
A Challenge for Multi-Party Decision
Making: Malicious Argumentation Strategies

Andrew Kuipers and Jörg Denzinger
Department of Computer Science

University of Calgary, Canada

Abstract

We present the concept of malicious argumentation strate-
gies that extends malicious argumentation tactics to manipu-
late the outcome of an argumentation based decision making
process with resource limits. We give an example of such a
strategy, Exhaust and Protract, and show in a decision mak-
ing example how Exhaust and Protract can be used to change
the result of the decision making process.

Introduction
There are many potential problems automated decision mak-
ing faces. Among these problems is the potential inability to
agree on the goals the decision making has to fulfill or how
to rank given goals. This problem is nearly guaranteed to ap-
pear if the decision making requires several parties to agree
on a decision. The use of argumentation is considered as a
solution to this problem. The involved parties use some kind
of agreed scheme regulating what arguments are and how an
argument can be countered by other arguments and after the
scheme is played through the argument(s) ”still standing”
determine the decision.

Formally, the scheme is represented as a so-called argu-
mentation game (McBurney and Parsons 2002), arguments
are realized as formulae in a logic and whether an argument
counters another is checked using some (automated) deduc-
tion method for the logic. Since usually decisions have to be
made within a certain time limit, this means that we can-
not assume that the deduction process (or processes) has
finished its work, which means that some default outcome
needs to be introduced. Unfortunately, such a default opens
the door to what is called malicious argumentation (Kuipers
and Denzinger 2010) which aims at creating arguments that
are guaranteed to bring the deduction process to the default
outcome.

(Kuipers and Denzinger 2010) presented several ways
how a single argument can be rewritten so that checking it
with limited resources against a given set of knowledge does
not reveal a contradiction although with no limitations a con-
tradiction can be found. While for very specialized argumen-
tation games with the ”right” default this is already enough,
more complex games cannot be won with such a tactic alone.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In fact, games involving a dialog between the arguing parties
require what we call malicious argumentation strategies to
be taken advantage off by a malicious party. Such strategies
combine the use of various tactics in different steps of the
game.

In this paper, we present a collection of tactics that can
be combined by a malicious strategy and then present one
strategy, called Exhaust and Protract that aims at winning
an argumentation game by using first a tactic creating an
argument that cannot be countered by the opponent due to
resource exhaustion followed by arguments created by pro-
traction tactics until the argumentation game is over. In an
example of using this strategy we show that it allows an
agent to get a decision outcome that would be different with-
out the use of the strategy.

Argumentation games
In this section, we present the basic terminology and defini-
tions around argumentation games. Due to lack of space, we
cannot provide complete formal definitions and concentrate
only on the parts relevant for the following sections.

A logic L consists on the one hand side of a signature
describing the allowed predicate and function symbols and
variables and their arities and logical connectors and quan-
tifiers to define what a well-formed formula is. In addition
to this syntax, the semantics of L determine how truth val-
ues are assigned to formulae (usually using interpretations).
Semantical consequence between a set of formulae Φ and a
single formula α is expressed as Φ |= α and it indicates that
if all formulae in Φ are interpreted to true then also α will
be interpreted to true.. Usually, |= cannot be used for any
automation, which means that a calculus and a consequence
relation � based on this calculus is needed. And, for most
logics and many applications, � needs to be resource bound
to a �res with res indicating the amount of ”resource” avail-
able.

An agent Ag consists of at least a knowledge base KBAg

consisting of formulae out of a logic LAg , the ability to per-
form all of the actions required for the argumentation game
(see below), which also reqires to apply a resource bound
deduction �res, and the ability to determine what outcome
of a given instance of the argumentation game it favors. The
knowledge in the knowledge base KBAg can be of different
certainty (i.e. assumptions, beliefs and so on) and in order

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

574

to be able to deal with conflicts with other agents (which
argumentation is all about) the agent needs to be willing to
”accept” even knowledge contradicting its own knowledge
from the outside that it cannot refute (for example in an ar-
gumentation game).

