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Abstract

Automatic sarcasm detection methods have traditionally been
designed for maximum performance on a specific domain.
This poses challenges for those wishing to transfer those ap-
proaches to other existing or novel domains, which may be
typified by very different language characteristics. We de-
velop a general set of features and evaluate it under different
training scenarios utilizing in-domain and/or out-of-domain
training data. The best-performing scenario, training on both
while employing a domain adaptation step, achieves an F1 of
0.780, which is well above baseline F1-measures of 0.515 and
0.345. We also show that the approach outperforms the best
results from prior work on the same target domain.

Introduction

Sarcasm, a creative device used to communicate an intended
meaning that is actually the opposite of its literal meaning,1
is notoriously difficult to convey and interpret through text,
in part because doing so relies heavily upon shared contex-
tual understandings that can be marked more easily by al-
tered prosody (e.g., emphasis upon certain words) or non-
verbal signals (e.g., rolling one’s eyes). It is a complex pro-
cess even for humans, and in fact an inability to detect sar-
casm has been linked with a number of neurocognitive dis-
orders, including dementia (Kipps et al. 2009). It is similarly
a challenging open task in natural language processing, and
has direct implications to a number of other critical applica-
tion areas, such as sentiment analysis.

Most research on automatic sarcasm detection to date
has focused on the Twitter domain, which boasts an am-
ple source of publicly-available data, some of which is al-
ready self-labeled by users for the presence of sarcasm (e.g.,
with #sarcasm). However, Twitter is highly informal, space-
restricted, and subject to frequent topic fluctuations from one
post to the next due to the ebb and flow of current events—in
short, it is not broadly representative of most text domains.
Thus, sarcasm detectors trained using features designed for
maximum Twitter performance are not necessarily transfer-
able to other domains. Despite this, it is desirable to develop
approaches that can harness the more generalizable informa-
tion present in the abundance of Twitter data.
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1merriam-webster.com/dictionary/sarcasm

In this work, we develop a set of domain-independent fea-
tures for sarcasm detection and show that the features gen-
erally perform well across text domains. Further, we vali-
date that domain adaptation can be applied to sarcasm de-
tection to leverage patterns in out-of-domain training data,
even when results from training only on that source domain
data are extremely bad (far below baseline results), to im-
prove over training on only the target data or over training
on the simply combined dataset. Finally, we make a new
dataset of sarcastic and non-sarcastic tweets available online
as a resource to other researchers.2

Related Work

The majority of work on automatic sarcasm detection has
been done using Twitter, and to a smaller extent Amazon
product reviews. Research outside of those domains has
been scarce, but interesting. Notably, Burfoot and Baldwin
(2009) automatically detected satirical news articles using
unigrams, lexical features, and semantic validity features,
and Justo et al. (2014) used n-gram, linguistic, and semantic
features to detect the presence of sarcasm in the Internet Ar-
gument Corpus (Walker et al. 2012). The remainder of this
section describes prior work with Twitter and Amazon.

Sarcasm Detection on Twitter

Twitter is a micro-blogging service that allows users to post
short “tweets” to share content or describe their feelings or
opinions in 140 characters or less. For researchers, it boasts
a low cost of annotation and plentiful supply of data (users
often self-label their tweets using the “#” symbol—many ex-
plicitly label their sarcastic tweets using the hashtag “#sar-
casm”). A variety of approaches have been taken toward au-
tomatically detecting sarcasm on Twitter, including explic-
itly using the information present in a tweet’s hashtag(s);
Maynard and Greenwood (2014) learned which hashtags
characteristically corresponded with sarcastic tweets, and
used the presence of those indicators to predict other sar-
castic tweets, with high success. Liebrecht, Kunneman, and
van den Bosch (2013) detected sarcasm in Dutch tweets us-
ing unigram, bigram, and trigram features.

Rajadesingan, Zafarani, and Liu (2015) detected sarcastic
tweets based on features adapted from behavioral models of

2hilt.cse.unt.edu/resources.html
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sarcasm usage, drawing extensively from individual users’
Twitter histories and relying heavily on situational context
and user characteristics. The system also employed lexical
features and grammatical correctness as a means of mod-
elling different aspects of the user’s behavior.

