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Abstract

Robustness is one of the most significant issues when de-
signing evolutionary algorithms. These algorithms should be
able to resist against fluctuating responses through the search
process. In this paper, we aim at improving Social Fabric-
based Cultural Algorithms in both belief space and popula-
tion components regarding robustness. At first, we propose
an irregular neighborhood restructuring mechanism to make
the communications between individuals more flexible and
let them decide on their exploration or exploitation tendencies
through the search process. This method improves the robust-
ness of the search behavior in a self-organized manner. Then,
inspired from Inferential Statistics, we utilize the concept of
Confidence Interval to propose a new normative knowledge
source which is more stable against sudden changes in the
values of incoming solutions. The performance of both ap-
proaches is measured based on the IEEE-CEC2015 testbed.
Compared to the best-known results of other algorithms, our
proposed methods showed higher performance on a diverse
landscape of numerical optimization problems.

Introduction

Cultural Algorithms (CA) were introduced by Reynolds as
a type of population-based problem-solving approaches. CA
combines biological evolution with socio-cognitive concepts
to yield an optimization approach based on a dual inheri-
tance theory (Reynolds 1994) (Kennedy et al. 2001). A large
number of CA variants have been proposed in the litera-
ture. They address a vast range of problems such as real-
valued function optimization, discrete problems, dynamic
environments and multi-objective optimization (Raeesi N.
and Kobti 2014), (Reynolds and Ali 2008a), (Che, Ali, and
Reynolds 2010).

In CAs, evolution occurs at two levels: Macro-
evolutionary level or belief space and micro-evolutionary
level or population space. At the population level, any
population-based algorithm such as Genetic Algorithm
(GA), Evolutionary Programming (EP), Paricle Swarm Op-
timization (PSO) could be deployed. The belief space ex-
tracts a generalized knowledge from individuals experience
to bias the search direction at the population level. This pro-
cess is accomplished through deploying any of five types
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of knowledge sources (KSs) in the belief space. Each indi-
vidual in the population space is controlled by a knowledge
source.

Social Fabric is the notion of an infrastructure in which
knowledge sources in the belief space can access the social
networks in which individuals interact (Reynolds and Ali
2008b). Knowledge sources are allowed to propagate their
influence on the individuals through a hierarchy of layered
networks. Each individual might exist in several networks.
As a result, some individuals can play the role of mediator
between different networks.

Individuals could be connected in a variety of different
topologies. These topologies determine the extent to which
the influence of a knowledge source could be propagated
through the network (Ali et al. 2011). Dense topologies
help the individuals to follow (exploit) elite members effi-
ciently while sparse topologies are suitable for exploratory
communities (Mendes 2004). To make the propagation of
knowledge between individuals more efficient, some neigh-
borhood restructuring schemes are considered by the current
extension of CA. Current topologies of networks may trans-
form between different structures to increase/decrease their
connectivity rate in the case of stagnation (Ali et al. 2016).

PSO could be considered as another population-based al-
gorithm which relies on social structures. PSO simulates the
social behavior observed in natural systems such as birds
flocking, herds and schools (Kennedy 2011). PSO finds the
best solution by adjusting the moving vector of each individ-
ual (particle) according to its best history and its neighbor-
hood best positions of particles in the entire swarm at each
iteration. The neighborhood is determined by the topology
of the swarm. For example, dense topologies lead to more
interactions and faster convergence. Here, we utilize PSO
algorithm at the population level of the CA. As both of the
social fabric and PSO approaches use the same social struc-
ture for agents communications, we hypothesize that their
combination would enhance the social behavior which can
lead to improved overall search performance.

In this paper, we aim at improving the robustness of CAs
at the both levels of belief space and population space. In
the belief space, the standard implementation of Normative
ranges will be replaced with the confidence interval concept.
This approach makes the normative knowledge source ro-
bust against sudden changes in input data. In the popula-
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tion space, the standard tactical neighborhood restructuring
is enhanced to a strategy called irregular neighborhood re-
structuring which occurs at the particles level. It aims at im-
proving robustness regarding self-organization aspect.