An argument 〈Φ, α〉 consists of a set Φ of formulae and a
single formula α from a logic L. We require that Φ is consis-
tent (i.e. there is no contradiction between the formulae in Φ)
and that Φ � α for a consequence relation for a calculus for
L (but, naturally, agents willing to use malicious argumenta-
tion might ignore these requirements, so that checking them
will have to be one of the actions an agent should do).

An argumentation game consists of two or more agents
(in the following, we will only look at two) with some shared
knowledge base KBshared

1 that take turns at making an ut-
terance (with a given maximum number of turns). An utter-
ance consists of a performative identifying which type of ut-
terance is being made, and possibly additional content such
as arguments or references to other utterances, as defined
by the performative being uttered. Two key performatives,
that establish attacks on arguments in previous utterances,
are undercut and rebuttal. If a1 = 〈Φ, α〉 and a2 = 〈Ψ, β〉,
then a2 is an undercut of a1, if Φ ∪ {β} leads to a contra-
diction and a1 and a2 are rebuttals of each other, if {α, β}
leads to a contradiction. Another performative that will play
a role in our strategies is the redundant performative that
is used to identify that an opponent’s argument was already
used by the opponent before (which naturally requires that
an agent is checking for this). Performing an argumentation
game with particular agents, a particular KBshared and a
particular topic (which is usually established by the first ut-
terance and the agents’ intended outcomes) is also called a
game instance.

While many argumentation games in literature do not set
resource limits on the agents (except for limiting the number
of turns), most practical decision making problems will have
resource limits like a maximal time allowed for coming to a
decision. There are several ways how limitations can be inte-
grated into an argumentation game. We will in the following
assume that each step of an agent in the game, i.e. deter-
mining an utterance and all parameters of it, has a resource
limit. This is not a limitation for the following, because an
agent naturally can use some of the resources for one step
to already perform computations for future steps (although
simple agents might not make use of this opportunity).

Malicious argumentation tactics
With limits on the resources an agent can use to evaluate
an utterance of another agent and to determine its own next
utterance, there are different ways to take advantage of the
limitation. Making an argument that cannot be countered
within the available resources is not the only way, it is also
possible to create arguments that are only intended to squan-
der resources and keep an opponent away from looking into
”shaky” earlier arguments. In the following, we will present
several tactics for creating arguments that produce various

1Note that while each agent’s knowledge base has to contain
KBshared it does not have to be equal to KBshared!

effects that can be combined over an instance of an argu-
mentation game to win the game although objectively the
game should be lost.

Superfluously complex argumentation tactics
The basic idea of these kinds of argumentation tactics is to
rewrite an argument so that checking it for consistency or
establishing that it indeed attacks another argument requires
more resources than the opponent agent has available for do-
ing so. As a result, depending on in what kind of utterance
the argument is used, the argument is accepted (either to es-
tablish a fact or to counter another argument), despite it nor-
mally not being accepted if enough resources were available.
Unfortunately, there are many possible ways to perform such
a rewriting that creates superfluously complex arguments.

In general, it can be shown that any argument rewrite
function frew that is targeted, scalable, validity preserving
and semantic preserving can be used to create superflously
complex arguments. Here, frew takes as arguments an argu-
ment 〈Φ, α〉, a target formula t and a resource bound res.
In the following, let 〈Φrew, αrew〉 = frew(〈Φ, α〉, t, res).
frew is targeted, if for t ∈ Φ we require t �∈ Φrew and
Φrew � t. frew is scalable, if it is targeted and for all val-
ues for res, we have that Φrew ��res t. frew is validity
preserving, if 〈Φrew, αrew〉 is valid if and only if 〈Φ, α〉 is
valid. And frew is semantic preserving, if Φrew � Φ and
αrew � α. Please note that while it is naturally also possible
to complicate α this would make it more difficult to test for
it being an undercut or rebuttal, which naturally is not useful
in an argumentation game.

In the following, we will present two rewrite functions for
arguments that are generalizations of methods presented in
(Kuipers and Denzinger 2010).