Other researchers have had success identifying sarcasm
by a tweet’s use of positive sentiment to describe a negative
situation (Riloff et al. 2013), employing contextual (Bam-
man and Smith 2015) or pragmatic (González-Ibáñez, Mure-
san, and Wacholder 2011) features, and observing the writ-
ing style and emotional scenario of a tweet (Reyes, Rosso,
and Veale 2013). An underlying theme among these meth-
ods is that the features are generally designed specifically
for use with tweets. A major challenge in developing a more
general approach for sarcasm detection lies in developing
features that are present across many domains, yet still spe-
cific enough to reliably capture the differences between sar-
castic and non-sarcastic text.

Finally, some researchers have recently explored ap-
proaches that rely on word embeddings and/or carefully tai-
lored neural networks, rather than on task-specific feature
design (Ghosh, Guo, and Muresan 2015; Ghosh and Veale
2016; Amir et al. 2016). Since neural networks offer little
transparency, it is uncertain whether the features learned in
these approaches would be easily transferable across text do-
mains for this task (prior research on other tasks suggests
that the features computed by deep neural networks grow
increasingly specific to the training dataset—and in turn, to
the training domain—with each layer (Yosinski et al. 2014)).
Although an interesting question, the focus herein is on un-
covering the specific types of features capable of leveraging
general patterns for sarcasm detection, and this can be more
easily examined using shallower learning algorithms.

Sarcasm Detection on Amazon Reviews

Research on automatic sarcasm detection in other domains
has been limited, but recently a publicly-available corpus of
sarcastic and non-sarcastic Amazon product reviews was re-
leased by Filatova (2012) to facilitate research. Buschmeier,
Cimiano, and Klinger (2014) test many feature combina-
tions on this dataset, including those based on metadata (e.g.,
Amazon star rating), sentiment, grammar, the presence of
interjections (e.g., “wow”) or laughter (e.g., through ono-
matopoeia or acronyms such as “lol”), the presence of emoti-
cons, and bag-of-words features. Their highest F1 (0.744) is
achieved using all of these with a logistic regression clas-
sifier; however, using only the star rating, they still achieve
an F1 of 0.717. This highlights the need for high-performing,
general features for sarcasm detection; metadata features are
highly domain-specific, and even bag-of-words trends may
be unique to certain domains (“trump” was one of the most
common unigrams in our own Twitter training set, but only
occurred once across all Amazon product reviews).

Prior to the release of Filatova’s dataset, Davidov, Tsur,
and Rappoport (2010) developed a semi-supervised ap-
proach to classify tweets or Amazon reviews as sarcastic or
non-sarcastic by clustering samples based on grammatical
features and the full or partial presence of automatically-
extracted text patterns. They evaluated their work on a sam-

Sarcastic (Train/Test) Non-Sar. (Train/Test)

Twitter 1959 (1568/391) 3039 (2430/609)
Amazon 437 (350/87) 817 (653/164)

Table 1: Twitter and Amazon Dataset Distributions

ple of the classified instances annotated by anonymous users
on Amazon Mechanical Turk. They tested several different
seed sets with their approach, one of which contained a mix-
ture of positive Amazon reviews, positive #sarcasm-tagged
tweets, and a manually-selected sample of negative tweets.
Although they did not report test results on Amazon reviews
using this seed set, they did report test results on #sarcasm-
tagged tweets, achieving an F-measure of 0.545. Their work
is the closest to ours, because it attempts to harness training
samples from both the Twitter and Amazon review domains.

