
A Text Mining Approach for Anomaly
Detection in Application Layer DDoS Attacks

Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Chad Calvert, Clifford Kemp
Florida Atlantic University

mmousaarabna2013@fau.edu, khoshgof@fau.edu, ccalver3@fau.edu, cliffkempfl@gmail.com

Abstract

Distributed Denial of Service (DDoS) attacks are a major
threat to Internet security, with their use continuing to grow.
Attackers are finding more sophisticated methods to attack
servers. A lot of defense mechanisms have been proposed
for DDoS attacks at IP and TCP layers. Those methods will
not work well for application layer DDoS attacks that uti-
lize legitimate application layer requests to overwhelm a web
server. These attacks look legitimate in both packets and pro-
tocol characteristics, which makes them harder to detect. In
this paper, we propose an anomaly detection method to de-
tect application layer DDoS attacks. We take a text mining
approach to extract features which represent a user’s HTTP
request sequence using bigrams. We apply the one class Sup-
port Vector Machine (SVM) algorithm on the extracted fea-
tures from normal users’ HTTP request sequences. The one
class SVM labels any newly seen instance that deviates from
the normal, trained model as an application layer DDoS in-
stance. We apply our experimental analysis on real web server
logs collected from a student resource website. Three differ-
ent variants of HTTP GET flood attacks are implemented on
our server, generated via penetration testing. Our results show
that the proposed method is able to detect application layer
DDoS attacks with very good performance results.

Introduction

Distributed Denial of Service (DDoS) attacks have consis-
tently been among the major threats to Internet security in
recent years. The main goal of DDoS attacks is to prevent
legitimate users from using a service. This makes these at-
tacks different from other classes of attacks in network se-
curity, which are focused on stealing or misusing user data.
Usually, DDoS attacks exhaust a server’s resources making
these resources unavailable to server authorized users. The
need for defending network servers and other systems, by
detecting potential attacks, has become a serious topic in
network security (Zargar, Joshi, and Tipper 2013).

In the past, it was more common to execute DDoS attacks
that focus on the network and transport layers, such as ICMP
flooding, SYN flooding or UDP flooding. These attacks in-
tend to consume network bandwidth to overload the number
of simultaneous connections a server can handle. A large

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

number of mechanisms have been proposed in the literature
for the detection of DDoS attacks; however, most of this re-
search is focused on attacks at IP or TCP layers (Durcekova,
Schwartz, and Shahmehri 2012). Compared to the amount
of work that has been done on IP and TCP layers, only a few
works involve the detection of DDoS attacks at the applica-
tion layer.

The large number of detection mechanisms proposed for
DDoS attacks at IP and TCP layers, has made it difficult
for attackers to successfully launch DDoS attacks on these
layers. This has caused attackers to switch to targeting the
application layer in order to overload application servers.
These attacks target the vulnerabilities in the application
layer. Therefore, the connections at IP and TCP layers look
normal making application layer DDoS attacks difficult to
detect, due to their traffic being similar to normal traffic. On
the other hand, compared to DDoS attacks at IP and TCP
layers, the application layer attacks need fewer resources to
be launched (McGregory 2013). The reason is that these at-
tacks need less traffic to be performed. The goal is to ex-
haust the resources for a targeted service, which is always
less than number of TCP and UDP connections needed to
launch a transport layer DDoS attack. All these reasons have
caused application layer DDoS attacks to become a very
popular class of attack used against computer networks in
recent years (M. Najafabadi et al. 2016b).

Since the application layer was not targeted often in past
DDoS attacks, the application layer DDoS attacks are a rel-
atively recent trend and there are only a limited number of
research studies done for their detection. Among those is
the work by Kandula (Kandula et al. 2005) which proposed
a probabilistic authentication mechanism using CAPTCHA
(acronym for Completely Automated Public Turing test to
tell Computers and Humans Apart). It requires each client
to solve a puzzle in order to authenticate him/herself before
accessing the server. This method is not very effective, as it
might annoy the users and also block web crawlers access
to the site for indexing the content to be used by search en-
gines.