The implication chaining tactic makes use of the se-
mantics of the → operator in most logics and the re-
sources needed by the consequence relation to deal with
certain formulae that have → as their main operator.
The rewrite function frew,imch for this tactic is defined
as frew,imch(〈Φ, α〉, t, res) = 〈Φ − {t} ∪ {ξ0, ξ0 →
ξ1,, ξk → t}, α〉 where k is equal or greater than the
minimal amount of deduction steps for → to use up res re-
sources and the ξi are formulae fulfilling the following con-
ditions: t �= ξ0, t �= (ξi → ξi+1) for all i = 0, ..., k − 1,
Φ �� ξi and Φ �� ¬ξi for all i, ξ0∧...∧ξk is not, with respect to
the consequence relation, contradictory and ξ0∧. . .∧ξk �� α.
It can be shown that with all these conditions frew,imch is
targeted, scalable, validity preserving and semantic preserv-
ing. Even for these conditions there are still quite a lot of
possibilities for choosing ξis. One of the easiest ways to cre-
ate the ξis fulfilling the conditions is to simply make them
”new” literals using predicates that are not in the signature
of the other agent (which makes them (ontological) bullshit,
see (Frankfurt 1986), and the end of the next subsection).

The tautology injection tactic makes use of formulae that
are the semantical consequence of an empty set of formulae,
so-called tautologies, and the usual semantics of the → and
∧ operators to rewrite formulae into more complex, resource
consuming formulae. The rewrite function frew,tain for this
tactic is defined by frew,tain(〈Φ, α〉, t, res) = 〈Φ − {t} ∪

575

{(τ1 ∧ ...∧ τk) → t}, α〉, where � τi for all i and k is the re-
sult of a so-called growth function such that deducing t from
(τ1∧ ...∧τk) → t using � requires more than res resources.
Again, it can be shown that with these conditions frew,tain

is targeted, scalable, validity preserving and semantic pre-
serving. Naturally, there are many tautologies for the usual
logics and a malicious agent can easily have a list or even
a list of tautology schemes (kind of patterns for formulae
that guarantee that any instantiations of the scheme produce
tautologies) to use for a particular rewrite.

Protraction argumentation tactics
In general, a protraction argumentation tactic is an utterance
made by a malicious agent with the goal of wasting its op-
ponent’s resources by causing it to respond in a predictable
manner. Usually, such a tactic is applied during an argu-
mentation game when the malicious agent does not have a
legitimate utterance to perform in the dialogue except for
the ”empty” utterance, which means that the agent was not
successful in finding an (new) argument that attacks any of
the opponent’s arguments. Normally, without the protraction
tactic, this would give the opponent the resources of its next
move to look for counters of earlier utterances of the ma-
licious agent, which would lessen the general problem of
resource limits. There are many additional goals protraction
tactics can fulfill, but the fulfillment of such additional goals
depends on the reactions of the other agent, which can in-
clude to simply ignore the utterance created by the tactic.
Therefore most such tactics construct utterances such that
they still serve a purpose within the argumentation game,
so that the other agent will have to address the constructed
utterance.

The syntactically redundant argument tactic is the most
simple protraction tactic and simply selects the argument
from an earlier utterance of an agent and makes it the new
utterance (using the same other parameters of the previous
utterance). This tactic aims not so much at wasting resources
for a step in the argumentation game but on wasting a step,
since without countering this argument with the redundant
performative (which is an utterance and therefore a step) this
argument attacks the same opponent’s argument as the argu-
ment that is copied.