Methods

Data Collection

Data was taken from two domains: Twitter, and Amazon
product reviews. The Amazon reviews were from the pub-
licly available sarcasm corpus developed by Filatova (2012).
To build our Twitter dataset, tweets containing exactly one
of the trailing hashtags “#sarcasm,” “#happiness,” “#sad-
ness,” “#anger,” “#surprise,” “#fear,” and “#disgust” were
downloaded regularly during February and March 2016.
Tweets containing the latter six hashtags, corresponding to
Ekman’s six basic emotions (Ekman 1992), were labeled
as non-sarcastic. Those hashtags were chosen because their
associated tweets were expected to still express opinions,
similarly to sarcastic tweets, but in a non-sarcastic way.
Tweets containing #sarcasm were labeled as sarcastic; an-
notating tweets with the #sarcasm hashtag as such is con-
sistent with the vast majority of prior work in the Twitter
domain (González-Ibáñez, Muresan, and Wacholder 2011;
Liebrecht, Kunneman, and van den Bosch 2013; May-
nard and Greenwood 2014; Rajadesingan, Zafarani, and Liu
2015; Bamman and Smith 2015; Ghosh, Guo, and Muresan
2015; Amir et al. 2016).

The downloaded tweets were filtered to remove retweets,
“@replies,” and tweets containing links. Retweets were re-
moved to avoid having duplicate copies of identical tweets
in the dataset, @replies were removed in case the hashtag re-
ferred to content in the tweet to which it replied rather than
content in the tweet itself, and tweets with links were like-
wise removed in case the hashtag referred to content in the
link rather than in the tweet itself. Requiring that the speci-
fied hashtag trailed the rest of the tweet (it could only be fol-
lowed by other hashtags) was done based on the observation
that when sarcastic or emotional hashtags occur in the main
tweet body, the tweet generally discusses sarcasm or the
specified emotion, rather than actually expressing sarcasm
or the specified emotion. Finally, requiring that only one of
the specified hashtags trailed the tweet eliminated cases of
ambiguity between sarcastic and non-sarcastic tweets. All
trailing “#sarcasm” or emotion hashtags were removed from
the data before training and testing, and both datasets were
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Resource Description

Liu05 Opinion lexicon containing 2006 pos. words and
4783 neg. words (Liu, Hu, and Cheng 2005).

MPQA Subjectivity lexicon containing strongly or weakly
subjective positive (2718) or negative (4910)
words (Wilson, Wiebe, and Hoffmann 2005).

AFINN Sentiment lexicon for microblogs (Hansen et al.
2011) containing 2477 words/phrases labeled with
values from -5 (negative) to +5 (positive).

Google
Web1T

Large collection of n-grams and their frequencies
scraped from the web (Brants and Franz 2006).

Table 2: Lexical Resources

randomly divided into training (80%) and testing (20%) sets.
Further details are shown in Table 1.

Features

Three feature sets were developed (one general, and two tar-
geted toward Twitter and Amazon, respectively). Resources
used to develop the features are described in Table 2. Five
classifiers (Naı̈ve Bayes, J48, Bagging, DecisionTable, and
SVM), all from the Weka3 library, were tested using five-
fold cross-validation on the training sets, and the highest-
scoring (Naı̈ve Bayes) was selected for use on the test set.

Domain-Specific Features The Twitter- (T) and Amazon-
specific (A) features are shown in Table 3. Domain-specific
features were still computed for instances from the other do-
main unless it was impossible to compute those features in
that domain (i.e., Amazon Star Rating for Twitter instances),
in which case they were left empty. Twitter-specific fea-
tures are based on the work of Maynard and Greenwood
(2014) and Riloff et al. (2013). Maynard and Greenwood de-
tect sarcastic tweets by checking for the presence of learned
hashtags that correspond with sarcastic tweets, as well as
sarcasm-indicator phrases and emoticons. We construct bi-
nary features based on their work, and on Riloff et al.’s work
(2013), which determined whether or not a tweet was sarcas-
tic by checking for positive sentiment phrases contrasting
with negative situations (both of which were learned from
other sarcastic tweets). We also add a feature indicating the
presence of laughter terms. Amazon-based features are pri-
marily borrowed from Buschmeier, Cimiano, and Klinger’s
(2014) earlier work on the Amazon dataset.

General Features We model some of our general features
after those from Riloff et al. (2013), under the premise that
the underlying principle that sarcasm often associates pos-
itive expressions with negative situations holds true across
domains. Since positive sentiment phrases and negative sit-
uations learned from tweets are unlikely to generalize to
different domains, we instead use three sentiment lexicons
to build features that capture positive and negative senti-
ment rather than checking for specific learned phrases. Like-
wise, rather than bootstrapping specific negative situations

3cs.waikato.ac.nz/ml/weka/
4Individual binary features for each of the sarcasm hashtags (5

features) and laughter tokens (9 features) were also included.

