
Deep Neural Network Architecture
for Character-Level Learning on Short Text

Joseph D. Prusa, Taghi M. Khoshgoftaar
jprusa@fau.edu, khoshgof@fau.edu

Florida Atlantic University

Abstract

Character-level deep learning for text classification
tasks enables models to be trained without any prior
knowledge of the data or language; however, an opti-
mal neural network design for different text domains is
not known and may vary. In this paper, we expand on
current efforts to train neural networks from character-
level data by conducting an experimental investigation
on neural network design for text classification of short
text documents. We trained and evaluated four net-
works, two consisting of convolutional layers followed
by dense layers and two consisting of convolutional lay-
ers followed by a LSTM layer. Our experimental re-
sults show tweets need network architectures compati-
ble with their short length. Networks found effective for
other sentiment classification tasks may not produce an
effective classifier in this domain, if their architecture is
ill-suited for short instances.

Introduction

Given sufficient data, the use of deep neural networks has
been demonstrated to be an effective approach for a wide va-
riety of machine learning tasks, including many text learn-
ing tasks where large datasets are available. Deep learning
methods are popular for feature extraction as they can find
relationships between words and/or phrases allowing a con-
densed feature space of abstracted data representations to
be generated. Googles word2vec is an example of this as it
provides an automated means of extracting semantic repre-
sentations from big data. Using a large-scale text corpus, or
other sufficiently large datasets, word2vec constructs a vo-
cabulary of a fixed size and learns how to describe words
outside the vocabulary by constructing vector representa-
tions using words from within the vocabulary (Najafabadi
et al. 2015).

Deep learning can also be used for end-to-end discrimina-
tive tasks such as text classification. Deep learning text clas-
sifiers learn relationships between basic text features, such
as words, and class labels so that computers can discrimi-
nate between concepts encountered in text. A common start-
ing point for this process is word-level and morphological
features; however, there is an inherent loss of information

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with these data representations and a dependence on hu-
man domain knowledge. Recent efforts have started to in-
vestigate character-level learning (Zhang and LeCun 2015;
Prusa and Khoshgoftaar 2016; Xiao and Cho 2016). In this
new paradigm, models are trained from raw text data with no
prior knowledge of the domain or language. Thus, the exis-
tence of words, parts of speech and other grammatical con-
structs are learned from scratch. This removes any potential
for human bias in feature engineering and ensures that all
information from the text is available for training.

While character-level learning has been demonstrated ef-
fective for a variety of text classification tasks, many net-
work blueprints currently exist and the best architecture
may depend on the specific classification task and dataset.
Two popular types of networks are Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs),
such as the Long Short Term Memory (LSTM) network.
Each type of network has its merits, and they can also be
combined in a single network. Both types of networks and
their combination have been used with word-level learning
for a wide variety classification tasks; however, character-
level learning is less developed.

Our work seeks to expand research on character-level
learning by exploring different neural network designs on
short text data. We evaluate four networks, two networks
consisting of convolutional layers followed by dense lay-
ers and two consisting of convolutional layers followed by
a LSTM layer on tweet sentiment data. To the best of our
knowledge, this is the first paper to train character-level
networks combining convolutional and recurrent layers on
tweet sentiment data. Additionally, we demonstrate network
architectures found effective for specific text classification
tasks may not work for dissimilar text. Specifically, text
length and the semantic nature of documents is important
when designing neural networks, as a classifier found effec-
tive for movie and restaurant review sentiment may not work
for tweet sentiment. This indicates there is no best network,
even for closely related text. Due to space limitations, test-
ing of additional network designs and training on additional
datasets is left for future work.

The following section presents related works on deep
learning for text classification. This is followed by a expla-
nation of how convolutional and LSTM networks work, our
experimental design, results, and finally our conclusions.

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

353



Related Works

Two common deep neural network architectures for per-
forming text classification are Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs).
CNNs gained popularity for their effectiveness in computer
vision and image classification and have been used for end-
to-end discriminative text classification tasks involving the
identification of high-level concepts prevalent throughout
an entire document. Additionally, CNNs have been demon-
strated to be effective for natural language processing tasks
such as part-of-speech tagging, named entity extraction, se-
mantic roles, and semantically similar words (Collobert and
Weston 2008).