The semantically redundant argument tactics have the
same basic idea as the syntactically redundant argument tac-
tic, namely selecting an argument from a previous utterance
of the agent and kind of repeating it, but in contrast to the
so easily detectable previous tactic, the semantically tactics
rewrite the argument in such a way that the new argument is
semantically equivalent to the one that is rewritten. This also
guarantees the loss of a step in the game for the opponent,
since the created argument needs to be countered, but if the
opponent is not able to either counter this argument or real-
ize that it is redundant the malicious agent might even get
a second argument supporting its intended outcome. Even
more, since deductions are needed by the opponent, the tac-
tic also wastes resources. There is one potential drawback
for this kind of tactic, namely that the malicious agent needs
to create the semantically redundant argument, which has to
involve some deductions on its own (and usually cannot be

precomputed like a list of tautologies or tautology schemes).
But the malicious agent still has the advantage (as so often is
the case for ”attackers”) that it just needs to do some rewrite
of the selected argument, while the opponent, in order to
detect the semantical redundancy, has to check all possible
rewrites.

There are many different ways how to create semantically
equivalent formulae to a given formula. Perhaps the most
simple such way is to use the fact that in most logics we
have more operators than are really needed so that we can
transform some of them into combinations of others while
the resulting formula is semantically equivalent to the origi-
nal formula. In propositional and first-order logic, for exam-
ple, we can rewrite every formula (and every sub-formula
of a formula) using double negation. Also, every formula
of the form A → B is semantically equivalent to ¬A ∨ B
and so on. And, naturally, these rewrites can be combined.
We also can use the fact that A ∧ true is equivalent to A to
”expand” formulae using tautologies and then rewrite such
expanded formulae to ”break up” the tautology (for exam-
ple: A → B can be extended with the tautology C ∨ ¬C
to (A → B) ∧ (C ∨ ¬C) which then can be rewritten into
(¬A∧C)∨ (¬A∧¬C)∨ (B ∧C)∨ (B ∧¬C)). Naturally,
it depends on the particular calculus used by the opponent
agent how useful such rewrites are with regard to using up
resources.

An intentionally invalid argument tactic aims at the one
hand side to have the opponent agent waste resources in
checking the presented argument for validity while on the
other side, if the opponent agent is not doing this check or
does not assign enough of its resources to it, attacking a pre-
vious argument of the opponent. There are several possibili-
ties how such an argument can be constructed.

One possibility that does not require a lot of computation
by the malicious agent is to use random ontological bullshit.
Here ”bullshit” is not used as an expletive, but in the mean-
ing as a speech act first defined in (Frankfurt 1986). In gen-
eral, a bullshit statement is a statement for which the entity
uttering it neither beliefs that it is true nor beliefs that it is not
true (in contrast to a lie which is a statement that the entity
uttering it beliefs that it is false). As such, bullshit statements
are an important source for malicious argumentation tactics,
especially so-called ontological bullshit that is created by
expanding the signature of the logic of the other agents by
the malicious agent (which naturally means that the other
agents do not know these symbols but assume that they are
in the signature of the malicious agent and that the mali-
cious agent includes everything necessary to ”understand”
these symbols in its arguments). If 〈Ψ, β〉 is the previous ar-
gument by the opponent that the tactic is supposed to target
and γ ∈ Ψ, then we construct the argument 〈Φ, α〉 by set-
ting α = ¬γ (which means we construct an undercut of the
opponent’s argument) and by setting Φ to a set of formulae
that are constructed out of new symbols and that contain a
formula δ and the formula ¬δ. This means that Φ is contra-
dictory, which makes the whole argument 〈Φ, α〉 invalid.

576

A malicious argumentation strategy
There are many possible ways to combine malicious argu-
mentation tactics including also non-malicious arguments
to create malicious argumentation strategies. Obviously, the
knowledge about an opponent including what default deci-
sions it makes when resources are exhausted, the opponent’s
actions and how weak the position of the malicious agent
compared to the other agent is, influence what the best strat-
egy for the malicious agent is to win the particular instance
of an argumentation game. Given that malicious argumen-
tation strategies is one of the contributions of this paper,
we assume in the following that opponents will not employ
their own malicious strategies and provide one example of
a rather simple malicious strategy that we call Exhaust and
Protract.