There is a need for detecting application layer DDoS at-
tacks on computer networks. Application layer DDoS at-
tacks are particularly hard to detect because these attacks
use legitimate application layer requests to exhaust server
resources. These requests follow the standard networking

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

312



protocols and look similar to normal users’ requests. There
are some studies on the differentiation between a normal
user’s behavior and an attacker’s behavior by analysing
web logs (Ranjan et al. 2009), (Wang, Yang, and Long
2011), (Liao et al. 2014). These studies follow two main
strategies: anomaly detection and classification. In anomaly
detection methods, the normal users’ behavior is modeled. If
a new behavior does not conform to this normal, or baseline,
behavior model, it is marked as a potential attack. Anomaly
detection methods are able to detect new or zero-day at-
tacks. Training the model only requires normal data, which
can be collected during the typical operation of a computer
network. A potential downside of these methods is a high
false alarm rate, because no attack data is used to train the
model. The classification based studies, on the other hand,
use both normal and attack data in order to build a classi-
fication model, which can distinguish between normal and
attack instances. The issue with these studies is that they are
not able to detect a new type of attack, because it was not a
part of the model training dataset. In addition, in real world
applications, it is hard to access data that includes real attack
instances beforehand in order to train the model.

In this paper, we propose an anomaly detection method
for detecting HTTP GET flood application layer DDoS at-
tacks. A lot of application layer DDoS attacks target HTTP,
in which they target a web server in order to exhaust
its resources. The Hypertext Transfer Protocol (HTTP) is
designed to enable communications between clients and
servers. HTTP works as a request-response protocol be-
tween a client and server. The web browser on a user’s com-
puter can be considered the client, and an application on a
computer that hosts the website, which the user is browsing,
is the server. Two commonly used methods for a request-
response between a client and server are: GET and POST.
The GET protocol requests data from a specified resource
while the POST protocol submits data to a specified resource
to be processed .

The attackers misuse the weaknesses in either HTTP GET
or HTTP POST protocols. In HTTP GET attacks, the at-
tacker floods the web server by sending a large number of
HTTP GET requests. These packets have legitimate HTTP
payloads, so the victim server cannot distinguish them from
normal users’ packets (Byers, Rubin, and Kormann 2004).
Another type of misuse of the HTTP GET protocol is
the Slowloris attack (Estevez-Tapiador, Garcı́a-Teodoro, and
Dı́az-Verdejo 2005). In this attack, the attacker does not
flood the server with spoofed requests, but it separates the
lines of the HTTP headers and sends them at very slow rate
to keep the server busy. Attackers also misuse weaknesses in
HTTP POST protocol, which is similar to Slowloris attack
in that the attacker tries to keep the server busy by sending
pieces of data at very slow rate. The HTTP GET attack is
different from Slowloris and HTTP POST attacks in that the
attack has a flooding behaviour instead of sending pieces of
information in a slow manner. In this paper, we focus on the
HTTP GET attacks with flooding behavior.

In a HTTP GET flood attack, the attacker sends a large
number of HTTP GET requests to a web server from dif-
ferent infected computers (bots). The server receives these

requests and responds to them which causes its resources to
become exhausted. It would be of benefit if a method existed
which could differentiate between normal users’ requests
and attack requests, which enables the server to filter attack
requests. Our approach addresses this need by proposing an
anomaly detection method for detecting attack requests. We
model the normal users’ HTTP GET request sequence be-
havior and if a sequence of requests does not conform to the
trained model, it is detected as a possible attack instance.

We focus our efforts on anomaly detection, rather than
classification. Our main reason is that classification methods
need labeled data. Since HTTP GET flood attacks can utilize
numerous variants, building a labeled dataset that contains
all these variants is not a feasible task. Attackers are capable
of sending different HTTP requests to the web server in dif-
ferent orders. They can target their requests toward the main
webpage, a random webpage, a particular resource such as
an image file and even a combination of these. Considering
that a website can contain a high number of webpages and
resources, the number of possible HTTP GET Flood behav-
iors can get very high. It is not feasible to have some data
which contains all variants of HTTP GET flood attacks by
including an exhausted list of behaviors attackers can show
while sending HTTP requests to the target server. However,
it is possible, and also simpler, to collect normal data during
normal server operations in order to have a representation
of normal users’ access behaviour. This data can be used to
model users’ behavior and detect anomalous behaviors (po-
tential attacks).

