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Abstract

Explaining why events occur is key to making decisions, as-
signing blame, and enacting policies. Despite the need, few
methods can compute explanations in an automated way. Ex-
isting solutions start with a type-level model (e.g. factors af-
fecting risk of disease), and use this to explain token-level
events (e.g. cause of an individual’s illness). This is limiting,
since an individual’s illness may be due to a previously un-
known drug interaction. We propose a hybrid method for to-
ken explanation that uses known type-level models while also
discovering potentially novel explanations. On simulated data
with ground truth, the approach finds accurate explanations
when observations match what is known, and correctly finds
novel relationships when they do not. On real world data, our
approach finds explanations consistent with intuition.

Introduction

While finding causal structures from data has been a core AI
problem, finding why a particular event occurred (explana-
tion) has received less attention. Causal explanation is what
we do when finding the cause of a patient’s seizure or as-
signing legal responsibility for a car crash. It is not enough
to know what causes seizures in general, we must find the
culprit for each specific event to provide effective treatment.

The general problem is where we have learned some
causal relationships, and now have new observations we
want to explain. A randomized trial may find that a drug
causes headaches, and in post-market analysis we then aim
to determine if it explains headaches and a few cases of in-
somnia. Current approaches try to link prior inferences to
specific events, but cannot find explanations that are not in
the model (e.g. the drug causing insomnia). More generally,
this creates challenges when a variable is latent in the origi-
nal data, the relationship is rare (and unlikely to be found at
the type level), or the token event differs in its timing.

We propose a new method to identify novel explanations
for events not fully explained by known causes. We build
on and automate the method of (Kleinberg 2012), which en-
ables explanation where token-level relationships need not
exactly match the timing of type-level ones (e.g. finding as-
pirin relieves a headache in 29 minutes, even if known tim-
ing is 30-60 minutes) as it weights the difference between
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type and token. That approach gave a new measure of token
significance, but did not show how to identify these weight-
ing functions, was not evaluated experimentally, and could
not discover new explanations. To handle when an event is
not explained by known relationships, we build on the idea
of defaults (Halpern and Hitchcock 2015) to discover token-
level hypotheses while constraining the search space. We
demonstrate on simulated data that our proposed method
can explain cases that deviate from type-level knowledge
(finding new explanations) and handle difficult cases such as
causal chains and overdetermination, and on real data that it
can discover intuitively correct explanations.

Related Work

One of the main explanation methods builds on the Bayesian
network framework and is based on testing counterfactuals
(Pearl 2000; Halpern and Pearl 2005). But if the user se-
lects the wrong level of granularity for variables or the true
relationship is not in the model, it cannot be inferred as a
token cause (Halpern 2014). Needing user input means the
approach cannot be fully automated, and explanations may
be subjective. A model may encode that smoking causes
lung cancer, but without timing details, a user must decide if
smoking 2 months before developing cancer is a case of that
relationship. The sequence of mechanisms method (Dash,
Voortman, and Jongh 2013) links structural models and
functional causal relationships to automate explanation by
finding the likeliest path through a model, but the complete-
ness of explanations is still governed by the model’s.

Halpern (2008) modified the Halpern-Pearl framework for
actual causation to incorporate normality (the most usual
state for a variable) and rank token causes so that the most
likely candidates are those that (counterfactually) involve
switches from more atypical behavior to more typical be-
havior. If Jane usually waters a plant but then forgets, she
is a much stronger cause of the plant’s death than John,
who never waters it. Halpern & Hitchcock (2015) distin-
guished between defaults (prior knowledge of what usually
happens), typicality (related to knowledge and statistical fre-
quency of events), and normality (which conveys value judg-
ment). This can provide explanations that are more consis-
tent with intuition, but the approach has not yet been auto-
mated due to the need for subjective assessments.

Within KR, understanding direct and indirect effects of
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Figure 1: Explanation takes observations and type-level significance and ranks the significance of each token cause.

actions (McCarthy and Hayes 1969) is similar to prediction,
but these methods project forward from an action, whereas
we aim to look backward and find what led to it. Others can
express the notion of “caused,” (Giunchiglia et al. 2004) but
involve reasoning in a causal logic rather than explaining
events from data. Fault diagnosis, finding causes of unusual
or incorrect system behaviors, is more related. Using logics
such as the situation calculus and temporal extensions (Re-
iter 1996), these approaches can explain potentially complex
events. Similarly, we build on probabilistic logic, but cap-
ture uncertainty rather than degrees of truth as in fuzzy logic
for diagnosis (John and Innocent 2005). These approaches
all rely on the completeness of the model, though, while we
can discover explanations outside the set of known causes.
That is, we could find a side effect is caused by a new drug,
even if the effect was never observed in a clinical trial.