Kim (Kim 2014), demonstrated training a CNN on top
of static, pre-made word vectors performs well for sen-
tence classification tasks. They showed a network with a
single convolutional layer, followed by dense layers, outper-
formed non deep learning algorithms, such as Multinomial
Naı̈ve Bayes and Support Vector Machine (SVM), on several
benchmarking datasets. However, other studies show using
CNNs to build high-level features from word-level represen-
tations, then using these features with conventional classi-
fiers performs better than end-to-end neural network classi-
fication. One such study was conducted by Poria et al. (Po-
ria, Cambria, and Gelbukh 2015). They used a CNN to build
high-level features from textual data, represented by a 306
dimensional vector consisting of a word vector and part of
speech values. The output of the penultimate fully connected
layer (the last layer before the classification layer) was then
used to generate features for use with other algorithms. They
found using these features with SVM produced a better per-
forming classification model than relying on the CNNs final
output layer for classification.

RNNs are designed for learning tasks with sequential
data, making them a logical choice for text classification
tasks as text is sequential and prior words or characters can
shape the meaning of subsequent words or characters. A
popular version of the RNNs, the LSTM network has been
demonstrated to be effective for a wide range of text classi-
fication tasks. Despite producing models with high perfor-
mance, LSTMs are also slow to train and prone to over-
fitting (Graves 2012). Additionally, they are sensitive to
network architecture changes and hyper-parameter tuning.
Thus, training a LSTM network can be considerably more
challenging than using a CNN, potentially leading to poorer
performance and longer training times. In the domain of sen-
timent classification, CNNs have been found to outperform
RNNs such as LSTM networks (Xu, Liang, and Baldwin
2016). The issue of training time is further compounded by
the lack of an RNN library equivalent to NVIDIAs CuDNN
library (Chetlur et al. 2014).

RNNs can also be used in conjunction with other types
of networks to improve performance. Tang et al. (Tang,
Qin, and Liu 2015) investigated adding a Gated Recurrent
Neural Network (GRNN) after either convolutional layers
(CNN-GRNN) or an LSTM layer (LSTM-GRNN). They
trained models on Yelp and IMDB sentiment data and com-
pared them against SVM models with several different fea-
ture sets (constructed from word-level data representations)

and a CNN. They found both the CNN-GRNN and LSTM-
GRNN outperformed their baseline approaches, indicating
that these new models are a better choice for document-level
sentiment classification than previous approaches.

Character-Level Deep Learning

While the majority of these studies have worked from word-
level data representations such as bag-of-word or word2vec
models, the use of character-level data representations has
become more common in recent works. Zhang and LeCun
(Zhang and LeCun 2015) first proposed the use of character-
level data representations for training a CNN classifier by
representing text as a sequence of character vectors, form-
ing an image-like data matrix for each text instance. They
showed they could learn high-level text concepts and beat
state-of-the-art models by training a neural network from
character data with no prior feature engineering or extrac-
tion, or any knowledge of language such as the existence
of words or parts of speech. Their approach employed 1-
of-m embedding to represent characters. Each character is
then represented by a vector of size m, where m is the num-
ber of characters in their alphabet. Each instance is then a
sequence of these character vectors. Using this embedding,
they trained deep convolutional neural networks on a variety
of text classification benchmarking datasets and found mod-
els using character-level data outperformed the use of fea-
tures generated with bag-of-words, bag-of-centroids and the
deep learning approach word2vec for many of their datasets.

Prusa and Khoshgoftaar (Prusa and Khoshgoftaar 2016)
also investigated character-level learning. They proposed a
new character embedding to create a more compact data
representation, reducing training time and memory require-
ments. Similar to 1-of-m embedding, they constructed vec-
tor representations of characters; however, they allowed
multiple entries in each vector to be non-zero. Thus a vec-
tor of length log(m) could be used in place of a vector
of length m. They evaluated their embedding using CNNs
trained from tweet sentiment data and found that their em-
bedding resulted in significantly better classification perfor-
mance than using 1-of-m in addition to requiring less mem-
ory and having the advantage of faster training.