This paper takes a novel approach to model a normal
user’s web access behaviour, by combining a text min-
ing approach for feature extraction and an anomaly detec-
tion method using one class SVM. This normal behavior
model is used to detect anomalous behaviors/potential at-
tacks. We define each sequence of a user’s HTTP GET re-
quests as a document. The requested resources are consid-
ered as words/tokens. We extract features from each docu-
ment using bigrams. A one class SVM is then trained on
the extracted features to model normal users’ behaviour,
and is tested on the collected attack data to calculate the
model’s performance. We collect server logs from a stu-
dent resources website. We generate three different types of
HTTP GET flood attacks through penetration testing using
45 machines. Our results show that our approach in using
one class SVM for detecting anomalies, along with the text
mining method in extracting features, provides good perfor-
mance results for detection of attacks with a small false pos-
itive rate.

The remainder of this paper is organized as follows. In
Related Work Section, we discuss related work on the topic
of the detection of HTTP GET flood attacks. The Method-
ology Section presents our approach for detecting these at-
tacks. The Experimental data Section explains our data col-
lection and the experimental data used. In Results Section,
we discuss our results. Finally, in Conclusions Section, we
conclude our work and provide suggestions for future re-
search.

313



Related Work

Xie and Yu (Xie and Yu 2009) proposed an extended, hidden
semi-Markov model to model the browsing behavior of web
surfers. Markov state space is used to describe the webpage
set of the website. The state transition probability matrix
presents the hyperlink relationship between different web-
pages. When a user clicks a hyperlink pointing to a page,
a number of HTTP requests are generated for the page and
its in-line objects. To get an estimate of the order of pages
a user is requesting, the requested objects in an observation
sequence is grouped into different clusters. This allows each
user request sequence to be transformed into the correspond-
ing webpage. The order and transition sequence of consecu-
tive groups show the user’s browsing behavior. The entropy
of an observed request sequence made by a user is defined
as the anomaly measure. This model is very complicated to
train and it is computationally heavy.

Ye et al. (Ye, Zheng, and She 2012) proposed clustering
user sessions. They calculate the deviation between sessions
and normal clusters as the abnormality measure. Four fea-
tures are extracted from each session in order to cluster the
normal users sessions to describe normal users behaviour.
The attack data contains a fixed number of requests per sec-
ond with random objects to the web server. Their generated
attack characteristic is based on the normal data they have
collected. The number of attack requests per second is cal-
culated by multiplying the number of requests in a session
randomly selected from normal data by two. This makes the
attack characteristics not representative of a real attack that
happens in computer networks.

Liao et al. (Liao, Li, and Kang 2015) used a classification
method to classify attacks from normal data. They extracted
two features to represent user’s browsing behavior in one
time window. The first feature describes the number of user
requests in every sub-time window. The second feature de-
scribes the time intervals between user requests. The idea is
that human visitors spend time on their interested webpages.
First, the average interval for a sequence of user accesses
during one hour is calculated and compared with a threshold
value to filter users who are 100% normal. Both normal and
attack data are used to define this threshold. Rythm match-
ing is used on frequency sequences (first feature) to group
the remaining sequences in clusters. The suspected attack
clusters are defined as clusters, with which their scale is less
than a threshold. This filters out the normal users. Each of
the remaining suspected clusters are again clustered using a
clustering algorithm with label (L-Kmeans). Their approach
is dependent on defining threshold values in different steps
to filter the data. In addition, they did not provide results on
test datasets, the results are provided on the training datasets
only. Providing the results on the test data is important as
it verifies whether the parameter values, which are selected
solely based on the trained data, provide the same perfor-
mance results on the test data as well.

Wang et al. (Wang, Yang, and Long 2011) presented two
different methods to characterize users’ web access behavior
in order to detect application layer DDoS attacks. To char-
acterize web access behavior with webpage ratios, they con-
struct the website’s priori click rate on vector which repre-

sents the click ratio for each webpage in the website. Each
user session is defined as its subsequent webpage requests
in 30-minute time interval and each user has its empiri-
cal click ratio vector which shows user’s interest in differ-
ent webpages during a session. The second method builds
the transition probability matrix between webpages. Again,
each user’s empirical access behavior matrix is calculated
depicting user’s access logic on the website. They compare
users empirical click ratio vector to the websites priori one,
and adopts large deviation theory estimating the probability
of the deviation. They do the same to measure the devia-
tion of ongoing user’s behavior from website’s priori tran-
sition probability matrix. Their simulation results show that
the first approach can detect application layer DDoS attacks
accurately, while the second approach has high false neg-
atives. Clicking on a webpage produces several HTTP re-
quests, in order to apply this method, it should be clear how
the user’s webpage access can be derived from the users’
HTTP requests. Also, their first approach might not provide
good detection results if the attacker targets only highly ac-
cessed webpages on a website.

