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Abstract

We motivate and address the task of automatically solving
shaded area geometry problems. Our approach consists of
identifying atomic regions in a coordinate-based geometry
figure, building an analysis hypergraph representing all facts
that can be derived of the figure (using saturation based
reasoning), and then finding a path in the hypergraph from
the given facts to the goal. On a corpus of 102 problems
taken from popular high-school geometry textbooks, our tool
GeoShader successfully solved and characterized all prob-
lems in an average time of 13.4 seconds.

1 Introduction

We describe GeoShader, a tool that can solve shaded area
geometry problems. A shaded area problem is composed of
a geometric figure, a set of given facts about that figure, and
a shaded region in the figure whose area is to be found. See
Figure 1 for a sample shaded area problem.

A solution to a typical high school geometry problem re-
quires a student to use deductive logic while reasoning about
the visual elements in a given figure. Shaded area problems
go a step further by requiring recall of formulae for different
shapes as well as exercising the associated quantitative skills
necessary to compute the area of the desired region.

While a typical shaded area problem is quite demand-
ing of a student to exercise their skills, it has a clear quan-
titative answer. This makes shaded area problems ideal
for multiple choice problems compared to geometry con-
struction or proof problems that have many possible so-
lutions and require expert knowledge to assess a solution.
It becomes clear why shaded area problems are often en-
countered on standardized high school Mathematics ex-
aminations (e.g., ACT, SAT, State Comprehensive Assess-
ments (Massachusetts DOE 2014; NY State Education Dept.
2014), etc.) and even on some graduate level ones (e.g., GRE
quantitative).

One can represent the solution process for a shaded area
problem as a directed acyclic graph (DAG), where each node
represents intermediate facts that are true of the figure (and
are derivable from the predecessor nodes), and are useful for
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computing the goal area. A solution to a shaded area prob-
lem thus has quantifiable features corresponding to proper-
ties of its solution DAG. For example, a solution (and its cor-
responding problem) has depth and width. GeoShader com-
putes the structural features of a solution as well as other
descriptive features of a solution, including a level of diffi-
culty corresponding to the number of deductions, geomet-
ric facts, and facts related to area. Each of these features
gives a teacher the ability to effectively identify or com-
pare problems (with associated solution) when constructing
homework or exams.

GeoShader solves a shaded area problem by first dissect-
ing the given figure into its closed, constituent areas us-
ing a planar graph-based representation. It then arranges the
shapes in the figure into a hierarchy followed by a fixed-
point technique to acquire the area of regions in the figure.
The area of a region is thus a linear combination of areas of
other regions. GeoShader represents all possible algebraic
decompositions as a hypergraph in which the solution to a
problem can be obtained by traversing this hypergraph.

We evaluated the effectiveness of our solution techniques
on 102 figures taken from popular geometry textbooks and
exams. GeoShader solved each problem in an average of
13.4 seconds.

We make the following contributions:
• We formalize the notion of a shaded area geometry prob-

lem (along with some useful features associated with it)
and its solution (§2).

• We describe an algorithm to efficiently solve shaded area
problems from existing figures (§3).

• We describe experimental results illustrating the efficacy
of our problem solving algorithm (§4).

2 Formalization

2.1 Problem Definition

Facts. Solving a shaded area problem requires manipulat-
ing two kinds of facts—geometric facts and facts about ar-
eas. A geometric fact for a figure Fig is a logical proposition
about the figure, such as “OAB is an equilateral triangle” or
“OM = 7.” (We omit units for readability.) We refer to the
geometric facts of Fig as E(Fig). An area fact for a figure
Fig is of the form “Area(g) = c” where g is a closed region
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Find the area of the shaded
region with circle radius
7cm and equilateral trian-
gle OAB of side length
12cm shown at right.
(CBSE, India 2012) A

B

O

M

N

O

The goal region g is the entire figure with explicit facts
{EqTri(O,A,B), OM = 7, OA = 12}. The solu-
tion summing the areas of MajSector(M,O,N) and
EqTri(O,A,B) is depicted as a directed hypergraph.

EqTri(O,A,B)

Minor(∠BOA) = 60◦

MajSector(∠BOA) = 300◦

OA = 12

Area(s) =
√

3
4 s2

Area (�OAB) = 36
√
3

Area(α) + Area(β) Area(m, r) = m
360 · πr2 OM = 7

Area(Fig) = 245π
6 + 36

√
3 Area (MajSector(M,O,N)) = 245π

6

Eq. Triangle: 60◦ Angles

Minor + Major = 360◦

Figure 1: Example Shaded Area Problem and Solution

in the figure and c is a numeric constant. We refer to the area
facts of Fig as A(Fig).