Feature Description

Contains Sar-
casm Hashtag

(T) True if contains hashtag learned by May-
nard & Greenwood (excluding #sarcasm).4

Contains Sar-
castic Smiley

(T) True if instance contains a sarcastic emo-
ticon learned by Maynard & Greenwood.

Contains Sar.
Indicator

(T) True if instance contains a sarcasm indica-
tor phrase learned by Maynard & Greenwood.

Contains Pos-
itive Predicate

(T) True if instance contains a positive
predicate learned from Twitter by Riloff.

Contains Pos.
Sentiment

(T) True if instance contains a positive senti-
ment phrase learned from Twitter by Riloff.

Contains Neg.
Situation

(T) True if instance contains a negative situa-
tion phrase learned from Twitter by Riloff.

Pos. Sent.
Precedes Neg.
Situation

(T) True if contains a pos. predicate or senti-
ment phrase learned by Riloff that precedes a
learned neg. situation phrase by ≤ 5 tokens.

Contains
Laughter

(T) True if instance contains hahaha, haha,
hehehe, hehe, jajaja, jaja, lol, lmao, or rofl.4

Star Rating (A) Numeric score (1-5) corresponding to
number of stars associated with the review.

Contains Wow (A) True if the instance contains wow.
Contains Ugh (A) True if the instance contains ugh.
Contains Huh (A) True if the instance contains huh.
Contains “...” (A) True if the instance contains an ellipsis.

Table 3: Domain-Specific Features

from Twitter, we calculate the pointwise mutual information
(PMI) between the most positive or negative word in the in-
stance and the n-grams that immediately proceed it5 to create
a more general version of the feature. Other general features
developed for this work rely on syntactic characteristics, or
are bag-of-words-style features corresponding to the tokens
most strongly correlated or most common in sarcastic and
non-sarcastic instances from Twitter and Amazon training
data. All general features are outlined in Table 4.

Evaluation

The features used for each train/test scenario are shown in
the first column of Table 5. Twitter Features refers to all fea-
tures listed in Table 3 preceded by the parenthetical (T), and
Amazon Features to all features preceded by (A). General:
Other Polarity includes the positive and negative percent-
ages, average polarities, overall polarities, and largest polar-
ity gap features from Table 4. General: Subjectivity includes
the % strongly subjective positive words, % weakly subjec-
tive positive words, and their negative counterparts. We also
include two baselines: the All Sarcasm case assumes that ev-
ery instance is sarcastic, and the Random case randomly as-
signs each instance as sarcastic or non-sarcastic.

Results are reported for models trained only on Twitter,
only on Amazon, on both training sets, and on both train-
ing sets when Daumé’s (2007) EasyAdapt technique is ap-
plied, employing Twitter as the algorithm’s source domain
and Amazon as its target domain. EasyAdapt works by mod-
ifying the feature space so that it contains three mappings of
the original features: a general (source + target) version, a

5Frequencies for computing PMI were from Google Web1T.
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Feature Description

Most Polar Unigram The single most positive or negative unigram in the instance, according to AFINN.
Most Polar Score The score, ranging from -5 to +5, corresponding to the most polar unigram.
% Strongly (Weakly)
Subj. Pos. (Neg.) Words

Four features: The number of words identified as strongly (weakly) subjective positive (negative) words
in the instance according to MPQA, divided by the count of the instance’s words found in MPQA.

Avg. Polarity of the
Instance (Liu05)

The sum of the polarity scores for all words (positive words = +1, negative words = −1) in the instance
included in Liu05, divided by the total number of words in the instance included in Liu05.

Avg. Polarity of the
Instance (MPQA)

An analogue of the above, for MPQA. Strongly subjective pos. words are assigned a score of +2, weakly
subjective pos. words +1, weakly subjective neg. words -1, and strongly subjective neg. words -2.6

Avg. Polarity of the
Instance (AFINN)

The sum of the polarity scores for all words in the instance included in the AFINN sentiment lexicon,
divided by the total number of words in the instance included in that lexicon.