Background

A key limitation of existing methods is that token cases must
exactly match type-level knowledge. Yet, some relationships
may be unknown and the timing of a token case may dif-
fer. Kleinberg (2012) developed a framework to quantify the
significance of token causes by weighting type-level signifi-
cance by measurements that capture 1) uncertainty in token
observations and 2) how much a token case differs from the
type-level model. If they match exactly and our observations
are certain, token-level significance is the same as the type-
level significance of the causal relationship. When timings
differ from what is known, significance is reduced.

While this approach can be used with other type-level
causal significance measures, we use (Kleinberg 2012):

εavg(cr−s, e) =

∑
x∈X\c P (e|c ∧ x)− P (e|¬c ∧ x)

|X\c| , (1)

with1 c �
≥r,≤s
≥p e, meaning that after c occurs, e occurs in

time window [r, s] with probability p. Causal significance,
εavg , is the average difference a cause, c, makes to the prob-
ability of an effect, e, holding fixed each potential cause,
x ∈ X , of e. Potential causes are x : P (e|x) > P (e), and
can be complex logical formulas. P (e|c∧x) is the probabil-
ity of e in time window [r, s] after both c and x occur.

Definition of token significance With a type-level re-
lationship c �

≥r,≤s
≥p e, with associated significance

εavg(cr−s, e), the significance of c at time t′ as a token cause

1This is a PCTL (Hansson and Jonsson. 1994) leads-to formula.

of e at time t relative to a sequence of observations V is:
S(ct′ , et) = εavg(cr−s, e)×P (ct′ |V)×f(ct′ , et, r, s). (2)

An observation sequence is a set of timepoints with
propositions true at each. The elements of the token causal
significance (S) are the type-level causal significance (εavg),
probability P (c|V) of the cause given the observation se-
quence (V), and function f that weighs how close the ob-
served timings of c and e (t′, t) match the type-level window
[r, s]. When t′ ∈ [t − s, t − r], f(ct′ , et) = 1. Then f de-
creases monotonically outside that range and f(ct′ , et) ∈
[0, 1]. When the window is a strong constraint, f is a step
function. For a certain observation (P = 1) where the tim-
ing matches the type-level (f = 1), the significance is that
of the type-level cause. As observations become less certain,
or differ more from the type level, significance decreases.

Fig. 1 shows a case where a person consumes two poisons
and we want to know which caused their death. Using coun-
terfactuals this case is overdetermined, as either poison can
cause death, but we can handle it by accounting for time. At
the type level we know p1 causes death (d) in 2–3 time units
with high significance. At other lags, it is completely inef-
fective, as shown by the steep drop in f on either side of the
window. In contrast, p2 is a weaker cause (lower type-level
significance) but has a longer window of efficacy (2–10 time
units), and its effect deteriorates less significantly outside
this timing. Because the influence of p1 drops off so steeply,
we find its token-level significance, εavg × f(5, 10, 2, 3),
is 0. Note that P (p1|V) is one since the observations are
certain. Since p2 is consistent with its known time win-
dow, its significance is the type-level significance, 0.3 (i.e.
εavg(p2, e)× P (p2|V)× f(2, 10, 2, 10) = 0.3× 1× 1).

The key challenges are that this approach needs informa-
tion on how to weight the timing differences, and if a type-
level relationship is unknown, it cannot be a token cause.

Method
We propose a new method building on (Kleinberg 2012) to
find the significance of token causes while allowing some
differences between observations and knowledge. First, we
show how functions to weight similarity of events to type-
level relationships can be learned during causal inference.
Second, we build on ideas from (Mill 1843) to factor out
known causes and (Halpern and Hitchcock 2015) to use
changes from defaults to find causes for unexplained events.