Methodology

In HTTP GET flood attacks, a large number of infected
computers (bots) send HTTP GET requests to a targeted
HTTP server. Since the server cannot distinguish between
normal and attack HTTP GET requests, it responds back to
all the received GET requests. Each server response con-
sumes a percentage of the server resources. The large num-
ber of GET requests eventually exhausts the server resources
and the server is not able to service legitimate users. A nor-
mal user behaviour in accessing resources on a web server is
based on the structure of the website and the webpages the
user is browsing. The web mining studies have shown that
about 10% of webpages on a website may draw 90% of the
attention. In addition, web user browsing behavior can be
profiled by user’s webpage request sequences (Kantardzic
2011). Thus, we can model the normal user’s behaviour in
accessing the website webpages. On the other hand, each
click on a webpage makes the browser send a number of
HTTP GET requests to the web server which includes the
webpage and its in-line objects, such as images, flash, video
and audio. This means we can also model the sequence of
resources a normal user is accessing on a web server. We
can then use such models for detecting any anomalous se-
quences of resource usage on the web server.

We use server logs to extract the sequence of resources
each user is requesting on the server side. In the following
subsections, we explain how we combined feature extraction
using text mining (bigrams) and one class SVM for anomaly
detection, in order to model the access behavior of normal
users and detect anomalous events (possible attacks).

Feature Extraction Using Bigrams

Each web server provides users with different resources.
These resources include webpages, images, configura-
tion files, etc. The web server collects a log that records
requests the server has received and some operational

314



Figure 1: Extracting documents from the sequence of re-
sources requested by a particular user

information1. A typical record in a web server log looks
similar to the following: “222.222.222.222”, “57890”,
“837074” , “/var/www/html/wordpress/index.php”,
“HTTP/1.1” ”GET”, “/wordpress/index.php”,
“Mozilla/5.0 (compatible; Baiduspider/2.0;
+http://www.baidu.com/search/spider.html).”
“222.222.222.222” is the client IP address of the re-
quest. “57890” is the size of the response in bytes
and “837074” is the time that took the server to serve
this request. “HTTP/1.1” is the request protocol and
“GET” is the request method. “/wordpress/index.php”
shows what URL path is requested by the client and
finally, “Mozilla/5.0 (compatible; Baiduspider/2.0;
+http://www.baidu.com/search/spider.html)” shows the
browser from which the request has been sent, known as the
user agent.

We use a text mining approach to extract features from
the server logs. In order to apply a text mining approach, we
need to define a corpus of documents where each document
contains tokens. We consider each user session as a docu-
ment and each requested resource in the user session as a
token. By extracting all the user sessions from the server log
file, we build our document corpus. We define each user ses-
sion as the sequence of resources a particular user requests,
where the time between requests is less than 100 seconds
(we selected this value based on our preliminary analysis).
Figure 1 shows how documents are built from user sessions.

After documents are extracted from the server log file, we
then create bigrams to extract features from each document.
Bigrams are a particular form of ngrams. An Ngram is a con-
tiguous sequence of n items from a given sequence of text or
speech. Bigrams are a sequence of two adjacent elements
from a string of tokens. In our analysis, each token is actu-
ally a HTTP request made on the web server which is the
URL field in the log file above.

In order to build a model, we need to convert each docu-
ment into a fixed size feature vector. First, we determine the
most frequently occurring bigrams in our entire corpus. We
count the number of times each bigram is repeated in the en-
tire corpus. We then calculate the quintiles of all the bigrams
frequency counts. Since in our analysis, the third quintile
was 5, we decided to consider all the bigrams with counts
more than 5 as the frequent bigrams. These frequent bigrams

1https://httpd.apache.org/docs/1.3/logs.html

build our features. We also consider one additional feature,
called NF, for all the non-frequent bigrams. To build the fea-
ture vector for each document, we checked how many times
each of the frequent bigrams are repeated in it. The number
of all the non-frequent bigrams happened in the document
are added up to fill the value for the NF feature.