Overall Polarity of
the Instance

Three separate scores, corresponding to the sum of the polarity scores for all words in the Liu05, MPQA,
and AFINN lexicons, respectively (scores are calculated as described above).

% Positive (Negative)
Words

Six separate features, calculated by dividing the number of positive (or negative) words in the instance
according to Liu05, MPQA, and AFINN, respectively, by the total number of words in the instance.

N-gram PMI Scores Four features corresponding to the PMI between the most polar unigram and the 1-, 2-, 3-, and 4-grams
that immediately follow it. Let p(w,Wn) be the probability of the sequence starting with unigram w and
ending with the n-gram Wn of size n, where C(w,Wn) is the number of occurrences of w immediately
followed by Wn, and N is the count of all n-grams of length n+ 1 in the corpus. Then,

p(w,Wn) =
1

N
C(w,Wn), PMI(w,Wn) = log

p(w,Wn)

p(w, ∗n)× p(∗,Wn)
(1)

where ∗n can be any n-gram of length n and ∗ can be any unigram. In tweets, hashtags are removed prior
to calculating PMI (e.g., “#love” becomes “love”), and any tokens beginning with “@” may be matched
by any token (these are assumed to be mentions of another Twitter user by his or her username).

All-Caps Words Two features, corresponding to the raw number of all-caps words in the instance, and the number of
all-caps words divided by the total number of words in the instance.

Consecutive Chars. The highest number of consecutive repeated characters in the instance (e.g., “Sooooo” ⇒ 5).
Consecutive Punct. The highest number of consecutive punctuation characters in the instance.
Specific Character
Features

Two binary features: one is equal to 1 if the instance contains an exclamation mark, and the other is
equal to 1 if the instance contains a question mark.

Largest Score Gap The most negative score in the instance, according to the AFINN lexicon, subtracted from the most
positive score in the instance, according to the AFINN lexicon.

Bag-of-Associated-
Words (BOAW)

Up to 200 features: training instances were divided into four groups (Sarcastic × Non-Sarcastic)
× (Amazon × Twitter). For each group, the 50 unigrams most strongly correlated with that class
and domain were computed based on the PMI between the unigram and class label. Specifically:
PMI(w, l) = log p(w,l)

p(w)×p(l)
, where w is the unigram, l is a label, p(w, l) is the joint probability of

an instance containing w and being labeled l, p(w) is the probability of w being in any instance, and
p(l) is the fraction of instances labeled l. Probabilities were computed separately for Amazon and Twit-
ter; stopwords are removed prior to calculating PMI. Plus-one smoothing was used for all probabilities.

Bag-of-Common-Words
(BOCW)

Up to 200 features: training instances were divided into the same four groups as above. For each group
the 50 most common unigrams were determined. Any duplicates across groups were then removed.

Table 4: General Feature Set

source-only version, and a target-only version. More specif-
ically, assuming an input feature set X = R

F for some
F > 0, where F is the number of features in the set,
EasyAdapt transforms X to the augmented set, X̌ = R

3F .
The mappings Φs,Φt : X → X̌ for the source and target
domain data, respectively, are defined as Φs(x) = 〈x,x,0〉
and Φt(x) = 〈x,0,x〉, where 0 = 〈0, ..., 0〉 ∈ R

F is the
zero vector. Refer to Daumé (2007) for an in-depth discus-
sion of this technique.

Each model was tested on the Amazon test data (the
model trained only on Twitter was also tested on the Twitter
test set). Amazon reviews were selected as the target domain
since the Twitter dataset was much larger than the Amazon
dataset; this scenario is more consistent with the typically
stated goal of domain adaptation (a large labeled out-of-
domain source dataset and a small amount of labeled data
in the target domain), and most clearly highlights the need
for a domain-general approach.