Assumptions Our key assumption is that token causes are
not latent: while a type-level causal relationship may be un-
known, the cause itself is observed at the token level. So we
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Algorithm 1 compute-f -function(V, T,H, lmax, D)

Input:
V , a set of variables; and T , length of the time series
H , a set of all causal relationships between v ∈ V
lmax, the maximum time lag to test
D, a V × T matrix indicating value of each variable

Output:
F , a list with a function f for each relationship in H

1: for each causal relationship h ∈ H : c �≥r,≤s
≥p e do

2: Calculate εavg for each lag l ∈ [1, lmax] using D
3: Normalize εavg by dividing by its maximum value
4: Delete outliers where εavg < 0
5: f(ct′ , et, r, s) = 1 when t− t′ ∈ [r, s]
6: f(ct′ , et, r, s) for t − t′ ∈ [1, r)

⋃
(s, lmax] is fit to

εavg with nonlinear least squares. Then add f to F .
7: return F

may not know c causes e, but have both measured for the
case to be explained. Causal relationships may be complex
(e.g. conjunction of variables), as allowed by the logic used,
though here we search only for token causes composed of
single variables to reduce complexity.

Finding weighting function from data

In eq. 2, we weight how closely observed timings match
those identified at the type level, but we need to first de-
termine such functions. Prior work suggested these can be
created with background knowledge, but we propose they
can be learned in a data-driven way using properties of the
causal significance measure, εavg , and a smoothing proce-
dure to maintain monotonicity of the function outside the
type-level time window, and ensure it is in [0,1] (see fig. 1).
Experimental results show this recovers the true underlying
functions. The function f is similar to a membership func-
tion, though operating over time and capturing probability.

The process is shown in algorithm 1. For a given causal
relationship, c �≥r,≤s e, we use eq. 1 to calculate εavg in-
dividually for each lag l ∈ [1, lmax], where lmax is a user
set parameter (the maximum tested lag). One disadvantage
of testing lags individually is that when data are not reg-
ularly sampled, we cannot guarantee that this will recover
the correct time windows and that significance will increase
and decrease monotonically before and after them. Consider
data from visits to primary care physicians. Even if an ac-
tual effect is that a medication causes side effects in exactly
6 months, only a small set of observations will be at that ex-
act time, and there may be none at all for some lags. Thus we
do not use raw values for εavg since there may not be enough
data to calculate them for every lag in [r, s] and there may
be small fluctuations around the true values. To identify the
weighting function we normalize the εavg values so that f of
those in [r, s] is one. After removing outliers (negative εavg),
we use nonlinear least squares to fit a curve to the values for
εavg . This ensures that the range will be in [0,1], that the
values will decrease monotonically on either side of [r, s],
and that the function is continuous.

Algorithm 2 find-novel-causes(V, T,D, k,m, lmax, E)

Input:
V , a set of variables; and T , length of the time series
D, a V × T matrix indicating value of each variable
k, number of explanations to select (for top-k)
m, max time lag for detecting state change
lmax, max time lag for finding novel explanation
E, set of explained events (pairs of form: ct′ , et)

Output:
E′, token causal explanations for each event

1: for each e ∈ V do
2: Use E to remove explained events to get matrix De

3: for each c ∈ V do
4: for each l ∈ [1, lmax] do
5: Get P (e|cl). When c has a default state, use in-

stances of c where c is not in its default state or
changed state up to m time units before.

6: for each non-null De[e, i], 1 ≤ i ≤ T do
7: Li ← [ ]
8: for each De[c, j], where i− lmax ≤ j ≤ i− 1 do
9: Add (cj , ei, P (e|cj−i)) to Li

10: Add top k explanations for event ei to E′ (tuples: cj ,
ei, P (e|c))

11: return E′

Discovering novel token causes

Prior approaches are limited by their reliance on an existing
model. Yet models cannot capture all causes (particularly
rare ones), and we may not have sufficient data to infer these
from token cases. For instance, we do not want to wait until
many people have a severe new side effect after a drug is on
the market to identify that the drug is causing the side effect.
We overcome this limitation by building on an observation
similar to Mill’s (1843) method of residues, and using con-
cepts of normality to narrow down the set of possible causes.