The rest of the paper is organized as follows: After the
introduction, some research works on socially-motivated
problem-solving methods are presented. Then, the original
idea of social fabric and the multi-layer influence function
are discussed. In the next section, we propose two new ap-
proaches for robustness improvement in both population and
belief components. Finally, the results of performance eval-
uations are discussed in the section.

Related Works

Many variants of CAs have been proposed in a vast range
of different applications such as single and multi-objective
optimization, dynamic problems, social interactions simula-
tion. Here, we are interested in studying Social Fabric phe-
nomena as a modern variant of CAs which aims at function
optimization.

(Ali et al. 2011) replaced the traditional idea of the
roulette wheel with the vector voting model to determine
the controller knowledge source of individuals in each it-
eration. They investigated the effect of different homoge-
neous topologies in a social fabric. They measured this ap-
proach on both static and dynamic problems. Their results
confirm that there is no best topology which works well for
all problems. So, they concluded that heterogeneous topolo-
gies should be considered to make the algorithm scalable for
complex problems.

(Ali, Salhieh, and Reynolds 2012) divided the whole pop-
ulation into multiple sub-populations (tribes) to construct
a two-layer network between individuals. As a diversity-
preserving measure, they introduced Tactical Neighbor-
hood Restructuring to avoid stagnation in non-linear multi-
modal problems. This strategy facilitate the dissemination of
knowledge through the network to help the heterogeneous
tribes to prevent local optima.

(Chen, Li, and Cao 2006) introduced Tribe-PSO algo-
rithm inspired by Hierarchical Fair Competition. They di-
vided the population into some tribes to draw a two-layer
model which splits the individuals into two layers: elite and
rudimentary. The process of convergence is divided into
three phases to ensure a reasonable level of diversity. They
evaluated their algorithm on De Jong’s test functions. As an
application, they used their approach for molecular docking
purpose for a test set of 100 protein-ligand complexes.

(De Oca et al. 2009) investigates different types of hetero-
geneity in PSO algorithm in four categories: neighborhood,
update rule, model of influence and parameters. Here, het-
erogentiy means particles might have follow different rules
or have different initial parameters or neighborhood sizes.
It helps PSO variants to hold enough diversity and prevent
early convergence.

(Ali et al. 2016) gives a detailed description of Social Fab-
ric based Cultural Algorithms with neighborhood restructur-
ing. The idea was to investigate the effect of changing neigh-
borhood of sub-populations (tribes) and how it influences

the propagation of information through the fabric (network).
Communication between tribes happen through the elites of
each tribe. In fact, they are mediators between independent
tribes.

Figure 1: Cultural Algorithms (Kobti and others 2013)

Background

Cultural Algorithms

The figure 1 shows the basic model of Cultural Algorithms
comprised of three components: Population Space, Belief
Space and a communication protocol between them. At the
population level, any population-based algorithm could be
utilized such as GA, EP, PSO. The belief space works as a
repository for different types of knowledge acquired from a
population. This extracted knowledge is utilized to bias the
search process towards the most promising regions of a so-
lution space. While it tries to hold diversity, it prevents the
individuals to become divergent. Therefore, it motivates the
search behavior in both aspects of exploration and exploita-
tion. Both of the spaces communicate together via communi-
cation protocols. It happens through two functions: accept()
and influence(). The best performing individuals are se-
lected and sent to the belief space by accept() function.
Their experience of the chosen individuals will be used to
update the belief space. Then, the belief space guides the
search behavior through influence() function.

Belief Space

Five types of knowledge sources have been identified in the
belief space: the situational KS, the normative KS, the topo-
graphic KS, the domain KS and the temporal KS (King et
al. 2008). Each knowledge source is responsible for keeping
a different type of knowledge about the search process. Do-
main and Temporal KSs are suitable for dynamic problems.
In this paper, static high-dimensional functions are consid-
ered. So, we drop Domain and Temporal KSs (Ali et al.
2016).

• Situational Knowledge: It provides a set of exemplary
cases to lead the individuals towards the exemplars. So, it
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is responsible for exploiting the search space. The Xk
i (t)

refers to the ith individual of the kth tribe at time t.