Formal Definition. A shaded area geometry problem is
a triple consisting of (i) a geometric figure, (ii) a set of as-
sumptions about that figure, and (iii) a goal area to compute.
A (geometric) figure is a fixed arrangement of geometric ob-
jects (e.g., circles, polygons, etc.) in a specific orientation
in the Euclidean plane. The set of assumptions consists of
geometric facts that may be described as measurement facts
(e.g. measure of an angle is 45o, length of side is 7cm) and
facts relating objects in the figure (e.g. two angles are con-
gruent, points are collinear, etc.). The goal is defined by a
region in the figure for which we wish to compute the area.

The objective is to compute the area of the shaded portion
using geometric reasoning (i.e., logical reasoning using the
given facts and the axioms of geometry), area computations
of shapes (e.g., computing the area of a circle with known ra-
dius), and algebraic manipulations (e.g., expressing the area
of a region as the sum or difference of two other regions).

Definition 1 (Shaded Area Problem). A shaded area prob-
lem P is a triple P = 〈Fig, A, g〉 where Fig is a geometric
figure, A ⊂ E(Fig) is a set of assumptions, and g is an area
fact for a region in Fig.

2.2 Solution to a Shaded Area Problem

A solution to a shaded area problem is based on manipu-
lating facts about a figure and deductions connecting those
facts.

Deductions. Computing a shaded area requires three
kinds of reasoning: (a) deductive reasoning about geomet-
ric facts (e.g., deducing the length of a radius of a circle

given the length of another radius), (b) computing the area
of a shape once its parameters are known, and (c) algebraic
composition of areas using sums and differences of areas.

Deductions about geometric facts follow first-order geo-
metric reasoning using Hilbert’s axioms of geometry and are
annotated with the deduction rule used to derive the conclu-
sion. For example, in Figure 1 we derive the measure of an-
gle ∠BOA is 60◦ from the fact that �OAB is equilateral;
we label the edge with the appropriate axiom.

Deductions about area facts are of two forms. The first
computes the area of a region given a set of geometric facts.
In Figure 1 the circle with center O and (known fact) radius
OM = 7, we deduce from the facts Circle(O,OM) and
OM = 7 a fact labeled Area(Circle(O,OM)) = 49π.

The second form computes the area of a region by al-
gebraic manipulation of other areas. For example, we may
deduce from the area facts Area(MinSector(M,O,N)) =
1·49π

6 and Area(MajSector(M,O,N)) = 5·49π
6 the fact that

Area(Circle(O,OM) = 49π because the sum of the areas
of the former facts deduces the area of the latter. Again, we
label this deduction with an algebraic expression stating the
conclusion is derived by adding the premises.

Solution. The solution of a shaded area problem consists
of computing the area of the goal region g, if possible, using
the set of implicit facts (those facts that are independent of
scaling the figure, e.g., OAB is triangle in Figure 1) and
facts (lengths of line segments or radii) and deductions of
the types described above.

A solution to a shaded area problem takes the form of
a DAG with one leaf node (which represents the goal) and
multiple root nodes (which represent the facts stated in the
problem). Furthermore, each non-root node is labeled with a
deduction rule that denotes the rule used to derive that node
from all of its predecessor nodes.

Definition 2 (Solution to a Shaded Area Problem). For a
shaded area problem P = 〈Fig, A, g〉, the solution to P is
a directed acyclic graph (N,D) where N ⊂ E(Fig) are the
facts (nodes) required to deduce g from the set of assump-
tions A and D is the set of edges corresponding to logical
deduction among facts.

Example. Figure 1 is an example of a shaded area prob-
lem and its solution. It is given that triangle OAB is equilat-
eral, and further, the lengths of the radius of the circle and
the side of the triangle. To compute the area of the shaded
region, one can perform algebraic decomposition to express
the shaded region as the sum of the areas of the major sec-
tor and the triangle. Using the length of the side and the
elementary formula for the area of an equilateral triangle,
we compute the area of the triangle as 36

√
3. To compute

the area of the major sector MON , we need two deduction
steps: the measure of minor angle ∠MON is 60◦ and thus
the measure of the major ∠MON is 300◦. Since the radius
of the circle is known, we compute the area of the major sec-
tor as 300

360 · πr2 = 245
6 π. Now, the area of the shaded region

is obtained using algebraic manipulation.
Each of these deductions steps are clear in the hypergraph

representation of the solution. Structurally, we see a path
from the source nodes (corresponding to the problem as-
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The figure at right con-
tains four atomic re-
gions labeled (1)-(4).

(1)

(2) (3)

(4)

Figure 2: Labeled Atomic Regions for a Figure

sumptions) to the single goal node; this path constitutes a
problem solution.