When multiple causes and effects occur, Mill’s method
removes the known causes, then identifies which remaining
factors explain the remaining effects. Thus, if acidic foods
cause an upset stomach and we want to know what causes
heartburn, we can essentially subtract the instances of acidic
food and upset stomach and then examine only similarities
between cases with heartburn, and differences between those
with heartburn and those without. Our approach uses a sim-
ilar idea of residues. We 1) remove events (i.e. variable e
at time t) from the set to be explained if known causes can
account for them (exceeding a significance threshold), then
2) test whether any variables can explain these remaining
events. After step 1, we have a residual of what events can-
not be explained by the type-level causes, which are then the
set whose causes we aim to find in step 2. This only keeps
track of which events require explanations – no variables are
removed as potential causes of others.

First we must determine which variables can explain these
events. Taking inspiration from graded causation as intro-
duced by Halpern & Hitchcock (2015) to decide which vari-
ables are considered as novel explanations (token cause can-
didates), we observe that when an event is not explained by
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what we know, the possible causes should be variables that
are either not in their default state or those that have recently
changed state. Thus even if every event of a headache oc-
curs when an individual has normal body temperature, we
can still avoid identifying temperature as a possible cause of
headaches, while finding that prolonged increased heart rate
from running can lead to hypoglycemia in people with dia-
betes. On the other hand, a change from cold rainy weather
to average temperatures (the default for weather) may lead
to an increase in outdoor activities due precisely to the im-
provement in weather. To find candidate token causes for
each event to be explained, we first check whether a variable
has a default state (e.g. body temperature is usually 37◦C).
Then, we identify which of these variables are not in that
default state (e.g. most frequently observed state) during the
tested time window before the event, or which have changed
from non-default to default state within a window [1,m] be-
fore the event (m is a user set parameter that can be inferred
from the characteristics of the input data in Algorithm 2).

Explanation then proceeds independently for each effect.
We remove events that are already explained, then look for
commonalities in those that remain, using the conditional
probability for discrete events, or conditional expectation
for continuous-valued ones. That is, for unexplained cases
of an effect e, we calculate P (e|c) (or E[e|c]) for each can-
didate cause c in the time series, using a frequency-based
approach. This value is calculated for each of a set of time
lags, l ∈ [1, lmax]. The output is a ranked list of potential
explanations for otherwise unexplained events. These can-
not be guaranteed to be the true causes of each (as there may
be a latent common cause of c and e). However, our assump-
tion is that unknown relationships are primarily infrequent or
weak, so stronger and more likely causes are known. Thus if
c ← d → e, either d → e will be known, or d will also be
identified in this step and will have higher significance for
e than c will. By restricting the candidates of novel expla-
nations using defaults, we can avoid finding factors that are
frequent but not causal (e.g. body temperature is normal).

Combined explanation process

The process, shown has two parts: 1) using type-level re-
lationships to explain observed events, then 2) identifying
novel token causes (or hypotheses for explanations) for un-
explained cases (algorithm 2).

Step one: Explanation with type-level knowledge Us-
ing the approach of (Kleinberg 2012), we calculate the sig-
nificance of all token-level explanations (eq. 2) then infer
the weighting functions for each type-level relationship. For
each effect to be explained, we evaluate the significance of
each of its type-level causes for each specific instance. For
each occurrence, using either a threshold for the significance
value or keeping only the top k relationships, we then have a
set of events for which no (sufficiently significant) causes
have been found. This is the input to step two, which is
shown in algorithm 2.

Step two: Identify novel causes For the remaining unex-
plained events, we rank explanations using the conditional
probability of each such event given each observed variable,
at each time lag (up to parameter lmax). Note that the set of
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Figure 2: Causal structures for simulated data.
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Figure 3: The true (solid) and inferred (dashed) weighting
function (f) for causal relationships.

events in this step is much smaller than that in step one. It is
critical to remove explained events to avoid both confound-
ing and failing to find a relationship due to the small num-
ber of occurrences being dwarfed by more reliable causes.
Moreover, token cause candidates are only those that do not
have a default state or in time window [1,m] before the event
are either not in their default state or have changed state.

Experiments

We evaluate three areas on simulated data: finding weighting
functions, explanation from a causal model, and finding new
causes. Simulations yield ground truth for each event and
whether new causes are genuine. We also apply the method
to a real world bike sharing dataset. Other methods mainly
rely on conceptual evaluation and do not have implementa-
tions, so quantitative comparisons are not feasible.