6Part-of-speech is considered in MPQA; Amazon and Twitter
data was tagged using Stanford CoreNLP (Manning et al. 2014)

Finally, we include the best results reported by
Buschmeier, Cimiano, and Klinger (2014) on the same Ama-
zon dataset. For a more direct comparison between our work
and theirs, we also report the results from using all of our
features under the same classification conditions as theirs
(10-fold cross-validation using scikit-learn’s Logistic Re-
gression,7 tuning with an F1 objective). We refer to the latter
case as Our Results, Same Classifier as Prior Best.

Results

The results, including each of the training scenarios noted
earlier, are presented in Table 5. Precision, recall, and F1
on the positive (sarcastic) class were recorded. The high-
est F1 achieved (0.780) among all cases was from training
on the EasyAdapted Twitter and Amazon data. In compar-
ison, training only on the Amazon reviews produced an F1
of 0.713 (training and testing only on Amazon reviews with
our features but with the same classifier and cross-validation

and the Twitter POS-tagger (Owoputi et al. 2013), respectively.
7scikit-learn.org
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Test on Amazon Reviews Test on Twitter

Train on Twitter Train on Both Train on Amazon EasyAdapt Train on Twitter

P R F1 P R F1 P R F1 P R F1 P R F1

Baseline: All Sarcasm .35 1.0 .515 .35 1.0 .515 .35 1.0 .515 .35 1.0 .515 .39 1.0 .562
Baseline: Random .35 .35 .347 .35 .35 .347 .35 .35 .347 .35 .35 .347 .39 .39 .391
Twitter Features .32 .36 .337 .00 .00 .000 .00 .00 .000 .00 .00 .000 .57 .24 .341
Amazon Features .48 .26 .341 .76 .68 .715 .76 .67 .712 .76 .68 .715 .47 .14 .216
Gen.: Most Polar Word .26 .30 .275 .43 .15 .222 .68 .20 .304 .52 .33 .406 .65 .38 .479
Gen.: Most Polar Score .26 .48 .335 .00 .00 .000 .59 .46 .516 .59 .46 .516 .56 .40 .466
General: Other Polarity .26 .36 .302 .35 .40 .374 .61 .69 .645 .55 .67 .601 .51 .58 .542
General: Subjectivity .25 .02 .042 .25 .02 .042 .60 .36 .446 .59 .36 .443 .48 .15 .229
General: Syntactic .51 .26 .348 .69 .36 .470 .71 .43 .532 .65 .51 .568 .46 .17 .250
General: PMI Features .00 .00 .000 .25 .03 .061 .34 .14 .197 .42 .21 .277 .60 .02 .030
General: BOAW .00 .00 .000 .00 .00 .000 .63 .20 .298 .60 .23 .331 .00 .00 .000
General: BOCW .47 .59 .523 .58 .16 .252 .59 .60 .594 .63 .46 .530 .59 .39 .467
All General Features .26 .32 .290 .42 .29 .340 .63 .69 .659 .69 .67 .678 .55 .62 .582
All Features .25 .31 .276 .66 .54 .595 .66 .77 .713 .75 .82 .780 .55 .62 .583
Prior Best Results (Buschmeier, Cimiano, and Klinger 2014) .82 .69 .744
Our Results, Same Classifier as Prior Best .80 .71 .752

Table 5: Test Results — Full Analysis

settings as Buschmeier, Cimiano, and Klinger (2014) led
to an F1 of 0.752, outperforming prior best results on that
dataset). Training on both without EasyAdapt led to an F1
of 0.595 (or 0.715 when training only on Amazon-specific
features), and finally, training only on Twitter data led to an
F1 of 0.276. Training and testing on Twitter produced an F1
of 0.583 when training on all features.8

Discussion

When testing on Amazon reviews, the worst-performing
case was that in which the classifier was trained only on
Twitter data (it did not manage to outperform either base-
line). This underscores the inherent variations in the data
across the two domains; despite the fact that many of the
features were deliberately designed to be generalizable and
robust to domain-specific idiosyncrasies, the different trends
across domains still confused the classifier.