In general, any (malicious) argumentation strategy obvi-
ously has to play the argumentation game, which means it
has to create a sequence of utterances. And each utterance in
the sequence has to be created usually using all utterances in
the game so far. As stated before, the creation of utterances
can involve the use of (malicious) tactics and obviously there
might be more than one tactic that is applicable at a particu-
lar point in the game. This means that the strategy not only
has to determine all possible tactic instantiations that can be
applied in the current situation (which usually also involves
non-malicious ways of creating the next utterance) it also
has to make the decision which of these instantiations really
to use, which we call the control logic of the strategy.

As we have seen in the last section, malicious argumen-
tation tactics come already with some conditions regarding
when they can be applied. Usually the control logic of a
strategy adds some more conditions just to tactic applica-
tions to filter out many, resp. favor some, of them to be able
to consider only a few tactic instantiations for the final de-
cision. Among these additional conditions can be that the
opponent uttered an argument matching a particular pattern,
that a specific turn in the game is reached or that the ”nor-
mal” response utterance (without using any malicious tac-
tics) would match a certain pattern or was not able to find an
argument attacking any previous arguments of the opponent.

The general idea of Exhaust and Protract is to establish an
argument in favor of the intended outcome of the argumen-
tation game by the malicious agent (kind of gaining ”the up-
per hand”), then using superflously complex argumentation
tactics to attack any countering arguments by the opponent
and if there is nothing to attack use protraction tactics to pro-
tect this intended outcome until the end of the argumentation
game instance (essentially maintaining the upper hand).

More precisely, this malicious strategy is build around any
basic non-malicious strategy with control logic baseControl
that also uses a function selectAttack to select a former ut-
terance of the opponent that it wants to attack with the next
utterance. Additionally, the malicious strategy has a set T of
formulae as argument that describes the possible values for
the t parameter in the used argument rewrite functions for
creating superfluously complex arguments (this is useful if
these tactics require some pre-computing, because T then
represents the formulae for which the resulting arguments
just need to be looked up). Then the control flow for select-

ing the next utterance for the next turn by the Exhaust and
Protract strategy is as follows:

First, determine what baseControl would do. If this is an
attack of an opponents argument and if it contains an ele-
ment t of T , use a superflously complex argumentation tactic
with appropriate resource limit to rewrite this attack and use
this new attack as result of the turn. If the result of baseCon-
trol does not include an element of T , use this as the result of
the turn. If baseControl did not provide an attack utterance
but did provide a non-empty utterance, then use this as result
of the turn. If baseControl only comes up with the empty ut-
terance and there is a possibility to apply a protraction tactic
to a former attack utterance then apply this protraction tactic
and the result is the result of the turn. Else use the empty
utterance as result of the turn.

The Exhaust and Protract strategy as presented above
makes a few assumptions about the opponent and the argu-
mentation game that we would like to discuss further. First,
in order for the exhaust part to work, we need the opponent
to accept what an utterance with the superflously complex
argument in it claims. This is known as the credulous as-
sumption (Kuipers and Denzinger 2010). The opposite as-
sumption is known as the skeptical assumption and it as-
sumes that if resources are exhausted for any of the neces-
sary tests of an argument and its utterance that the claims
of the utterance are false (which naturally means that the ar-
gumentation game has to provide a performative for it and
needs to also define consequences for uttering such a perfor-
mative).

At first glance, it seems as if the skeptical assumption
should be favored since it would prevent our Exhaust and
Protract strategy to work. The problem is that making the
skeptical assumptions can lead to ”false positives”, i.e. utter-
ances with arguments that fulfill what the utterance claims
but that, due to resource restrictions, would lead to a re-
jection of the utterance’s claim. And, even worse, we can
naturally use superflously complex argumentation tactics to
create many such utterances, which essentially results in any
agent who uses the skeptical assumption ”leaving” many or
all instances of argumentation games and therefore being
”branded” unreasonable (when the game instances in which
it rejected claims of utterances are analyzed with more re-
sources and it is shown that the agent was wrong). So, with
a perspective that is broader than performing a single game,
there are strategies that can either drive away an agent using
the skeptical assumption or force it to switch to the credu-
lous assumption, which naturally then enables the Exhaust
and Protract strategy.

