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Abstract

Customer surveys have historically been one of the
main tools for direct assessment of customer satisfac-
tion with the support experience. Being considered a
true measure of the support quality, survey results are
frequently used to prioritize resources of the support de-
partments. Unfortunately, a closer look at the feedback
process reveals biases in customer feedback data that
lead to overly positive and incorrect conclusions about
customer satisfaction. These biases are, in part, the re-
sult of data sparsity, as well as of the customer reluc-
tance to give negative feedback when such is due. In this
work, we describe a predictive classification-based sys-
tem designed to provide a realistic view of customer ex-
perience. We derive a satisfaction score that is demon-
strated to be a potentially more objective measure of
customer satisfaction. We apply our approach to the task
of characterizing realistic customer support experience
on a test dataset from one of the leading cloud services
and show that the signal from sparse customer feedback
can be noticeably enhanced by employing a straightfor-
ward classification model.

Introduction

Most customer-centric organizations rely on customer sur-
veys to gauge the level of customer satisfaction with their
products and services. Oftentimes, the format of customer
feedback requires customers to provide a numerical or cat-
egorical satisfaction score, which is then used to stack rank
the quality of the support for different products and teams
within the organization. All things being equal, the customer
feedback statistics can then be used to allocate support re-
sources in a way that would have maximal positive impact
on the customer experience. Unfortunately, direct customer
feedback is characterized by several biases that, if not prop-
erly accounted for, may cause an incorrect interpretation of
customer satisfaction, as well as may result in a suboptimal
prioritization of customer support efforts. The most common
issues include:

1. Sparse feedback − While fielding thousands of customer
surveys may seem like a sufficiently big number to under-
stand the overall customer satisfaction with the organiza-
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tion, dissecting the feedback along more granular and rel-
evant dimensions will quickly show that many categories
of interest are misrepresented in the data. For example,
major cloud services offer hundreds of products across
computing, networking, storage, analytic, and other do-
mains (AWS ; Azure ). Here, the customer support of each
offering may cover hundreds of problem areas, and may
track hundreds of potential root causes for the customer
issues within each product, with multiple departments
contributing to the overall quality of customer experience.
Usually, only a fraction of all customer support requests
are surveyed by the customers, with an even smaller frac-
tion expressing dissatisfaction with their support experi-
ence. Importantly, when the overall data is sparse, the lack
of negative feedback is not a reliable indicator of a posi-
tive experience.

2. Survival bias − Surveys are commonly solicited to exist-
ing customers and fail to capture the sentiment of the cus-
tomers who abandoned the service. Similarly, customers
who are extremely dissatisfied with the service may refuse
to provide the feedback altogether, and in such way, bias
the feedback data, which can result in overly positive con-
clusions.

3. The “Mum” effect − Psychological and organizational
research suggests that customers are hesitant to provide
negative feedback compared to their willingness to pro-
vide positive feedback (Tesser and Rosen 1975). The ef-
fect may also manifest itself when the customer perceives
that a negative feedback can impact the support agent di-
rectly and opts to provide a highly positive feedback even
if the support quality was below the standards of the orga-
nization. Not accounting for the “Mum” effect can result
in the failure to capture and address customer satisfaction
issues at their onset, which may lead to long-term cus-
tomer dissatisfaction and loss of trust.

Maintaining high customer trust is a strategic commit-
ment for any organization, and as such, it is vital to under-
stand the realistic levels of customer satisfaction. To address
this problem, there has been significant interest in alternative
customer satisfaction scores derived using machine learning
algorithms (Luo et al. 2015; Kessler et al. 2015). In addition,
predictive computational techniques have been successfully
used to compensate for the sparseness of the surveys by aug-
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Figure 1: Diagram of our approach corresponding to a tradi-
tional classification pipeline.

menting the survey data with out-of-survey customer infor-
mation (Blumenstock, Cadamuro, and On 2015). The com-
mon goal for such approaches is to provide an unbiased es-
timate of customer satisfaction and extrapolate the estimates
to the categories of interest. In this paper, we present a cus-
tomer request scoring system that is specifically designed to
address the limitations of the subjective survey feedbacks.
We follow a very specific labeling procedure which allows
us to build an accurate classifier arguably providing a more
objective predictor of customer satisfaction. We perform ex-
periments of our system on a sample dataset of support re-
quests from a major cloud service and show that our compu-
tational customer satisfaction score provides very valuable
and revealing insights about the customer experience.

Methodology

Our system is built around a classification model and con-
sists of the following stages: 1) feature selection; 2) using
customer survey feedbacks to label training data; 3) further
feature processing and dimensionality reduction; 4) model
training; and 5) prediction. Figure 1 provides the high-level
diagram of our approach.