One Class SVM Anomaly Detection

One class Support Vector Machine (SVM) (Schölkopf et al.
2001) can be used for the task of anomaly detection (Heller
et al. 2003). Support vector machine is a discriminative clas-
sifier. Given labeled training data (supervised learning) of
two different classes, the algorithm finds an optimal hy-
perplane which categorizes new instances to either of the
learnt classes. Schölkopf (Schölkopf et al. 2001) extended
the SVM methodology to handle training using only one
class of data. By just providing the normal training data,
the algorithm creates a (representational) model of this data.
If newly encountered data is too different from the trained
model, it is labeled as out-of-class, i.e anomaly.

We use one class SVM to detect sessions that belong to
HTTP GET Flood attacks. We use the feature vectors from
normal users’ sessions to train the one class SVM. This
learns how the sequence of a normal user’s requests should
look like. Each newly seen session then is provided to this
trained model and, if it is detected as an out-class, we labeled
it as a HTTP GET flood session.

Experimental data
Our collection efforts were performed on an active, full-
scale campus network which have been used in our previous
data collections as well (Calvert et al. 2017; M. Najafabadi et
al. 2016a; Zuech et al. 2015). A web server was setup within
our network to host a publicly accessible student resource
website. The server itself runs CentOS and uses Apache to
host our student resource website, which was developed us-
ing Wordpress. This resource site is utilized by students and
faculty to access course information such as lecture notes,
lab materials, syllabi, assignment schedules, and course an-
nouncements. All traffic directed to this server is captured
continuously and stored in a single incremental access log.

Our attack implementations focus on variants of the
HTTP GET flood DDoS attack, which is a common method
of enacting application layer DDoS attacks. As previously
explained, this attack exploits web servers or applications
by continuously sending what seem to be legitimate HTTP
GET requests in order to exhaust server resources. In our ex-
periments, we have implemented and collected traffic from
three different HTTP GET flood variants. These variants are
described as follows:

Single Page Single Page HTTP GET flood attacks target a
specific page from a website, typically a page that is visited
frequently by users. For our attack, we targeted the home
page of our student resource site, as this is frequented by
all users and is also a common target for many real-world
attacks.

Random Page This variant targets a random page out of
all possible pages accessible within the website. Page selec-
tion is not impacted by page popularity. Also, pages do not

315



need to be accessible from one another, meaning that a link
does not have to lead from one previously selected page to
the next.

Top Five This variant continuously requests the top five
most visited pages from the resource site. For our purposes,
page popularity was tracked using a separate Wordpress
plug-in which ranked page popularity is based upon visits
by unique users.

Our penetration testing involved the use of customized
Python (G. van 1995) scripts, created for each of the afore-
mentioned attack variants. These scripts were utilized with
the intent of exploiting our web server’s HTTP GET pro-
tocol to consume resources. Our scripts utilize the socket
interface to connect to our designated host (web server) us-
ing a designated port. Once connected, our scripts send a
request for the desired resource from the web server. Once
the request is sent, the connection is closed and the process
repeats continuously to instigate the flood.

For each attack session, 45 host machines within our net-
work were configured to launch the attack simultaneously
based on our written scripts. Only one attack variant was
implemented at a time and all hosts were configured to run
the same attack. Each attack session was enacted for a full
hour and, for all attack variants, each HTTP GET request
was made using a random interval of 1 to 5 seconds. As
with our normal traffic, attack traffic was also collected and
stored in our continuous web logs. For easy identification
of traffic, all attack traffic is noted as originating from the
same subnet, as all attacks were performed on local hosts.
All other normal traffic existing in the log consist of outside,
public IPs which do not conflict with our subnet.

Results
Since we want to detect HTTP GET flood attacks, we only
included GET data in our analysis. We divided our data into
3 sections, which includes normal data divided in two sec-
tions and the attack data. We randomly selected 70% of the
normal samples as training data. The remaining 30% of the
normal data, plus the whole attack data, are used for test-
ing. We did all the implementations in R (R Core Team
2016). We used the “e1071” (Meyer et al. 2015) library for
the one class SVM and tm (Feinerer and Hornik 2015) and
Rweka (Hornik, Buchta, and Zeileis 2009) packages for ex-
tracting bigrams. We used Radial Basis Function (RBF) ker-
nel and the ν and gamma parameters were chosen by using
grid-search method (Hsu et al. 2003).