Another assumption we made is that the malicious agent
knows the resource limits of the opponent agent. Again,
this is not a serious issue since we can extend the Exhaust
and Protract with a starting phase that tries several resource
bounds for the superflously complex argument tactic and
switches over to the real exhaust part, when a bound was
found (or uses the utterance that was not countered already
as the ”upper hand”).

577

A use example
In the previous sections, we tried as much as possible to
avoid committing to particular logics, particular agent fea-
tures and particular argumentation games, which naturally
can make it more difficult to understand the rather abstract
concepts. In this section, we provide a use example of the
Exhaust and Protract strategy for an application in arguing
about department resources using first-order logic for the
two involved agents.

More precisely, we will use the calculus consisting of
Resolution and Factorization as consequence relation which
allows us to determine if a set of formulae is inconsis-
tent, respectively contradictory (by transforming all formu-
lae into clauses and deducing the empty clause, see (Robin-
son 1965)). We have a manager agent, Man who is respon-
sible for deciding which department in a company gets cer-
tain limited resources of the company (and shares the gen-
eral philosophy of many accountants that no one should get
anything from him, although, due to previous use of the
skeptical assumption and consequent reprimands from the
higher ups, he has to use the credulous assumptions). And
we have an agent. Dep, who represents one of the com-
pany’s departments and wants access to a resource Cres. In
fact, we will have two instances of Dep, namely Depnorm
and Depmal who differ in the argumentation strategy used,
with Depnorm using a standard non-malicious strategy and
Depmal using the malicious Exhaust and Protract strategy
described in the last section. The knowledge base of both
variants of Dep is KBDep = {de1} with

de1 = Permission(Man,Cres,Dep)
indicating that it believes that Man can give it (i.e. Dep)
permission to get resource Cres. The intended decision both
variants of Dep would like as the result of the argumentation
is

de2 = Allocate(Cres,Dep)
meaning that resource Cres is allocated to Dep.
KBMan consists of three formulae:

ma1 = ∀p∀r∀g¬Permission(p, r, g)
indicating the already mentioned basic assumption of the
manager that no one should be able to give anyone access
to any resource,

ma2 = ∀p¬Authority(p)
meaning that (in the opinion of Man) no one should have
authority (see the common knowledge base below), and

ma3 = Restricted(Cres)
stating that Cres is a restricted resource.

The argumentation game played by Dep and Man has as
common knowledge base KBshared = {co1, co2} with

co1 = ∀r∀g(Restricted(r) →
(Allocate(r, g) ↔ ∃pPermission(p, r, g)))

and
co2 = ∀p∀r∀g(Permission(p, r, g) →

Authority(p))}
indicating that for a restricted resource r it can be allocated
to g if and only if there is a p that has permission to do so
(first formula) and that anyone who has permission to assign
any resource to anyone has authority.

For this simple game we have chosen to use as resource
the number of deductions made during a turn. This is, in

contrast to using run-time, always repeatable. We chose
res = 10 and 10 is also the number of turns in the game,
5 for each of the agents.

If we play the argumentation game instance from above
with the Depnorm variant of the department representative
we get the following sequence of utterances. In the first
turn, Depnorm utters the argument 〈{de2}, {de2}〉 which
obviously is very self-serving. Man attacks this utterance
with an attack utterance (which can be either an undercut
or a rebuttal) with the argument 〈{co1,ma3,ma1}, {¬de2}〉
which indeed can be proven to be valid and to attack the
initial argument of Depnorm (within the resource limit).
Depnorm then undercuts this argument with the argument
〈{{de1}, {¬¬de2}〉 which is both valid and an attack,
but which is then undercut by Man with the argument
〈{co2,ma2}, {¬de1}〉. In the next turn, Depnorm undercuts
the last utterance with the argument 〈{de1, {¬(co2∧ma2)}〉,
which the manager can undercut by repeating the previous
argument 〈{co2,ma2}, {¬de1}〉. At this point, Depnorm
has no arguments other than the empty argument left, which
it utters and which leads to the utterance of the empty argu-
ment for the rest of the game by both parties. Since every
argument of Depnorm, including its initial argument, was
countered it lost the game and the decision is not to allocate
the resource to it.