E(t+ 1) =

{
Xk

tELite(t), f(Xk
tELite(t)) > f(E(t))

E(t), otherwise
(1)

• Normative Knowledge: It is a set of promising ranges for
parameters values which guide them during the search
process to jump into the good range. It is categorized as an
exploratory KS. Here, FRj = [lbtj , ub

t
j ] record the range

for the jth variable and λ = ubj − lbj. αi is a unifrom
random variable in [0, 1]. x and x′ denote the parent and
the child solutions respectively.

x′
ijk =

⎧⎪⎪⎨
⎪⎪⎩

xk
tElite,j(t) + f(Xk

i (t))

× λ∑N
i=1 f(X

k
i (t))

, xijk(t) ∈ FRj

lbj(t) + αi · (λ), xijk(t) /∈ FRj

(2)

• Topographic Knowledge: It divides the whole search
landscape into cells and keeps tracks of the best individu-
als in each cell. It aims at digging into promising regions
to divide them into smaller subregions. It can be catego-
rized as an exploratory KS because it biases the search
process towards promising parts of the search space. Cr is
the rth Cell. stater(t) ∈ {H,L,NE} denotes the difer-
ent states of a topographic cell (H means the cell performs
better than average off all cells, while L means it performs
worse and NE means, there is no individual in the cell).

x′
ijk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk
tElite,j(t) +

αi · (ur(t)− lr(t))

2
,

(xijk /∈ Cr(t)) ∧ (stater(t) �= L)

xk
tElite,j(t) +

αi ·
√
f(Xk

i (t))

D
,

(xijk(t) ∈ Cr(t)) ∧ (stater(t) = H)
(3)

Social Fabric

Social Fabric is a dynamic grid of information flow in which
the individuals’ interactions happen. The fabrics (networks)
are created by the connectivity of each agent with other
agents in a dynamic structure. The topology of the net-
work controls the rate and type of interactions. Like a multi-
population model, there are multiple independent subpop-
ulations (tribes) which are networked together (Ali et al.
2011).

In the Social Fabric idea, the influence of the belief space
is propagated through the population using a multi-layered
network of connections. There are Z tribes comprised of
H individuals which form two layers: rudimentary and ad-
vanced. The members of each tribe are connected in a reg-
ular topology independent from other tribes. At this level,
they form the rudimentary layer. From each tribe, the best
performing individuals (elites) are connected. These con-
nections create the advanced layer which is responsible for
mediating the flow of information between different tribes.
Figures 2 and 3 describe the network model.

Figure 2: Network structure of Social Fabric and Tribe-PSO

Evolution Phases The whole evolution process is split
into three phases: seclusion, rapport, and cohesive. In the
first stage, each tribe evolves as an independent basic CA
model with no communication between tribes. In the second
step, the advanced layer is formed by connecting elites of
each tribe. Then, tribes start to exchange information during
their evolution process. Ultimately, in the third step, all the
tribes are merged into one CA model. Then the search pro-
cess continues until meeting some stopping criteria (Chen,
Li, and Cao 2006) (Ali et al. 2016).

Figure 3: Two-layer taxonomy of Tribal model (Ali et al.
2016)

Strategic Neighborhood Restructuring In Social Fabric
literature, Strategic Restructuring is a technique to help indi-
viduals to get rid of stagnation where there are copious local
optima in the search landscape. Each tribe maintains a par-
ticular topology until it gets stagnated in a local optimum for
a certain number of iterations. Then, the topology is reini-
tialized to motivate the individuals for a new search. Here,
four types of topologies are utilized: Ring, Mesh, Hybrid-
Tree, and Global (Ali, Salhieh, and Reynolds 2012) (Ali et
al. 2016).

Social fabric based influence function In this model, the
individuals might decide to change their controller KS using
the majority of KSs which they receive from their neighbor-
hood. Here, Majority Voting is used to find the controller KS
of an individual (Che, Ali, and Reynolds 2010). In the case
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of a tie, some tie-breaking rules are deployed such as MFU
(most frequently used), LFU (least frequently used), Di-
rect (the direct influencing KS), Random (a random choice),
Last-used (the KS which controlled the KS in the last iter-
ation) (Ali, Salhieh, and Reynolds 2012). In the equation 4
the sum denotes the counts of KSs in ith node neighborhood
and ψi is its contoller KS. τi is the net affecting KS for the
next iteration (Ali et al. 2016) (Sterling 2004).

