived models. However, there is little agreement 
on the expected size of the corpus or what comprises a 
large or small corpus (Giesbers, Rusman, and van 
Bruggen, 2006; Villalon and Calvo, 2009). Some research 
reports that LSA performs best on an entire corpus 
(Wiemer-Hastings, 1999), while other research reports that 
the impact of corpus size asymptotes at about 80% of a 
corpus (Terra and Clark, 2003). However, these findings 
are corpus specific and often specific to the number of 
vectors selected. 

Recently, researchers have expanded beyond LSA 
models of semantic representations and have begun to 
explore topic-based models of semanticity, of which the 
most common is Latent Dirichlet Allocation (LDA; Blei, 
Ng, and Jordan, 2003). LDA, like LSA, depends on large 
corpora to infer topics based on a combination of words 
and documents. However, LDA have mostly been trained 
on specific, information retrieval oriented, corpora that 
needed to be semantically annotated. Most LDA models 
focus on topic extraction (Chang et al., 2009) or dynamic 
modeling (Blei and Lafferty, 2006) of topic trends, but 
have not analyzed the cognitive and psychological 
implications of LDA in a similar degree to which LSA has 
been analyzed. 

Cognitively, LSA can be seen as an expression of 
meaning because each word can be represented as a 
context-free vector in the semantic vector-space model 
(Kintsch, 2001). The actual dimensions of concepts do not 
bear a specific individual meaning, but the overall 
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representation generated by LSA can be considered a map 
of meanings (Landauer and Dumais, 2008). In addition, 
positive correlations between LSA similarity scores and 
human recall using word association lists support a 
semantic proximity effect (Howard and Kahana, 1999) in 
which LSA bears resemblance to human memory (e.g., 
memory search, free recall; Zaromb et al., 2006; Landauer 
and Dumais, 2008). In contrast to LSA, LDA does not 
support theories of cognition. This is chiefly because LDA 
is a probabilistic topic model in which the connotations of 
the latent space behind the model are ignored because only 
the distributions of words within documents are observable 
(Chang et al., 2009). Although LDA topics are not equi-
probable and semantic significances cannot be 
automatically deduced (Arora and Ravindran, 2008), LDA 
has proven to be reliable in extracting topics from texts 
(Blei et al., 2003). 

The purpose of this study is to examine differences in 
LSA and LDA models derived from corpora of two 
different sizes: TASA and the Corpus Contemporary 
American English (COCA; Davies, 2010). Specifically, we 
examine the accuracy of LSA and LDA spaces derived 
from these corpora in terms of simulating word association 
norms and selecting vocabulary test answers. Our primary 
goal is to assess the degree to which corpus size increases, 
decreases, or has no effect on replications of the human 
semantic knowledge. Our approach also allows us to test 
differences between a large corpus comprised of a single 
domain written at a similar level of complexity (COCA) 
and a smaller corpus comprised of multiple domains 
written at different complexity levels (TASA). Lastly, this 
approach provides the opportunity to assess the cognitive 
and psychological implications of LDA. 

Method 

Training Corpora 
LSA and LDA models used in this study were trained for 
the English language using the TASA corpus and COCA. 
We selected TASA because it is a common corpus used in 
developing LSA spaces. TASA consists of educational 
texts spanning the 1st through the 12th grade and contains a 
number of domains chief among them language arts, 
sciences, and social studies. COCA has five different 
subgenres: spoken, fiction, popular magazine, newspaper, 
and academic. For our semantic spaces, we selected the 
newspaper genre because it is the most general. 

 A specific NLP pre-processing cleaning was applied to 
each corpus, in which non-dictionary word forms and stop-
words were disregarded, and all inflected word forms were 
reduced to their corresponding lemmas. While building the 
sparse term-document matrix stored in Hadoop, we relied 
on log-entropy for our LSA space. Due to the highly 
computational SVD decomposition, our training relied on a 

distributed version of stochastic SVD from the Mahout 
framework (Owen, Anil, Dunning, and Friedman, 2011). 
We ensured that LSA spaces for both TASA and COCA 
had the same number of vectors (N = 300). Similarly, we 
ensured that the optimal number of LDA topics inferred 
from both corpora were similar. Descriptions of both 
corpora are found in Table 1. 
 