However, combining all of that same Twitter data with a
much smaller amount of Amazon data (3998 Twitter train-
ing instances relative to 1003 Amazon training instances)
and applying EasyAdapt to the combined dataset performed
quite well (F1=0.780). The classifier was able to take advan-
tage of a wealth of additional Twitter samples that had led
to terrible performance on their own (F1=0.276). Thus, the
high performance demonstrated when the EasyAdapt algo-
rithm is applied to the training data from the two domains
is particularly impressive. It shows that more data is indeed
better data—provided that the proper features are selected
and the classifier is properly guided in handling it.

Overall, the system cut the error rate from .256 to .220,
representing a 14% relative reduction in error over prior
best results on the Amazon dataset. Our results testing on

8Further analysis of the Twitter-specific features revealed
that contains sarcasm hashtag, contains sarcastic smiley, and con-
tains sarcasm indicator phrase all led to F1= 0.0 when used indi-
vidually; although these performed quite well in prior work, our
Twitter dataset did not contain the indicators with high enough fre-
quency to have any impact on the overall classification outcome.

Figure 1: Example from Amazon Product Reviews

Twitter are not directly comparable to others, since prior
work’s datasets could not be released; however, our re-
sults (F1=0.583) are in line with those reported previously
(Riloff et al. (2013): F1=0.51; Davidov, Tsur, and Rappoport
(2010): F1=0.545). Additionally, our Twitter data did not
contain many indicators shown to be discriminative in the
past (leading our general features to be better predictors of
sarcasm even when training/testing entirely within the do-
main), and our focus in developing features was on general
performance rather than performance on Twitter specifically.

Both datasets were somewhat noisy. Many full-length re-
views that were marked as “sarcastic” were only partially so,
and included other sentences that were not sarcastic at all.
This may have been particularly problematic when strong
polarity was present in those sentences. An example of this
is shown in Figure 1, where the highlighted portion of the re-
view indicates the sarcastic segment submitted by the anno-
tator, and awesome, the most polar word in the entire review
(circled), is outside that highlighted sentence.

Since tweets are self-labeled, users’ own varying defini-
tions of sarcasm lead to some extreme idiosyncrasies in the
kinds of tweets labeled as sarcastic. Sarcastic tweets were
also often dependent upon outside context. Some examples
include (#sarcasm tags were removed in the actual dataset):
“My daughter’s 5th grade play went over as professional,
flawless, and well rehearsed as a Trump speech. #sarcasm,”
“#MilanAlessandria Mario Balotelli scored the fifth goal in
the 5-0 win. He should play for the #Azzurri at #EURO2016.
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#sarcasm,” and “Good morning #sarcasm.”
Finally, some past research has found that it is more diffi-

cult to discriminate between sarcastic and non-sarcastic texts
when the non-sarcastic texts contain sentiment (González-
Ibáñez, Muresan, and Wacholder 2011; Ghosh, Guo,
and Muresan 2015). Since our non-sarcastic tweets are
emotionally-charged, our classifier may have exhibited
lower performance than it would have with only neutral non-
sarcastic tweets. Since distinguishing between literal and
sarcastic sentiment is useful for real-world applications of
sarcasm detection, we consider the presence of sentiment in
our dataset to be a worthwhile challenge.

Regarding the general features developed for this work,
the polarity- and subjectivity-based features performed well,
while performance using only PMI features was lower. PMI
scores in particular may have been negatively impacted by
common Twitter characteristics, such as the trend to join
keywords together in hashtags, and the use of acronyms that
are unconventional in other domains. These issues could be
addressed to some extent in the future via word segmenta-
tion tools, spell-checkers, and acronym expansion.

Conclusions

This work develops a set of domain-independent features
and demonstrates their usefulness for general sarcasm de-
tection. Moreover, it shows that by applying a domain adap-
tation step to the extracted features, even a surplus of “bad”
training data can be used to improve the performance of the
classifier on target domain data, reducing error by 14% rela-
tive to prior work. The Twitter corpus described in this paper
is publicly available for research purposes,2 and represents a
substantial contribution to multiple NLP sub-communities.
This shared corpus of tweets annotated for sarcasm will has-
ten the advancement of further research. In the future, we
plan to extend our approach to detect sarcasm in a com-
pletely novel domain, literature, eventually integrating the
work into an application to support reading comprehension.
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