If we use Depmal as the variant of the department repre-
sentative in the game instance, then the first two turns are
the same as before. But in the third turn Depmal now un-
dercuts the argument of the manager with a superfluously
complex argument, namely one created using tautology in-
jection. The tautology used is the most simple one there
is, namely T ∨ ¬T and we use 3 instances of it, namely
T1 ∨ ¬T1, T2 ∨ ¬T2 and T3 ∨ ¬T3 using the newly intro-
duced predicate symbols T1, T2 and T3. The created argu-
ment is 〈{((T1 ∨ ¬T1) ∧ (T2 ∨ ¬T2) ∧ (T3 ∨ ¬T3)) →
de1}, {¬ma1}〉. This argument could be attacked by the ar-
gument 〈{co2,ma1}, {¬(((T1 ∨¬T1)∧ (T2 ∨¬T2)∧ (T3 ∨
¬T3)) → de1}〉, but proving that this argument undercuts
the malicious argument required in our Resolution theorem
prover 23 deduction steps, way more than the limit of 10.
As a consequence, Man can only give the empty utterance,
which puts Depmal ahead in the game. This means that it is
now time for the protraction part of the malicious strategy.
Normally, an instantiation of the strategy will use the same
protraction tactic, but, in order to provide an example for all
the tactic types we presented before, we will use different
tactics in the rest of the game instance.

In the fifth turn of the game, Depmal uses the syntac-
tically redundant argument tactic with the additional goal
to strengthen his attack on the manager’s utterance in the
second turn, which means it repeats the argument 〈{((T1 ∨
¬T1) ∧ (T2 ∨ ¬T2) ∧ (T3 ∨ ¬T3)) → de1}, {¬ma1}〉.
Man can immediately counter this argument with an ut-
terance claiming it is redundant (since it is exactly the same
argument) or it can first use the resources for this turn to
try to find an attack on the original argument from turn 3.
But even the second alternative does not provide enough re-
sources to find an attack, so that in both cases the utterance
by Man will be the redundant performative and Depmal is

578

still ”ahead in the game”.
The next turn of Depmal uses a semantically redundant

argument tactic that rewrites its successful argument from
the third turn using several of the semantical equivalences
known for first-order logic and uses it to, again, attack the
utterance of the manager from the second turn. The rewritten
argument is 〈{(¬T1∧T1)∨((¬T2∨¬T3)∧(¬T2∨¬¬T3)∧
(T2∨¬T3)∧(¬¬T2∨T3))∨de1}, {¬ma1}〉. If we consider
each application of one of the equations describing semanti-
cal equivalence as a deduction step, then this brings us near
the limit. But checking for redundancy has to search through
all possible applications, which brings us over the resource
limit, so that Man’s next utterance will be the empty one,
again, which also means that we now have two utterances
attacking Man’s attack of Depmal’s goal.

For the final turn of Depmal in the game, we use
an intentionally invalid argument tactic. Due to the ear-
lier protraction tactics, there is still only one utterance by
the manager agent that can be targeted. As described in
the previous section, the first half of the argument will
be a set of formulae that are created out of new symb-
bols (that we all called Bs or bs with an index) and
we have chosen the following set: {Bs1(bs2), Bs3(x) ∨
Bs4(x, y),¬Bs1(x)}. On first glance, it seems that this set
does not fulfill the requirement of being contradictive, but
since ¬Bs1(bs2) is an instance of ¬Bs1(x) the requirement
is fulfilled. The complete argument is 〈{Bs1(bs2), Bs3(x)∨
Bs4(x, y),¬Bs1(x)}, {¬ma3}〉.