Kim et al. (Kim et al. 2015) demonstrated LSTM net-
works can effectively learn from character-level data, and
like CNNs models learning from character-level data, can
outperform networks trained from word and morphologi-
cal features. Additionally, their character-level models have
fewer parameters than their word-level counterparts since
an alphabet of characters if far smaller than even a limited
vocabulary of words. Xiao and Cho (Xiao and Cho 2016)
tested substituting the multiple dense layers in a CNN net-
work with an LSTM layer followed by the decision layer.
Additionally, they employed an embedding layer to create
dense character vectors from character-level data in a man-
ner similar to word2vec. They trained and tested four CNN-
LSTM models with two to five convolutional layers and one
LSTM layer against networks with six convolutional layers
and three dense layers, as used in (Zhang and LeCun 2015),
on multiple datasets with paragraph to page length docu-
ments. They found the CNN-LSTM networks had higher

354



Figure 1: Visualization of output from CNN Filters.

performance for the majority of tested datasets; however,
there was no best number of convolutional layers prior to
the LSTM layer.

Deep Neural Networks

In addition to densely connected layers similar to those
found in a multilayer perceptron network, we train networks
with convolutional layers and networks with LSTM layers.

Convolutional Layers

A convolutional layer is a sparsely connected layer that only
connects neurons in subsequent layers to a small region
in the current input volume. A feature map is obtained by
convolving a linear filter consisting of weights and a bias
term across the layer’s input space, then applying a non-
linear activation function. Multiple randomly initialized fil-
ters are employed in each layer forming a set of feature
maps, {hk, k = 0..K}, where K is the number of feature
maps in the layer. Figure 1 provides a visualization. Thus,
the kth feature map, hk, with filter weight Wk, bias term
bk and non-linear activation function φ for input vector xij ,
can be defined as:

hk
ij = φ(Wkxij + bk)

Common receptor field sizes are small, typically 3 × 3, or
5 × 5 for two dimensional inputs and length 3 or 5 for 1
dimensional inputs. Thus, for character-level text learning,
an individual layer only learns local relationships between
a character and its closest neighbors; however, by stacking
multiple convolutional layers, hierarchical relationships can
be learned spanning larger portions of text. Convolutional
layers have a number of hyperparameters including filter
size, number of filters, convolutional stride and choice of
activation function. We elect to use Rectified Linear Units
(ReLU), defined as f(x) = max(0, x), as our activation
function as it promotes nonlinear responses (Nair and Hin-
ton 2010), may be more biological plausible than tanh, and
is used in prior works with character-level learning (Zhang
and LeCun 2015; Xiao and Cho 2016).

An optional pooling layer may be added after the activa-
tion function layer to down-sample the output in an effort

Figure 2: Visualization of a LSTM memory cell and gates.

to reduce number of network parameters, and avoid over-
fitting via establishing translation invariance of features. The
most commonly used form of pooling is max-pooling, a non-
linear form of down-sampling that only passes on the ele-
ment with the highest activation from its pool.

LSTM Layers

A recurrent layer uses a recursive function, which returns the
current hidden state ht using an input vector x and the pre-
vious hidden state ht−1. Choosing a simple recursive func-
tion, such as ht = tanh(Wxxt +Uxht−1), here Wx and
Ux are weight matrices, may cause the gradient signal to
explode if the weight matrix contains many large values, or
vanish if it contains many small values since the gradient
may be multiplied by the weight matrix many times in dur-
ing gradient back propagation.

The Long Short Term Memory (LSTM) network was in-
troduced as a solution to this. The LSTM initially consisted
a memory cell composed of an input gate, output gate and
candidate memory cell (Hochreiter and Schmidhuber 1997);
however, an update was made to the memory cell structure
by adding a forget gate (Gers, Schmidhuber, and Cummins
2000). Figure 2 shows a modern memory cell. The explod-
ing/vanishing gradient problem is addressed by including a
self-recurrent connection with a weight of 1.0, ensuring the
state of a memory cell remains constant without outside in-
terference.

At a timestep t, the input gate it, forget gate ft, candidate
memory cell ˜Ct, output gate ot, new memory cell Ct, and
new hidden state ht can be calculated as follows:

it = σ(Wixt +Uiht−1 + bi)

ft = σ(Wfxt +Ufht−1 + bf )

˜Ct = tanh(Wcxt +Ucht−1 + bc)

Ct = it ∗ ˜Ct + ft ∗Ct−1

ot = σ(Woxt +Uoht−1 +VoCt + bo)

ht = ot ∗ tanh(Ct)

Where xt is the input to the memory cell at time t, W, U
and V are weight matrices, b are the bias vectors and σ the
sigmoid function S(t) = 1

1+e−t .