Since in our application, the attack sessions are the class
of interest, we consider the attack class as the Positive class
and the normal class as the Negative class in presenting our
performance results. After the one class SVM is trained, we
applied the trained model on the test data, which includes
both normal and attack instances. During the test, if an in-
stance gets an out-class label, it means the instance does not
belong to the same class as training data. In our experiments,
training data is the Negative class, i.e. normal data, and an
out-class instance means a Positive class, i.e. attack instance.

By considering the attack class as the Positive class, True
Positive Rate (TPR) is defined as the percentage of attack
instances which are correctly labeled as attack and False

Positive Rate is the percentage of normal instances which
are wrongly labeled as attack data. In an anomaly detection
application, we want TPR to be high and FPR to be low.
Testing the trained one class SVM on the test data provided
100% TPR and 2% FPR. This result shows that the proposed
methodology provides very good performance results in de-
tection of three different types of HTTP GET flood attacks.
In future work, we decide to analyze the false positive in-
stances in more detail in order to include additional analysis
which can reduce the FPR even more.

Compared to approaches such as (Xie and Yu 2009) and
(Wang, Yang, and Long 2011), which model how the users
access different webpages on a website, our approach mod-
els how the users access the resources on a website. This
eliminates the need to extract which webpage the user is ac-
cessing by examining the sequence of the requests. This can
be a complicated task considering webpages can share dif-
ferent resources. In addition, those approaches do not fit at-
tacks where the attacker is targeting resources on a website
instead of the webpages.

Conclusions

The large number of studies done on the detection of DDoS
attacks on IP and TCP layers necessitates a switch to ap-
plication layer methods to launch DDoS attacks in recent
years. Therefore, in comparison to the IP and TCP layer
DDoS attacks, application layer DDOS attacks can be con-
sidered a more recent trend in network attacks that needs to
be detected in order to make sure legitimate users receive
their requested services. These attacks do not show any ab-
normal behavior in packets or protocol, which make them
harder to detect. In this paper, we proposed an anomaly de-
tection mechanism for the detection of HTTP GET flood
DDoS attacks. We collected web server logs from a student
resource website. We also generated three different types of
HTTP GET flood attacks through penetration testing. We ex-
tracted features from users request sequences by using bi-
grams from text mining. We then applied a one class SVM
to model the normal users behavior in sending HTTP GET
requests to the server. Any newly seen instance, which is
labeled as out-class by the trained one class SVM, would
be detected as an HTTP GET attack instance. Our experi-
ments show that the proposed method provides very good
performance results to distinguish between normal users in-
stances and the HTTP GET flood instances. For future work,
we plan to collect more normal data as well as more variants
of attack data in order to expand our analysis.

Acknowledgment: We acknowledge partial support by
the NSF (CNS-1427536). Opinions, findings, conclusions,
or recommendations in this material are the authors’ and do
not reflect the views of the NSF.

References

Byers, S.; Rubin, A. D.; and Kormann, D. 2004. Defending
against an internet-based attack on the physical world. ACM
Transactions on Internet Technology (TOIT) 4(3):239–254.
Calvert, C.; Khoshgoftaar, T. M.; Najafabadi, M. M.; and
Kemp, C. 2017. A procedure for collecting and labeling