3 Solving Shaded Area Problems
We now describe GeoShader, our tool for solving shaded
area problems. Its input consists of a geometric figure drawn
to scale in the Euclidean plane. We compute an internal,
directed hypergraph representation of the figure using a
coordinate-based analysis. Then, we traverse the hypergraph
to identify a solution to a given shaded area problem.

3.1 Preliminaries

Given a geometric figure Fig and a set of geometric axioms
Axm, (Alvin et al. 2014) describe a logical, saturated hy-
pergraph in which nodes correspond to the geometric facts
of Fig and whose edges are of the form (S, t, A) where t
is a fact deduced from a set of facts S and annotated with
geometric axiom A ∈ Axm. Our solving technique extends
this notion of a saturated hypergraph to additionally track
facts about areas in an analysis hypergraph. We also extend
the set of geometric axioms to include shape axioms; that
is, a common geometric formula for calculating the area of
a shape (e.g. the area of a rectangle is the product of length
and breadth).
Definition 3 (Analysis Hypergraph). An analysis hyper-
graph H(Fig) for a figure Fig is a directed hypergraph
whose nodes consist of all geometric facts E(Fig) and
area facts A(Fig) in Fig and whose edges are of the form
(S, t, A), where S ⊆ E(Fig) ∪ A(Fig) is a set of geo-
metric facts or area facts called the source nodes, t ∈
E(Fig) ∪ A(Fig) a geometry or area fact called the target
node, and A a geometric axiom such that A deduces t from
S.

For a figure, we are interested in the set of smallest, closed
components of a figure we call atomic regions; Figure 2 con-
sists of four such components (numbered (1)-(4)). Consis-
tent with the definition of a Jordan curve (Jordan 1893), we
note that atomic regions may be convex (�OAB in Fig-
ure 1) or non-convex (major sector defined by MNO in Fig-
ure 1). A shaded area problem may ‘shade’ several atomic
regions in a figure such as the entire figure in Figure 1; a
region is a non-empty set of atomic regions.
Definition 4 (Shape, Region, Atomic Region). A shape is
a geometric object (e.g., square, circle, triangle) for which
we can directly calculate the area using some pre-defined
geometric formula, provided appropriate parameters are
known. An atomic region is a Jordan curve that cannot be
further decomposed into two closed regions by an existing
line or arc passing through it. A region is a non-empty set of
atomic regions.

D
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F

A
B

C

G U

Figure 3: Annotated pla-
nar graph of a figure.
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1
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1

3

3

7

7

Figure 4: Automated pla-
nar graph of a figure. Val-
ues indicate the number of
points added along the arc.

We note that a region may or may not be a shape and
thus may or may not have a directly computable area. We
also observe that the set of all regions for a figure Fig is the
powerset of atomic regions (save the emptyset). It suffices
to compute the atomic regions for a given figure to compute
the regions and thus the corresponding set of area facts.

3.2 Atomic Region Identification

We now consider how to identify the set of atomic regions in
a given figure. The analysis hypergraph is based on geomet-
ric and area facts. We compute geometric facts by analyzing
the coordinate-based figure. The goal of a given shaded area
problem is based on the area of some, potentially discon-
nected, set of closed geometric objects. In order to compute
area facts (nodes in the analysis hypergraph), we must first
identify the atomic regions in the given figure. In this sub-
section we describe how we compute these atomic regions
for a particular input figure.

The atomic region identification algorithm takes a geome-
try figure Fig and computes all atomic regions by construct-
ing a planar graph whose vertices are intersection points1 in
a figure Fig and whose edges are segments which arise from
non-crossing lines and arcs of the figure. Atomic regions are
then the facets of this planar graph—the smallest, closed re-
gions in the planar graph corresponding to atomic regions in
the geometry figure.

Given a planar graph, our algorithm processes all points
in lexicographic order. For each point, it greedily chooses an
edge in the counterclockwise order to extract facets (Edels-
brunner 1987), removes the first edge from the graph, and re-
peats the facet identification process. Unfortunately, the pla-
nar graph obtained by only considering the explicit points
and lines or arcs in a figure do not uniquely determine the
figure; ambiguities may arise when a figure has arcs.

Resolving Arc Ambiguity. First, we must be able to dis-
tinguish between segments and arcs. In Figure 3 there is no
distinction between chord AC and arc 6.0ptAC

�
in a corre-

sponding planar graph. The addition of point B successfully
disambiguates AC from 6.0ptAC

�
.