Simulated Data Generation

We create causal relationships (cause, effect, time window)
and associated weighting functions f ) and use these to gen-
erate observation sequences. Structures generated are shown
in fig. 2 (plus a binary tree), and selected weighting func-
tions in fig. 3. A variable with no causes may occur sponta-
neously, otherwise events occur if caused to. This happens
at a time lag weighted by f , so lags in [r, s] are most likely.

Parameters: Causal relationships have probability in {0.5,
0.65, 0.8, 0.95}. Each dataset has 5000 time points, and con-
tains the causal structures plus 5 noise variables with no
causes (2 for the binary tree), which have a probability of
0.01. The probability of the root cause in each structure oc-
curring is: 0.15 (multi cause) and 0.25 (causal chain, binary
tree). For experiments testing discovery of novel causes, we
omit relationships from the type-level knowledge (dotted ar-
rows in fig. 5) and give these relationships probability 0.2.
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(a) Type=token (b) Type!=token

Figure 4: Precision-recall when type and token are consis-
tent (left) and for novel token causal discovery (right).

Evaluation of weighting function

First, we evaluate how well the inferred weighting func-
tions match ground truth, using root mean square difference
(RMSD). Fig. 3 shows strong agreement. The only excep-
tion is one step function that goes immediately to zero out-
side the known window. Because of the granularity of the
time measures, even though the values inferred are primar-
ily one and zero, they are still connected by a gently sloping
line. The mean RMSD is 0.122 (std. dev. 0.085).

Evaluation of inference where type = token

We first test if we can identify explanations when type and
token are consistent. If we know A causes B in general, can
we find the specific instances of A that explain each B?

Fig. 4a shows precision-recall curves for each of the three
structures generated by repeatedly lowering the threshold
used for calling a relationship significant. We also use the
rank ratio to determine how often the true cause of a specific
event is in the top k most significant explanations. This is:

R =

∑
v

∑
t∈T

|causes|/min {n, k}
T

(3)

where |causes| is the number of true causes in the top k, n
the number of genuine causes for each instance of an effect,
and T is the total number of occurrences of each variable v.

Multiple causes of a single effect (fig. 2a) In Table 2,
the true cause is most significant >70% of the time, and this
increases to 96.6% with k = 3. Our evaluation is strict in
cases of overdetermination. In fig 2a, say A and B both oc-
cur, and D happens after. With our data generation process
we can know that A actually caused D, so finding B causing
that instance of D is a false positive. While we penalize the
algorithm for finding B, this result is still better than coun-
terfactual methods, where neither A nor B would be found.
Similarly, when two variables contribute to an effect, even if
we do not search over conjunctions we will find each indi-
vidually (e.g. A and B each as causes of D).

We evaluated causal relationships with varying probabil-
ities (0.95, 0.8, 0.65 and 0.5) to test the impact of causal
strength. The difference between the highest and lowest
AUC is only 0.07, suggesting this has minimal impact on
accuracy. All following results are for 0.8.
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Figure 5: Causal structures with dashed edges indicating
missing relationships, omitted from algorithm input.

Causal chain (fig 2b) This case has higher precision than
for multiple causes (0.760 with recall of 1), and with k = 1,
the rank ratio is 0.881. As each variable has one cause, there
is one type of error: finding a different timing of the true
cause as the explanation. Say B causes C and we observe
B2, B3, C4. If B at time 3 is the true cause of C at time 4,
and we only find B2 as the cause, that is a false discovery.

Binary tree The binary tree has three levels. This is a
more difficult case with lower precision than the causal chain
(0.664 with recall of 1). When k = 1, rank ratio is 0.839.
The errors are similar to those of the causal chain case. In
many cases due to the time windows of the relationships
multiple instances of the variable occurring could each be
responsible for the effect, but only one truly caused it, lead-
ing to an overdetermined case. Once again this is a case that
cannot be handled by standard counterfactual methods.

Evaluation of discovery of novel token causes

Finally, we omit some relationships from the input: if the
algorithm only knows A and C cause D (fig 5a), can it cor-
rectly infer that B causes some instances of D?