355



Empirical Design

Character Embedding

We employ two methods of character embeddings to create
our data representation. The first is referred to as log(m) em-
bedding and a more compact alternative to 1-of-m embed-
ding. Log(m) embedding represents each character as a vec-
tor of length log(m) where m is the alphabet size. This em-
bedding can potentially improve classification performance
and also reduced training time and memory requirements
compared to 1-of-m embedding (Prusa and Khoshgoftaar
2016). This embedding choice has the advantage of being
performed as a part of data preprocessing, thus generates an
embedding layer. We select the commonly used 1-Hot char-
acter embedding in conjunction with an embedding layer in
the network as a second embedding approach. 1-Hot embed-
ding represents each instance as a vector of numeric values
(0-255 for the UTF-8 alphabet). This representation is then
sent to the network’s embedding layer which turns positive
integers into dense vectors of fixed size. We use the embed-
ding layer from the Keras library (Chollet 2016).

Dataset

As a source of short text data, we use instances from the
sentiment140 corpus (Go, Bhayani, and Huang 2009) for
training, validation and test data. The corpus contains 1.6
million instances, equally positive and negative labeled, and
was generated by collecting and labeling tweets using emoti-
cons. Tweets are limited to 140 characters; however, when
using UTF-8 encoding the length may be longer due to using
multiple characters to represent letters and symbols outside
UTF-8 such as the Cyrillic alphabet. Due to this, the longest
tweet was found to have a length of 374 characters instead
of 140. Thus, we padded the length of all instances to 374
characters as our neural networks require input with uniform
size. This results in an input of 1x374 for networks using 1-
Hot embedding, and an input of 8x374 for our network us-
ing the character embedding from (Prusa and Khoshgoftaar
2016). No pre-processing was used.

The 1.6 million instances of the sentiment140 tweet cor-
pus were partitioned into three parts for training, validation
and performing a final evaluation of our networks. An ini-
tial split was performed where 10% were randomly selected
and set aside as test data. The test data is not used in any
part of the training process and is used to perform a final
performance evaluation. The remaining 90% of the data was
then randomly split into training and validation partitions,
with 20% (18% of the total data) set aside for validation of
each epoch so that an early stopping criteria for training the
network could be established. The remaining training data is
used to train the parameters of the network.

Network Architecture

In this study, we investigate four neural networks, two
networks composed of convolutional layers followed by
densely connected layers and two networks composed of
convolutional layers followed by a long short term memory
layer. The two convolutional plus dense layer networks are

based off the network architecture from (Prusa and Khosh-
goftaar 2016). The first network, CNN3-2D, uses the 2D
character embedding and consists of three convolutional lay-
ers followed by a max-pooling layer, then three dense layers.
The second network, CNN3-1D, uses 1-Hot character em-
bedding with an embedding layer, followed by a 1D equiv-
alent to the network architecture used in CNN-2D. Both
mixed convolutional LSTM networks use 1-Hot character
embedding with an embedding layer. The first of these net-
works, CNN3-LSTM-1D, is a reconstruction designed to
replicate the model from (Xiao and Cho 2016). It consists of
three convolutional layers followed by an LSTM layer with
128 memory cells, and finally a dense classification layer
with two nodes. Max-pooling layers are placed after every
convolutional layer. The last network, CNN1-LSTM-1D has
a similar architecture, but only one convolutional layer. See
Table 1 for further details on network hyper-parameters.

Training and evaluation

Convolutional networks were trained using stochastic gradi-
ent descent with Nesterov momentum to match prior experi-
mentation (Zhang and LeCun 2015; Prusa and Khoshgoftaar
2016). The learning rate was set to 0.01 and momentum to
0.9. Convolutional plus LSTM networks were trained with
AdaDelta using ρ = 0.95 and ε = 10−5 to match exper-
imentation prior (Xiao and Cho 2016). During training we
evaluate performance of the network by measuring training
loss, training accuracy, validation loss and validation accu-
racy. We used binary cross entropy as our loss function. For
target t and output o, it is defined by:

loss(t, o) = −t log(o)− (1− t) log(1− o)

Networks were set to train for a maximum of 50 epochs, with
early termination of training when no improvement in vali-
dation loss was observed for the previous 5 epochs. The ran-
dom seed for splitting data into training, test and validation
was fixed for all experiments so all networks were trained
with the same data partitions. Training time per epoch was
measured in addition to total training time for all epochs.
After training, a final evaluation of each network was per-
formed using accuracy, the number of correctly classified
instances divided by the total number of instances, as our
performance metric. This is an appropriate metric as the data
is balanced and both classes are of equal importance.