Feature selection

Feature engineering and selection is a crucial step in any
predictive modeling process. The data that accompanies any
communication between the customer and the support rep-
resentative may include both structured and unstructured in-
formation. In general, this data describes the actual customer
problem (e.g., type of the customer issue, symptoms, sever-
ity), data characterizing the quality of the support service
for a given issue (e.g., responsiveness, timeliness, complete-
ness of the solution), and the details of the communica-
tion between the customer and the company representative

(e.g., communication history, customer sentiment). When
the number of negative customer feedbacks is small, the
challenge is to select support request features that could
be discriminative of an unsatisfactory support experience.
While the feature selection step will be very specific to each
particular application, any customer support data usually
contains variables that have the following characteristics:
1) High correlation between variables, where, for example,
time to the initial contact from the support team correlates
with the overall time it took to address the customer issue;
2) extreme skeweness in the variables, in particular in time-
related variables that are characterized be very long tails. We
describe several approaches we used to address these chal-
lenges later in this paper.

Algorithm

We derive a computational customer satisfaction score by
casting the support quality assessment problem as a binary
classification task. Without the loss of generality, we assume
that the customers score their support experience by provid-
ing a real-valued score s between 0 and 1, where a score of
0 indicates the extreme case of a negative feedback, and 1
indicates the highest positive experience score. We use the
scores in the lower range s ≤ sb to indicate negative cus-
tomer experience, and top scores s ≥ st to indicate a posi-
tive experience. We argue that in the presence of the “mum”
effect in the data it is important for sb to be much larger than
1− st. That is, one needs to treat a wide range of low scores
as the indicators of a negative feedback, while treating only
the highest scores as indicators of a positive feedback. We
then balance the positive and negative sets using 1:1 ra-
tio. Notice, that even within the same organization, differ-
ent offers and product may have different quality standards
or may be characterized by unique variables, and a such,
each product may require a dedicated predictive model. Im-
portantly, despite the high volume of support, the extremely
low numbers of customer-expressed negative feedback and
high granularity of services and products result in very small
datasets. For example, some products in our dataset contain
as little as 50 positive and 50 negative samples after balanc-
ing.

In general, one needs to select the threshold values sb
and st such that the final model is the most accurate. It
is also possible to use the surveys with the scores sb <
s < st to improve the performance of a model within
a semi-supervised setting. Unlabeled data employed by a
semi-supervised classification approach has been shown to
have positive impact on classification performance when the
size of the labeled dataset is very small (Filipovych and Da-
vatzikos 2011), which is also the case in our application. In
our particular case we restrict ourselves to a traditional su-
pervised classification methodology.

To address the skewness in the values, numerical variables
are transformed into discretized ranges using class attribute
contingency coefficient (CACC) algorithm (Tsai, Lee, and
Yang 2008). CACC is a suboptimal discretization algorithm
that, in a univariate manner, generates feature binning rules
using a criterion measuring the quality of each bin in rela-
tionship to the target label. We found this discretization step
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particularly important for our data as most variables have ex-
tremely skewed distributions. Our experiments suggest that
this discretization step yields ∼20% incremental improve-
ment for our system. After the discretization, each variable
is represented as a one-hot vector resulting in binary-vector
representation of each support request. Some of our offline
experiments showed that performing a dimensionality re-
duction step before training the classifier is beneficial for
the overall accuracy of the system. We use latent features ex-
tracted using Restricted Boltzmann Machines (RBN) (Tiele-
man 2008) as the input to the classifier, reducing the num-
ber of dimensions to ∼100. Our offline analysis suggested
that having less than approximately 100 latent dimensions
usually resulted in a lower performance, while having much
more than 100 did not provide any noticeable improvements.
A logistic regression model is then trained on the data in the
reduced-dimensionality space.

Prediction. When in the prediction stage, higher predicted
values indicate higher chances that the corresponding sup-
port request is of an unsatisfactory quality. Support requests
with the computational score above 0.8 are deemed to be
unsatisfactory. Predictions can be used in two specific sce-
narios: 1) All past resolved requests are scored to get the
historical view of the support quality; 2) Support satisfaction
scores for open requests are used to rank requests according
to their propensity to become of unsatisfactory resolution
quality. While the former allows to gain a realistic view of
the support quality, the latter can be used to prioritize some
requests over the others.

Results

Data

For the purpose of the experiments described in this paper,
we obtained a test dataset of support requests from four
cloud products offered by Microsoft Azure. The number
of requests falling in the lower band of customer feedback
scores ranged from ∼50 to ∼200, depending on the prod-
uct. We also downsampled the requests from the higher cus-
tomer score band to be approximately ×10 times the number
of the samples in the lower customer feedback score band.
Notice, that for the majority of our experiments we further
downsampled the set of highest scored request to achieve 1:1
sample ratio.