Multiple causes of a single effect Fig. 5a shows the up-
dated model, where a dotted arrow indicates the relationship
we aim to discover at the token level. This case has lower
precision than the binary tree and causal chain cases (0.510
when recall is 1), because there are more potential causes
for each effect, and when k < 3, it is possible that some
known causes were not factored out. More variables are also
candidates as explanations (e.g. noise variables).

Rank ratio is now more complex, because which cases are
“unexplained” depends on which type-level causes we ac-
cept as significant. Table 1 has two values for k: columns are
k for type-level relationships (i.e. value used to decide what
events are explained), and rows are k for our token causal
discovery. Accuracy goes up as type-level k does because
with 3 causes of the actual effect, if k is small, the genuine
cause may have lower significance than the other two in an
overdetermined scenario. When k = 3, rank ratio is 98.8%.

Causal chain (fig. 5b) Precision is higher than the mul-
tiple cause case (0.594 when recall is 1), due to fewer con-
founders and less overdetermination. Tbl. 1 shows we find
over 95% of the true causes when k = 3. False discoveries
are mainly finding earlier links in the chain with longer lags.

Binary tree The updated model omits a relationship at
each of the levels. This is a challenging case as one may find
indirect elements of a chain with long time lags, instead of
the true relationship and actual lag. Precision is higher than
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Table 1: Result for novel explanation discovery. k−discover is the threshold for discovered causes, and k the rank threshold for
type level relationships to be accepted as explanations.

Multi Cause Causal Chain Binary Tree
k−discover k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
1 0.701 0.737 0.749 0.688 0.688 0.688 0.803 0.819 0.825
2 0.936 0.946 0.947 0.870 0.870 0.870 0.948 0.957 0.960
3 0.988 0.988 0.988 0.952 0.952 0.952 0.970 0.978 0.979

Table 2: Rank Ratio when type and token are consistent.

top-k Multi Cause Causal Chain Binary Tree
1 0.704 0.881 0.839
2 0.887 0.987 0.977
3 0.966 0.999 0.998

the other cases (0.692 with recall 1), possibly due to fewer
noise variables (2 vs. 5). Rank ratio is 97.9% with k = 3.

Real world dataset

As a second evaluation, we apply our approach to a real-
world bike sharing data set from the UCI data repository
(Fanaee-T and Gama 2013). The data includes two years
of bike sharing logs including environmental variables (e.g.
temperature, humidity, wind), dates (e.g. holiday), and bike
rental counts. We aim to discover explanations for bike
rentals. We discretized continuous variables using three bins
of equal width, then inferred type-level relationships, finding
bad weather causes low rental count the same day as does
low temperature. There are 194 high rental count events and
167 low rental ones. The type-level causes explained 19 (bad
weather) and 71 (low temp) instances of low counts.

Next we aim to discover causes for instances not ex-
plained by the type-level causes (194 instances of high
rentals, 77 of low). For weather, feels-like temperature, hu-
midity, and wind speed, we set the default state as the aver-
age (temperature) or mild (wind, weather, humidity) states.
The time window for checking whether a variable changes
state is m = [1, 4] days. We select only the top scoring
cause for each instance. Causes of high rentals include:
high temperature (121 cases), good weather (40), low wind
speed (24), moderate humidity (7), and moderate tempera-
ture (2). For low rentals we find the causes: moderate tem-
perature (49), high humidity (21), moderate humidity (6),
and low humidity (1). Consistent with what one would ex-
pect, we found 95% of increases in rentals are due to fa-
vorable weather, while 67% of cases of decreases in rentals
are due to poor weather conditions (e.g. low temperature,
humidity, bad weather). Note that relying only on the type-
level model only let us explain a small portion of the overall
set of cases, while our approach for discovering explanations
lets us identify explanatory hypotheses for all instances.

Conclusion

Our new automated causal explanation method can accu-
rately 1) infer how to weight the timing of type-level rela-
tionships when evaluating token cases, 2) calculate signif-
icance of token causes, and 3) discover novel explanations

for events that are not explained by type-level models. A
key limitation of prior methods is the inability to explain
events that are not instances of type-level relationships. Our
approach leverages prior information to pare down the set
of events requiring explanation: discovering new causes for
events that are not consistent with the model, using the idea
of residues and defaults. While causes cannot be guaranteed
to be genuine in all cases, this approach can provide poten-
tially unexpected hypotheses for further evaluation, and be
extended to deal with latent token causes in the future.
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