Experiments were conducted on a laptop node with 4 In-
tel Xeon Cores, 64 GB of RAM and a NVIDIA Quadro
M5000 GPU accelerator running Windows 10. Networks
were constructed using Theano 0.8.0 (Al-Rfou et al. 2016)
with NVIDIA CUDA 7.5 (Nickolls et al. 2008), Keras and
the NVIDIA CuDNNv5 library (Chetlur et al. 2014).

Results and Discussion

Accuracy, evaluated on the test set, is presented in Ta-
ble 2. Additionally, average run time per training epoch, the
number of epochs before training was terminated and to-
tal training time are presented. Best results for each met-
ric are in bold. CNN3-LSTM performed very poorly. Due

356



Network Embedding Filter Size No. Filters Pooling LSTM Dense Parameters
CNN3-2D no 3x3, 3x3, 3x3 128 2x2 no 1024, 1024, 2 25,466,370
CNN3-1D yes 3x1, 3x1, 3x1 128 2x1 no 1024, 1024, 2 1,551,634

CNN3-LSTM yes 3x1, 3x1, 3x1 128 2x1, 2x1, 2x1 yes 2 367,442
CNN1-LSTM yes 3x1 128 2x1 yes 2 401,170

Table 1: Network architecture, hyper-parameters and number of parameters (network size).

Model Accuracy Time per Epoch Number of Epochs Total Time
CNN3-2D 81.07 973.9s 11 10712.9s
CNN3-1D 82.24 591.9s 25 14797.5s

CNN3-LSTM-1D 50.18 332.6s 7 2328.2s
CNN1-LSTM-1D 79.45 3788.8s 23 87142.4s

Table 2: Test accuracy, training time per epoch, number of epochs and total training time of each network.

(a)

(b)

(c)

(d)

Figure 3: Loss and accuracy for training and validation of Neural Networks

to this failure, additional training attempts to train an effec-
tive classifier were conducted to no avail, with tweaks in-
cluding the elimination of the first two max-pooling layers.
Due to this, the training time per epoch and total training
time for CNN3-LSTM should not be compared to the other
three networks. Both CNN3-2D and CNN3-1D outperform
the CNN1-LSTM-1D with our data.

Training loss (loss), training accuracy (epoch acc), val-
idation loss (val loss) and validation accuracy (val acc)
are plotted in Figure 3. From Figure 3a, it can be seen
that CNN3-2D reaches its minimal validation loss with the
fewest number of epochs. Figure 3c confirms that CNN3-
LSTM is not effective for our data as both training and vali-
dation loss never change.

The poor performance of CNN3-LSTM-1D indicates that
the network is ill suited for our data since the other three
networks perform well. This network design and the se-

lected hyper-parameters were found to be effective in other
text domains (Xiao and Cho 2016). This raises the question,
what makes our data different and why would a model that
is effective for IMDB sentiment and Yelp Sentiment com-
pletely fail when trained on tweet sentiment data. It has
previously been speculated (Xiao and Cho 2016) that ex-
tra max-pooling layers may negatively impact performance;
however, their removal made no impact in preliminary ex-
perimentation. Thus, the most likely explanation is that due
to the short nature of tweets, learning long sequences of
characters is not advantageous and may actually be detri-
mental as entire tweets might be learned instead of words
and phrases leading to overfitting.

An interesting observation is that CNN3-2D and CNN3-
1D have similar training times (CNN3-2D is only 50%
slower per epoch), despite CNN3-2D being roughly 16 times
larger (based on number of parameters in the network) as

357



seen in Table 1. This is likely due to its use of 2D con-
volutional layers as opposed to 1D layers, since currently
CuDNN library offer rapidly accelerated training of 2D con-
volutional layers. Since CNN3-2D has faster training (rela-
tive to the number of parameters) and requires less train-
ing epochs, it finishes training before CNN3-1D. While this
network has a slightly lower accuracy on our test set, stop-
ping training earlier (between epochs 5 and 7) may result
in higher accuracy in addition to even shorter training time.
Due to this, it is currently unclear which network should be
considered better for our data.

Compared to either CNN model, each training epoch of
CNN1-LSTM-1D takes a very long time. It also has lower
classification accuracy than using convolutional layers fol-
lowed by dense layers. This does not match earlier obser-
vations on for text classification with longer text instances.
Thus, our current observations support the idea that there is
no best NN design for a given text classification task; how-
ever, we recommend using convolutional layers followed by
dense layers for classifying short text.