We used a combination of univariate analysis, expert
feedback, and a wrapper feature selection approach (Lin,
Phuong, and Altman 2005) during the feature selection
stage. As the result, we discovered ∼10 features of interest
that had the most potential to explain the relationship be-
tween the support delivery process and customer expressed
negative experience. All our features were either numerical
or categorical and are usually highly skewed. While we do
not provide the details of the features used in our system,
our approach is general and applicable to any technical sup-
port setting provided that the variables associated with each
support request are sufficiently descriptive.

Table 1: Model accuracy in offline tests (10-fold cross-
validation on balanced sets). The values represent min, max
and mean of accuracies for the models created for the four
cloud products in our dataset.

model type min accuracy max accuracy mean accuracy

feature discretization - No
dimensionality reduction - No

48.80% 65.30% 59.00%

feature discretization - No
dimensionality reduction - Yes

50.70% 52.10% 51.20%

feature discretization - Yes
dimensionality reduction - No

75.90% 89.70% 82.50%

feature discretization - Yes
dimensionality reduction - Yes

79.90% 87.30% 84.00%

Analysis of the bias in customer feedback

When performing a qualitative analysis of the feedback
score provided in customer surveys and matching them to
the actual support request details, we discovered that some
of the biases were prominent in the data. Specifically, many
support categories of interest had little to no customer feed-
back. Additionally, as we mentioned earlier, high feedback
score did not consistently indicate that the support request
was addressed timely and appropriately.

Evaluating the customer feedback classifier

The results of the evaluation showing the importance of the
various components of our algorithm for the four models
created on for the products in our dataset are presented in
Table 1. The evaluation was performed using 10-fold cross-
validation on balanced sets. The positive feedbacks were
subsampled to achieve 1:1 positive-to-negative sample ra-
tio. We consistently observed that feature discretization had
a significant positive impact on the accuracy. It is worth
mentioning that we explored different feature normalization
strategies and feature discretization using CACC usually of-
fered the best improvements in our offline tests.

On the other hand, the improvements from the dimension-
ality reduction step were not consistent. Although we used
the RBN-based dimensionality reduction in the experiments
described later in the paper, we will continue to re-evaluate
its importance in the next iterations of the approach.

The 10-fold cross-validation on balanced sets presented
above used training and test data that covered the same time
period. It is of a higher practical importance to understand
how a model trained on the data from the past period per-
forms on the data from future periods. To this end, we per-
formed experiments on out-of-time data for models trained
both on balanced and unbalanced sets. For this experiment,
we used customer feedback from a three months’ period as
the training data, and used the data from the month right af-
ter the training data period for testing. For one of the models
we subsampled requests with positive feedbacks to achieve
1:1 positive-to-negative sample ratio during training. For our
second model, we used all available support requests with-
out subsampling (1:10 ratio in our dataset). While the mod-
els where trained on effectively different datasets, they were
evaluated on the same unbalanced set. Table 2 provides the
results of the out-of-time evaluation. The model created us-
ing the balanced set achieved much higher performance as
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Figure 2: History of negative survey-based customer feed-
backs in the sample dataset

measured using area under the ROC curve (AUC) (77.4% vs
60.0%). At the first glance, such a drastic difference in per-
formance may seem somewhat surprising given that the ratio
of positive to negative samples in the original set was ∼1:10,
which is frequently considered as a sufficiently good sample
balance for training. In many practical cases, however, the
data is very sparse and a more aggressive balancing is ap-
parently needed to achieve good performance. Finally, while
we provide the true and false positive rates in Table 2, these
measures do not yield an obvious conclusion for a model
trained in a heavily unbalanced dataset. In such scenarios,
a model would often tend to show low false positive rate at
the expense of true positive rate, which is also the case in
our experiment.

Table 2: Out-of-time offline evaluation
Training on a
balanced set

Training on an
unbalanced set

Dataset sample ratio 1:1 1:10
AUC 77.4% 60.0%
False positive rate 23.6% 4.2%
True positive rate 75.0% 0%

Detecting trends in customer satisfaction

Figure 2 depicts weekly fraction of negative customer feed-
backs for one of the four product categories in our dataset,
i.e., feedbacks where the customer satisfaction score pro-
vided in the surveys was below sb = 0.5 on a 0−1 feedback
score scale. Due to the sparsity of the data it is extremely
difficult to discern any useful trends in the support experi-
ence. While one could further aggregate the feedback over a
longer time period, an aggressive aggregation of customer
feedback will prevent the effects of any support protocol
changes from early manifestation.