316



man-in-the-middle attack traffic. International Journal of
Reliability, Quality and Safety Engineering 24(1):19 pages.
Durcekova, V.; Schwartz, L.; and Shahmehri, N. 2012. So-
phisticated denial of service attacks aimed at application
layer. In ELEKTRO, 2012, 55–60. IEEE.
Estevez-Tapiador, J. M.; Garcı́a-Teodoro, P.; and Dı́az-
Verdejo, J. E. 2005. Detection of web-based attacks
through markovian protocol parsing. In 10th IEEE Sympo-
sium on Computers and Communications (ISCC’05), 457–
462. IEEE.
Feinerer, I., and Hornik, K. 2015. tm: Text Mining Package.
R package version 0.6-2.
G. van, R. 1995. Python tutorial, Technical Report CS-
R9526. Technical report.
Heller, K. A.; Svore, K. M.; Keromytis, A. D.; and Stolfo,
S. J. 2003. One class support vector machines for detecting
anomalous windows registry accesses. In Proc. of the work-
shop on Data Mining for Computer Security, volume 9.
Hornik, K.; Buchta, C.; and Zeileis, A. 2009. Open-source
machine learning: R meets Weka. Computational Statistics
24(2):225–232.
Hsu, C.-W.; Chang, C.-C.; Lin, C.-J.; et al. 2003. A practical
guide to support vector classification.
Kandula, S.; Katabi, D.; Jacob, M.; and Berger, A. 2005.
Botz-4-sale: Surviving organized ddos attacks that mimic
flash crowds. In Proceedings of the 2nd conference on Sym-
posium on Networked Systems Design & Implementation-
Volume 2, 287–300. USENIX Association.
Kantardzic, M. 2011. Data mining: concepts, models, meth-
ods, and algorithms. John Wiley & Sons.
Liao, Q.; Li, H.; Kang, S.; and Liu, C. 2014. Feature extrac-
tion and construction of application layer ddos attack based
on user behavior. In Control Conference (CCC), 2014 33rd
Chinese, 5492–5497. IEEE.
Liao, Q.; Li, H.; and Kang, S. 2015. Application layer ddos
attack detection using cluster with label based on sparse vec-
tor decomposition and rhythm matching. Security and Com-
munication Networks 8(17):3111–3120.
M. Najafabadi, M.; Calvert, C.; M. Khoshgoftaar, T.; and
Kemp, C. 2016a. Detecting man in the middle traffic us-
ing packet header information. In 22nd ISSAT International
Conference on Reliability and Quality in Design, 197–201.
M. Najafabadi, M.; M. Khoshgoftaar, T.; Napolitano, A.;
and Wheelus, C. 2016b. Rudy attack: Detection at the net-
work level and its important features. In The Twenty-Ninth
International Flairs Conference, Special Track on Artificial
Intelligence and Cyber Security, 282–287. AAAI.
McGregory, S. 2013. Preparing for the next ddos attack.
Network Security 2013(5):5–6.
Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; and
Leisch, F. 2015. e1071: Misc Functions of the Department
of Statistics, Probability Theory Group (Formerly: E1071),
TU Wien. R package version 1.6-7.
R Core Team. 2016. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Comput-
ing, Vienna, Austria.
Ranjan, S.; Swaminathan, R.; Uysal, M.; Nucci, A.; and
Knightly, E. 2009. Ddos-shield: Ddos-resilient scheduling
to counter application layer attacks. IEEE/ACM Transac-
tions on Networking (TON) 17(1):26–39.
Schölkopf, B.; Platt, J. C.; Shawe-Taylor, J.; Smola, A. J.;
and Williamson, R. C. 2001. Estimating the support
of a high-dimensional distribution. Neural computation
13(7):1443–1471.
Wang, J.; Yang, X.; and Long, K. 2011. Web ddos de-
tection schemes based on measuring user’s access behavior
with large deviation. In Global Telecommunications Confer-
ence (GLOBECOM 2011), 2011 IEEE, 1–5. IEEE.
Xie, Y., and Yu, S.-Z. 2009. A large-scale hidden semi-
markov model for anomaly detection on user browsing be-
haviors. IEEE/ACM Transactions on Networking (TON)
17(1):54–65.
Ye, C.; Zheng, K.; and She, C. 2012. Application layer ddos
detection using clustering analysis. In Computer Science
and Network Technology (ICCSNT), 2012 2nd International
Conference on, 1038–1041. IEEE.
Zargar, S. T.; Joshi, J.; and Tipper, D. 2013. A survey
of defense mechanisms against distributed denial of service
(ddos) flooding attacks. IEEE Communications Surveys &
Tutorials 15(4):2046–2069.
Zuech, R.; M. Khoshgoftaar, T.; Seliya, N.; M. Najafabadi,
M.; and Kemp, C. 2015. A new intrusion detection bench-
marking system. In The Twenty-Eighth International Flairs
Conference, 252–256. IAAA.

317