τi =
∑

j∈Nbr(i)

mij + ψi (4)

Particle Swarm Optimization

In basic PSO, a group of particles (like a flock) is moving
around the search space. Each particle is comprised of a
position vector and velocity vector (Bratton and Kennedy
2007). Particles adjust their velocities and positions as fol-
lows:

vid
(t+1) = w ·vid

(t)+c1r1(pid−xid
(t))+c2r2(pgd−xid

(t)) (5)

xid
(t+1) = xid

(t) + vid
(t+1) (6)

Where vid and xid are the velocity and position of ith par-
ticle. c1 and c2 are two positive constants. r1 and r2 are
randomly generated numbers in [0,1] range. w is the inertia
weight of which restricts the velocity of a particle. pid is the
best experience of the particle and pgd is the best solution in
its neighborhood.

Tribe-PSO

Similar to Social Fabric model, the whole population is di-
vided into some tribes. The tribes form a two-layer structure
of networks, and the whole process consists of three phases.
In fact, the idea of Social Fabric originates from Tribe-PSO.
But the network structure is utilized to propagate the influ-
ence of knowledge sources in the belief space (Chen, Li, and
Cao 2006). In this paper, we use the social fabric for both
PSO interactions and knowledge propagation of the belief
space.

Improving Robustness in Social Fabric

Inspired by natural systems, many evolutionary algorithms
have been proposed to solve various optimization prob-
lems. These algorithms are expected to exhibit a consis-
tent problem-solving behavior against different optimiza-
tion landscapes. Unfortunately, as stated by No Free Lunch
(NFL) theorem (Wolpert and Macready 1997), there is no al-
gorithm better than others over all cost functions. It means,
there is no guarantee for an algorithm to work well for all
functions if it shows promising results for a particular cat-
egory of them. Therefore, robustness has been one of the
most desired features which motivates researchers to invent
new methods which are less dependent on the kind of a prob-
lem than others. Here, robustness means we need to develop
search strategies which are capable of adapting themselves
across different landscapes which might vary regarding as-
pects such as multimodality and the number of local optima.

In this section, we are going to improve the robustness of
CAs in both population space and belief space components.

In the population space, a new neighborhood restructuring
strategy will be proposed which aims at microscopic inspec-
tions for stagnation regarding individuals’ local experience.
Then, in the belief space, a new model of Normative KS
will be proposed, which defines the normative ranges based
on Confidence Interval inspired from Inferential Statistics. It
stops the normative KS to be affected by sudden fluctuations
in the input data.

Irregular Neighborhood Restructuring

As proposed by (Ali et al. 2016), when the agents of a tribe
get stuck in a local optimum, then they choose a topology
with fewer connections such as ring topology to motivate
exploration. When the agents lack information, the topol-
ogy is changed to a denser topology like Mesh, and ulti-
mately Global. Whenever a tribe does not make progress
for Mthresh iterations, then the algorithm decides on up-
grading/downgrading the current topology to other topolo-
gies. Downgrading happens by moving in the direction of
gbest→tree→mesh→lbest and Upgrading occurs in the di-
rection of lbest→mesh→tree→gbest. In our proposed ap-
proach, the restructuring process occurs at a microscopic
level. There is no daemon process for inspecting stagnation.
Every agent checks its performance for stagnation. If it gets
stuck in a local optimum, it decides to upgrade/downgrade
its neighborhood. The proposed strategy is described in the
algorithm 1. If the particle is the best in its neighborhood,
it starts to decrease the number of connections to motivate
exploration. However, if it is not the best, it needs to in-
crease the neighborhood size to facilitate exploitation. Here,
the topology is dynamic and irregular and the neighborhood
size is different for each agent. So, it could be considered
as a heterogeneous variant of CAs (De Oca et al. 2009). The
ultimate topology of the fabric is formed through local inter-
actions of the agents. In this way, it improves the robustness
of CAs regarding self-organization concept (Kennedy et al.
2001).