Descriptors TASA COCA 
N# lemmas 5,864,529 41,732,161 
N# paragraphs 44,486 57,037 
Dictionary size 43,012 55,449 
LSA k 300 300 
LDA / HDP-inferred k 230 175 

Table 1. Corpus descriptions. 

USF Word Association Norms 
We use the University of South Florida (USF) association 
norms (Nelson, McEvoy, and Schreiber, 1998) to examine 
similarities between the LSA and LDA spaces with 
standardized word association norms. The USF norms 
report the number of stimuli words (N = 5,019) that 
resulted in production of a target word (N = 10,470) as an 
associate in a free association task. We examined the 
maximum similarity between the response words and the 
average cosines derived from our semantic models along 
with the average similarity between the top three responses 
and the derived cosines. 

Vocabulary Levels Test 
We use Vocabulary Levels Tests (VLT; Nation, 1990; 
Schmitt, Schmitt and Clapham, 2001) to investigate the 
potential for our LSA and LDA spaces to predict word 
definitions in a standardized test. VLTs are designed to 
assess knowledge of common and uncommon English 
words. The tests assess word knowledge at levels based on 
1,000 word frequency bands. The original VLT (Nation, 
1990) and the second VLT (Schmitt et al., 2001) tested 
knowledge at the second, third, fifth, tenth word frequency 
bands along with words taken from the Academic Word 
List (Coxhead, 2000). Test-takers see six words on the left 
side and three definitions on the right side. The learner 
must match the three definitions to three of the words on 
the left side. We used a bipartite graph in which we 
initially made all possible association between words and 
their potential definition followed by a maximization flow 
within the resulting network to select the correct answer 
from our semantic models. 

Results 
Student t-tests were conducted to compare differences in 
the strength of associations between the LSA and LDA 
word vectors and the Nelson Word Association Norms for 
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both the TASA and COCA corpora. t-tests were calculated 
for the average vector similarity for the top 3 associated 
words in the Nelson norms along with the similarity to the 
most strongly associated word (i.e., maximum similarity). 
There were significant advantages for the LDA space using 
COCA compared to TASA in terms of both average 
similarity; t(9044) = 25.68, p < .001, and maximum 
similarity; t(9044) = 12.22, p < .001 (see Table 2). 
Likewise, there were significant advantages for the LSA 
space using COCA for both average similarity; 
t(9084) = 19.92, p < .001, and maximum similarity; 
t(9084) = 13.98, p < .001 (see Table 3). These results 
indicate that LDA and LSA spaces derived from a larger 
corpus (i.e., COCA) showed stronger links to word 
association norms than spaces derived from a smaller 
corpus (i.e., TASA). 
 

Variable LDA COCA LDA TASA 
Average similarity 0.414 (0.141) 0.332 (0.162) 
Maximum similarity 0.553 (0.167) 0.504 (0.208) 

Table 2: Comparisons between LDA TASA and COCA 
spaces. 

 
Variable LSA COCA LSA TASA 
Average similarity 0.265 (0.130) 0.211 (0.127) 
Maximum similarity 0.395 (0.183) 0.340 (0.190) 

Table 3: Comparisons between LSA TASA and COCA 
spaces. 