For the final turn of the game, Man faces three utter-
ances of Depmal attacking its attack of the initial argument
of Depmal. Regardless of how it uses its resources for this
final turn, it can only attack one of those utterances, so
that at the end of the game instance the initial argument
of Depmal, namely Allocate(Cres,Dep) has ”survived”
all challenges and therefore Man has to grant Dep access
to Cres, which is naturally the oppositie outcome than the
game with Depnorm.

Before we finish this section, we would like to comment
on the fact that naturally not only the other agents have to act
under resource limits but that also the malicious agent has to
stay within these limits. If we look at the example applica-
tions of our malicious tactics above, then most of them can
make use of pre-computed information, which naturally re-
duces resource consumption drastically. The tautology used
in the third turn can be taken from a pre-computed list that
also can already contain rewrites, which takes care of us-
ing the semantically redundant argument tactic. The contra-
dictory set using new symbols is also something that can
be taken from a pre-computed list. So, very little effort is
needed during the game to implement this malicious argu-
mentation strategy.

Related work
As already stated, most works in automated argumentation
do not consider any resource limitations on agents for mak-
ing an utterance and the favored logic used is propositional
logic, which together naturally creates decidable argumenta-
tion games and eliminates the possibility for malicious argu-
mentation. Even the introduction of bullshit into argumenta-

tion games was done using propositional logic, which results
in less opportunities for creating such arguments, see (Cami-
nada 2009). But, realistically, nearly every practical applica-
tion of argumentation for decision making will need the ex-
pressiveness of at least first-order logic. This leaves (Kuipers
and Denzinger 2010) as the only work we are aware of that
looks into how to create malicious arguments that cannot be
detected via resource limited deduction.

Interestingly, (Kontarinis and Toni 2015) addresses de-
tecting malicious behavior by a party in a multi-party de-
bate (which allows agents to make utterances whenever they
want, without the concept of a turn), but the authors have
only lies and hiding of information as malicious behavior
and do not address resource limitations at all (in fact, their
evaluation criteria are not looking into the arguments and
the underlying logic at all, but instead at the number and
frequency of utterances of a party). While this idea of pro-
filing a party is definitely of interest in identifying malicious
agents, obviously all possible ways for being malicious need
to be integrated in a profile including what was presented in
(Kuipers and Denzinger 2010) and in this paper.

Conclusion and future work
We introduced the concept of a malicious argumentation
strategy that agents in automated multi-party decision mak-
ing (under resource constraints) can use to have the deci-
sion going their way despite objectively the decision should
have been different. Such strategies make use of different
malicious argumentation tactics and we presented additional
such tactics aiming at new effects on the argumentation as a
whole. We also presented a concrete such malicious argu-
mentation strategy, Exhaust and Protract, and an example
how applying it can indeed change the outcome of decision
from not being granted a resource to getting it.

Future work should be aimed to look into creating more
malicious argumentation strategies to get a better picture of
the breadth of possibilities these strategies can have. And,
naturally, we want to look into ways how to detect and pre-
vent the use of malicious argumentation strategies (like cre-
ating profiles out of the utterances made, as already men-
tioned, or using concepts like trust).

References
Caminada, M. 2009. Lies and bullshit; distinguishing classes
of dishonesty, In Proc. Social Simulation WS at IJCAI.
Frankfurt, H. 1986. On bullshit, RARITAN-A QUAR-
TERLY REVIEW. 6.2, 88–100.
Kuipers, A. and Denzinger, J. 2010. Pitfalls in Practical
Open Multi Agent Argumentation Systems: Malicious Ar-
gumentation. In Proc. COMMA 2010, 323–334, IOS.
Kontarinis, D. and Toni, F. 2015. Identifying Malicious Be-
havior in Multi-party Bipolar Argumentation Debates, In
Proc. EUMAS 2015, 267–278, Springer.
McBurney, P. and Parsons, S. 2002. Dialogue Games in
Multi-Agent Systems. Informal Logic 22(3), 257–274.
Robinson, J.A. 1965. A machine-oriented logic based on the
resolution principle. Journal of the ACM 12(1), 23–41.

579