Conclusion

In this paper, we provide a case study on neural network de-
sign for character-level text classification using tweet data
to train sentiment classifiers. We trained and evaluated four
networks, two consisting of convolutional layers followed
by dense layers and two consisting of convolutional layers
followed by a LSTM layer. We found that both architectures
can train effective classifiers; however, one of our networks
was unable to be trained to effectively classify tweet senti-
ment. We also found that while replacing dense layers with
a LSTM layer reduced the number of parameters in the net-
work, it significantly increases training time. Additionally,
using 2D convolutions is much faster than using 1D convo-
lutions due to CuDNN allowing for very fast 2D convolu-
tions to be performed.

Our observations support the use of a network comprised
of convolutional layers followed by dense layers for clas-
sification of short text, whereas the addition of a LSTM
layer has previously been found to be beneficial for text with
longer instances (Xiao and Cho 2016). Future work should
explore additional networks with more layers and repeat our
experiments on more datasets to see if our observations gen-
eralize to other short instance text data.
Acknowledgment: We acknowledge partial support by the
NSF (CNS-1427536). Opinions, findings, conclusions, or
recommendations in this material are the authors and do not
reflect the views of the NSF.

References

Al-Rfou, R.; Alain, G.; Almahairi, A.; Angermueller, C.;
Bahdanau, D.; Ballas, N.; Bastien, F.; Bayer, J.; Belikov, A.;
Belopolsky, A.; et al. 2016. Theano: A python framework
for fast computation of mathematical expressions. arXiv
preprint arXiv:1605.02688.
Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran,
J.; Catanzaro, B.; and Shelhamer, E. 2014. cudnn:

Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759.
Chollet, F. 2016. keras. https://github.com/fchollet/keras.
Collobert, R., and Weston, J. 2008. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, 160–167. ACM.
Gers, F. A.; Schmidhuber, J.; and Cummins, F. 2000. Learn-
ing to forget: Continual prediction with lstm. Neural com-
putation 12(10):2451–2471.
Go, A.; Bhayani, R.; and Huang, L. 2009. Twitter sentiment
classification using distant supervision. CS224N Project Re-
port, Stanford 1–12.
Graves, A. 2012. Neural networks. In Supervised Sequence
Labelling with Recurrent Neural Networks. Springer. 15–35.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Kim, Y.; Jernite, Y.; Sontag, D.; and Rush, A. M. 2015.
Character-aware neural language models. arXiv preprint
arXiv:1508.06615.
Kim, Y. 2014. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Nair, V., and Hinton, G. E. 2010. Rectified linear units
improve restricted boltzmann machines. In Proceedings
of the 27th International Conference on Machine Learning
(ICML-10), 807–814.
Najafabadi, M. M.; Villanustre, F.; Khoshgoftaar, T. M.;
Seliya, N.; Wald, R.; and Muharemagic, E. 2015. Deep
learning applications and challenges in big data analytics.
Journal of Big Data 2(1):1–21.
Nickolls, J.; Buck, I.; Garland, M.; and Skadron, K. 2008.
Scalable parallel programming with cuda. Queue 6(2):40–
53.
Poria, S.; Cambria, E.; and Gelbukh, A. 2015. Deep convo-
lutional neural network textual features and multiple kernel
learning for utterance-level multimodal sentiment analysis.
In Proceedings of EMNLP, 2539–2544.
Prusa, J. D., and Khoshgoftaar, T. M. 2016. Designing a
better data representation for deep neural networks and text
classification. In Information Reuse and Integration (IRI),
2016 IEEE International Conference on, 411–416.
Tang, D.; Qin, B.; and Liu, T. 2015. Document modeling
with gated recurrent neural network for sentiment classifica-
tion. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, 1422–1432.
Xiao, Y., and Cho, K. 2016. Efficient character-level docu-
ment classification by combining convolution and recurrent
layers. arXiv preprint arXiv:1602.00367.
Xu, X.; Liang, H.; and Baldwin, T. 2016. Unimelb at
semeval-2016 tasks 4a and 4b: An ensemble of neural net-
works and a word2vec based model for sentiment classifica-
tion.
Zhang, X., and LeCun, Y. 2015. Text understanding from
scratch. arXiv preprint arXiv:1502.01710.

358