 
A factorial ANOVA was conducted to examine 

differences in VLT accuracy scores reported by LSA and 
LDA spaces for both the TASA and the COCA corpus 
across the entire test and among the vocabulary levels. The 
ANOVA showed a significant main effect for semantic 
space/corpus, F(3, 12) = 3.68, p < .050 and a significant 
main effect for vocabulary level, F(4, 12) = 9.89, p < .001. 
No significant interaction between semantic space/corpus 
and level was reported, F(12, 920) = 1.19, p > . 05. 
Pairwise comparisons demonstrated that the LSA space 
derived from COCA outperformed both LDA spaces 
(COCA and TASA) and that the LSA space derived from 
TASA outperformed the LDA space derived from COCA 
(p < .05). Pairwise comparisons indicated that lower level 
words (i.e., 2000 and 3000 level words) were defined most 
accurately by the LSA and LDA spaces. Overall, this 
analysis indicates that LSA spaces based on COCA 
outperform other spaces and that LDA spaces (especially 
those based on COCA) were the worst performing. 

Discussion 
Consensus on the effect of corpus size on the accuracy of 
LSA spaces is still lacking. At the same time there seems 
to be little research about the effects of corpus size on 
LDA spaces. This study helps to address corpus size 

differences by developing similar LSA and LDA spaces on 
two different corpora of different sizes and assessing the 
resulting spaces on two cognitive assessments of word 
knowledge: a word association task and a vocabulary test. 
The results indicate that a larger corpus leads to accuracy 
gains for LSA models in terms of word association 
similarities and vocabulary test scores (although the latter 
was not significant). The results for the LDA models are 
more nuanced with LDA models based on larger corpora 
performing better on word association tasks, but worse on 
vocabulary tests. We discuss these findings below. 

In terms of matching human judgments of word 
association tasks, both LSA and LDA spaces derived from 
the larger COCA performed significantly better than 
models derived from TASA indicating that the larger 
coverage of words found in COCA allowed the models to 
develop both similarity and topic matrices that were better 
aligned with human judgments of word associations. This 
finding provides some evidence that larger corpora may 
lead to the development of more accurate semantic spaces. 
Also of interest is the difference in similarity strengths 
reported by the LDA and LSA spaces with the LDA spaces 
reporting stronger similarities with human judgments of 
word associations than LSA spaces. This may be a result of 
differences in the similarity functions used. The cosine is 
bounded within the [-1; 1] interval, with extremely few 
cases of negative values for high dimensional LSA spaces, 
whereas Jensen Shannon Dissimilarity ranges from 0 to 1. 
This means that overall association strengths for all words 
pairs are generally higher for LDA spaces than for LSA 
spaces. 

In terms of vocabulary test results, the LSA spaces based 
on COCA reported higher mean scores (75%) on the VLT 
than LSA spaces based on TASA (72%) although this 
difference was not significant. The LSA spaces based on 
COCA reported stronger accuracies than the LSA spaces 
based on TASA for the more difficult word levels (i.e., the 
10,000 and academic word levels) indicating that gains 
were made with more difficult words. This is possibly the 
result of the corpus design (i.e., TASA has many lower 
level texts while COCA does not) indicating a strength of 
using more complex corpora in developing semantic 
spaces. Our LDA results were mixed with spaces based on 
TASA outperforming spaces based on COCA, except in 
the higher word levels (the 5,000 and 10,000 word levels) 
in a manner similar to the LSA spaces. TASA may better 
represent vocabulary knowledge than COCA in topic 
models because the corpus contains more domains of 
knowledge than COCA, thus allowing for more topics to 
be induced by HDP, to support stronger representations of 
knowledge. 

Of secondary interest is the assessment of LDA spaces in 
light of cognitive assessments. Previous research (e.g., 
McNamara, 2010) has emphasized the importance of LSA 
models in understanding cognition by enabling large-scale 
representations of human knowledge. This study provides 
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some evidence that LDA models, like LSA models, can 
also provide insights into cognitive processing at the 
semantic level.  

Conclusion 
In conclusion, this study demonstrates benefits for 
developing LSA and LDA models using larger corpora but 
also opens avenues for future research. Primary among 
these are the need to investigate LSA and LDA models 
developed on large and small corpora that are 
counterbalanced in terms of domains covered and 
linguistic complexity. In addition, future studies should 
continue to examine the potential for LDA models to 
contribute to our understanding of cognitive processing. 
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