if fitness(xi) > bestSoFari then
if stagnationCounter ≥ T iggerThreshold then

if xi = xbest then
index = selected randomly from xi’s

neighborhood
remove xindex from xi’s neighborhood

else
index = selected from
{S − xi

′sneighborhood}
add xindex to xi’s neighborhood

end
stagnationCounter = 0

else
stagnationCounter =
stagnationCounter + 1

end

else
stagnationCounter = 0

end

Algorithm 1: Irregular Neighborhood Restructuring
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Confidence based Normative Knowledge Source

The current version of Normative KS is quite vulnerable to
temporary fluctuations in the pattern of input data. The size
of Normative ranges is subject to change dramatically with
any temporal fluctuations. In this section, we are going to
replace the ranges in the standard Normative KS with Confi-
dence Interval from Inferential Statistics. Confidence-based
changes are more robust against instantaneous changes in
the input pattern. The update process of standard normative
ranges is as follows:

lbj(t+1) =

{
xi,j(t), xi,j(t) ≤ lbj(t) or f(Xi) < PLj(t)

lbj , otherwise
(7)

ubj(t+1) =

{
xi,j(t), xi,j(t) ≥ ubj(t) or f(Xi) < PUj(t)

ubj , otherwise
(8)

The following is the definition of normative ranges based on
Confidence Interval concept (Proakis 1985).

lbj = x̄j − q · σj√
n

(9)

ubj = x̄j + q · σj√
n

(10)

where x̄ is mean , σ is standard deviation and q is confidence
coefficient

Exprimental Results and Analysis

In this section, the performance of our proposed approaches,
on the set of real-world functions specified in the IEEE-
CEC2015 expensive optimization test problems (Chen et
al. 2014), is compared with the standard social fabric CA.
The algorithms have been implemented in SCALA and have
been run with a 2.80 GHz Intel(R) Core(TM) i7-2600S, 8GB
RAM, and Linux Ubuntu. The detailed description of the
problems is specified in (Chen et al. 2014).

We set the general parameters the same as described in
the standard algorithm (Ali et al. 2016). To implement the ir-
regular neighborhood restructuring strategy, we replaced the
EP module in the population component of the standard al-
gorithm with PSO because both of the use social networks to
establish the relationships between agents. In this way, both
PSO and Social Fabric algorithms utilize the same social
structure for communication purpose. For the confidence-
based Normative KS, we set the confidence coefficient (q)
as 1.96.

We have tested our proposed approaches and the standard
social fabric algorithm on the IEEE-CEC2015 which is a set
of 15 multi-modal and hybrid functions in the form of:

Y = f(x1, x2, x3, · · · , xD) (11)

where D is the number of dimensions. Here, we aim at min-
imizing the results of the functions.

Table 1 shows the evaluation results of the three ap-
proaches regarding best, mean, and standard deviation of
obtained values. The best obtained results are highlighted

in bold. For almost all functions, the proposed approaches
work better than the standard version. Based on the reported
results, the new restructuring approach generates better
mean values in comparison with other approaches. However,
regarding the best-generated results, the confidence-based
KS outperforms others. The results demonstrate that the pro-
posed ideas enhance the robustness against multi-modality,
copious local optima, and etc. For example, the new neigh-
borhood restructuring scheme let the agents develop more
connections in promising parts of search space. Here, SFCA
stands for the standard social fabric algorithm, ISFCA for
the irregular neighborhood restructuring approach and CS-
FCA for the confidence-based KS approach.