On the other hand, Figure 3 shows weekly history of the
fraction of negative feedbacks identified using our compu-
tational score. The week-over-week behavior of the plot is
more smooth, and, importantly, the plot suggests that there
was an improvement in the quality of customer support in
months 5-6 (notice the qualitatively lower values for the pe-
riod after month 5). Indeed, a closer look at the data dur-
ing this period revealed noticeable improvements in multiple
support request variables. For instance, the fraction of sup-
port requests with confirmed resolution increased by 10%,
the time it took to fully address the customer request was re-

Figure 3: History of negative feedbacks based on the com-
putational score in the sample dataset

duced by 14%. These results are very encouraging as they al-
low to see the effects from improvements much earlier than
it would be possible from customer surveys alone.

Support area quality and root cause ranking

In the case of a cloud service, potential customer issues can
be grouped with respect to the type of the technical problem
experienced by the customer, such as, for example, connec-
tivity issues or execution timeouts for database services. Ad-
ditionally, all completed customer requests can be associated
with the actual cause of the problem which is very specific
to the technical implementation of the service. Understand-
ing the distribution of the negative customer feedback across
problem types and root causes is very important for correct
prioritization of service improvements. Looking at the most
common problem types and root causes in our dataset, it is
apparent that using customer feedback for prioritization is
not feasible due to the sparsity of the data. For example, Ta-
ble 3 shows the distribution of the highly scored requests
and the actual negative feedbacks (as defined by our label-
ing process) across 10 most common problem types and root
causes. The prevalence of the negative feedback in the sur-
veys is less than 1%. In fact, among the customer support
requests in our data only a single request with the negative
customer feedback could be found for the top 10 most com-
mon root causes. Such extreme sparsity of negative feedback
would make it impossible to prioritize resources according
to the prevalence of root causes that that are most frequently
associated with negative customer experience. In contrast,
using the computational score as a surrogate for customer
feedback allows capture the patterns that are characteristic
of an unsatisfactory customer service even if the customer
provided a positive subjective assessment.

Table 3: Distribution of the highest scored feedbacks and
actual negative feedbacks in the 10 most frequent problem
types and root causes

mean % of requests
with score > 0.8

mean % of requests with
feedback score s ≤ 0.5

Per each problem type 9.5% 0.5%
Per each root cause 10.8% 0.3%

Discussion and Conclusion

In this paper, we presented a system designed to provide a
complementary and realistic view of customer satisfaction.
While predictive computational satisfaction scores have the
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Table 4: Correlation between the score and days to resolu-
tion for different request age groups

Days to resolution Correlation

All closed requests 0.05

Closed in less than 0.23 days 0.72

Closed in between 0.23 and 0.76 days 0.21

Closed in between 0.76 and 2.03 days 0.05

Closed in more than 2.03 days -0.06

potential to augment existing measures, it is vital to un-
derstand their limitations and resist the temptation of see-
ing them as the single main measure of customer satisfac-
tion. As an example, consider the relationship between the
score and the number of days until resolution for past re-
solved support requests in Table 4. Looking at the requests
that were resolved in less than six hours we can observe a
very strong correlation between the time to resolution and
the satisfaction score (R = 0.72). On the other hand, there
is virtually no correlation between the time to resolution and
the score if the support request was not resolved in the first
day. If the goal of a support department was to drive im-
provements in the computational score alone, it would make
statistical sense to always prioritize newly opened requests,
as the computational score for older requests would not be
noticeably affected by time-to-resolution. Such strategy is
obviously flawed as it disregards many other components of
customer satisfaction and trust which are not captured by the
modeling process.

Depending on the organization and the application area,
multiple avenues for further improvement exist. For in-
stance, unstructured data coming from customer correspon-
dence with the support operator is an example of a promising
variable that could further improve the accuracy of the score.
Additionally, although our model has a consistent ability to
predict if a support request is going to be associated with un-
satisfactory experience, organizations are usually also inter-
ested in the explanations of individual predictions for spe-
cific users. Improving interpretability of the main model
drivers would be an important future direction for improve-
ment.

While in this paper we rank open support requests accord-
ing to their propensity to become of unsatisfactory quality, it
would be much more useful to understand the actual chances
of a support request resulting in an unsatisfactory customer
experience. Solving this task may require one to gain a bet-
ter understanding of the prior probabilities associated with
different experiences. Additionally, preliminary analysis on
our dataset indicated that our model is good at learning the
patterns associated with low quality support requests, while
the requests that are resolved to the customer’s satisfaction
are more heterogenous and harder to learn. Establishing a
healthy balance between precision and recall would be an
important task when applying our system on other practical
datasets.

Finally, while our focus up to this point was in addressing
the negative influences of the data sparsity and the “mum”
effect, we did not directly account for the customers who
abandoned the service. Analyzing the performance on such
customers would be the first step in understanding the re-
lationship between the computational satisfaction score and
customer retention - an extremely important problem for any
organization.
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