Table 1: Evaluation Results

SFCA ISFCA CSFCA
Best 1.058170E+08 5.669974E+02 2.070701E+06

T1 Mean 2.339E+09 1.346854E+08 4.245192E+09
Std Dev 2.398097E+09 2.228912E+08 6.815361E+09

Best 2.249944E+04 1.939339E+04 1.495766E+04
T2 Mean 4.230578E+07 2.772533E+04 1.761796E+09

Std Dev 4.249629E+07 4.048886E+03 3.498278E+09
Best 3.077165E+02 3.046618E+02 3.062800E+02

T3 Mean 3.099578E+02 3.052385E+02 3.093400E+02
Std Dev 3.298927E+00 1.151263E+00 2.950910E+00

Best 1.094153E+03 1.301576E+03 6.216136E+02
T4 Mean 1.860643E+03 1.340736E+03 1.446152E+03

Std Dev 6.769737E+02 1.617225E+02 8.923725E+02
Best 5.013705E+02 5.013820E+02 5.006284E+02

T5 Mean 5.016912E+02 5.016584E+02 5.017735E+02
Std Dev 3.171915E-01 2.133144E-01 1.330542E+00

Best 6.006698E+02 6.002589E+02 6.004211E+02
T6 Mean 6.032118E+02 6.004796E+02 6.027281E+02

Std Dev 2.292929E+00 4.849413E-01 2.708244E+00
Best 7.201798E+02 7.004453E+02 7.020742E+02

T7 Mean 7.283019E+02 7.016077E+02 7.314111E+02
Std Dev 7.886448E+00 3.934865E+00 3.819154E+01

Best 9.355662E+03 8.067369E+02 8.058631E+02
T8 Mean 6.480461E+04 8.112441E+02 6.243906E+05

Std Dev 6.170096E+04 2.271688E+01 1.210907E+06
Best 9.035692E+02 9.036294E+02 9.031234E+02

T9 Mean 9.036890E+02 9.038236E+02 9.036266E+02
Std Dev 1.100421E-01 1.329342E-01 4.670059E-01

Best 1.238238E+04 8.895506E+03 2.663896E+03
T10 Mean 1.469964E+06 4.313633E+04 2.703405E+06

Std Dev 1.495164E+06 1.556274E+05 4.381762E+06
Best 1.105861E+03 1.102701E+03 1.106682E+03

T11 Mean 1.115709E+03 1.104896E+03 1.133025E+03
Std Dev 1.497095E+01 1.482573E+00 4.103627E+01

Best 1.419774E+03 1.242750E+03 1.371989E+03
T12 Mean 1.834286E+03 1.251704E+03 5.981110E+03

Std Dev 4.350728E+02 4.412769E+01 8.907798E+03
Best 1.751179E+03 1.615215E+03 1.632836E+03

T13 Mean 1.823389E+03 1.621276E+03 2.310349E+03
Std Dev 7.164489E+01 1.206705E+01 8.451440E+02

Best 1.600443E+03 1.601356E+03 1.592262E+03
T14 Mean 1.613461E+03 1.602010E+03 1.604816E+03

Std Dev 1.593092E+01 2.175189E+00 1.451758E+01
Best 1.906632E+03 1.511100E+03 1.869629E+03

T15 Mean 2.005936E+03 1.571175E+03 1.950623E+03
Std Dev 9.865090E+01 1.070965E+02 8.655941E+01
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Conclusion

In this paper, two novel strategies were introduced to im-
prove the robustness of CAs in both population and belief
spaces. In the first strategy, a new neighborhood restructur-
ing strategy is employed which aims at individuals with ir-
regular and heterogeneous neighborhood structures. There is
no centralized coordinator to control the topology of a pop-
ulation because the individuals are responsible for inspect-
ing and modifying their neighborhood in a self-organized
manner. Increasing the level of self-organization and auton-
omy is a key approach to improving robustness in a complex
system. In the second strategy, the standard implementation
of normative ranges in the belief space was replaced by the
confidence intervals inspired from Inferential Statistics. The
new knowledge source shows a more robust search behavior
to fluctuations in the input data. Now, the size of normative
ranges does not change dramatically with any temporal fluc-
tuations.

The performance of both proposed approaches is assessed
through a test-suite of 15 multi-modal and hybrid functions
from IEEE-CEC2015. Both methods are compared to the
original version of the social fabric based CA (Ali et al.
2016). The results show improvement in almost all of the
functions. In some of them, the results are quite promising.
Future work might be investigating the improved robustness
of proposed approaches to dynamic problems or even real-
world problems such as dynamic problems, data classifica-
tion and social network analysis.
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