1Intersection points are those points attributed to one shape in-
tersecting another shape in a given figure.
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A second issue arises when we traverse a planar graph to
identify the facets. Consider the planar graph corresponding
to Fig in Figure 3; ambiguity arises in this case when we be-
gin traversal from point D. The problem is attributed to the
fact that points D, E, and F are collinear and thus create the
same counterclockwise angle with respect to the reference
vector

−−→
DG (i.e., ∠FDG ∼= ∠EDG). Starting at D, the next

point in a counterclockwise traversal should be F . This is
due to the fact a greedy traversal chooses the edge with the
smallest counterclockwise angle with respect to

−−→
DG; in this

case, ∠UDG < ∠EDG. However, without the inclusion of
the point U along 6.0ptDF� in Figure 3, the choice of the next
edge from D is ambiguous: we cannot distinguish the edge
D to E from the edge from D to F .

Resolving both ambiguities requires addition of points
along each arc. Figure 3 demonstrates one successful addi-
tion of points for the planar graph to uniquely determine the
figure. Our approach to resolving these ambiguities is based
on the number and size of circles in the figure. Sorting the
circles by radius length from least to greatest, we add an ex-
ponentially increasing number of points at constant intervals
along all arcs: 1, 3, 7, etc. as shown in Figure 4; each arc in
the two smallest circles have one additional point added, 3
points for each arc in the middle circle, etc. The planar graph
corresponding to our automatic technique is shown in Fig-
ure 4 where ‘open’ points are intersections points among the
shapes and dark points are the additional points added to re-
solve ambiguities.

3.3 Constructing the Analysis Hypergraph

In this section we describe two techniques to deduce area
facts. First, we identify shapes in the given figure in order
to deduce an area fact from geometric facts and shape ax-
ioms. Second, we must note that deducing an area fact from
two area facts by means of addition or subtraction of the
respective areas is a simple process, but is computationally
expensive. This is due to the fact that the number of facets
of a planar graph is linear in the size of the graph while the
number of regions, corresponding to sets of facets, is expo-
nential. We therefore do not construct the entire analysis hy-
pergraph for a given figure, but limit construction of nodes
to the set of assumptions in the problem. That is, we use
the following algorithm as a heuristic to avoid area facts that
are not computable with the problem parameters. We deduce
an area fact from sets of area facts using an algorithm com-
posed of two parts. (1) Organize the shapes into a hierarchy,
computing areas of regions traversing down the hierarchy.
(2) Use a fixed-point approach to compute areas of regions
that are unions or differences of two regions by respectively
adding or subtracting known areas.

Deducing Area Facts from Geometry Facts (Regions
as Polygons). We cannot directly compute the area of all
regions since a region may not be a shape or a region may
contain atomic regions that are disconnected. However, we
must identify all shapes so that we can compute the area of
the corresponding region, if the parameters are known. We
can mathematically compute the area of arbitrary polygons
using coordinate geometry techniques (Edelsbrunner 1987);

Consider figure Fig
from Figure 1 annotated
at right. For atomic re-
gion identification, we
construct chord MN re-
sulting in four atomic
regions labeled (1)-(4)
(thus 24 − 1 = 15 re-
gions).

A

B

O

M

N
(1)

(2)

(3)

(4)(4)O

(1)

(2)

The corresponding shape hierarchy for Fig consists of
a circle, two sectors, a trapezoid, and two triangles.

Circle(O){(1), (2), (3)} �OAB{(2), (3), (4)}

Major
Sector(M,O,N){(1)}

Minor
Sector(M,O,N){(2), (3)}

Trapezoid(B,M,N,A){(3), (4)}

�MON{(2)}

Figure 5: Solving the shaded area problem from Figure 1.

however, solving shaded area problem solutions are based
on classic geometric formulas for standard polygons such as
triangles (half base multiplied by height) or rectangles (base
multiplied by height). We present an algorithm for identify-
ing all polygons (convex and non-convex) in a given figure.

From our coordinate-based analysis of a figure we have
the corresponding set of all segments. We first identify can-
didate segments which may be combined into a polygon by
eliminating invalid combinations of segments that do not
share a vertex or are collinear. Second, we exhaustively con-
struct the set of all triangles in the figure from the set of
valid, closed combinations of three segments. Last, we in-
ductively construct polygons of increasing numbers of sides
by considering valid sets of segments that do not contain any
previously established polygon.

Given the set of polygons, circles, and sectors, we can
match the shape with the corresponding region. That is, we
construct a hyperedge from the parameters (source nodes)
used to compute the area fact (target node) labeling with the
geometric area formula used in the deduction. We note in
Figure 5 that �OAB corresponds to region {(2), (3), (4)}
and in Figure 1 we use the geometric facts OA = 12 and
EqTri(O,A,B) to deduce Area(�OAB) = 36

√
3 by way

of the area formula for an equilateral triangle.
Deducing Area Facts from Area Facts I (Shape Hier-

archy). Instead of exhaustively exploring all possible rela-
tionships among subsets of atomic regions, we use a hier-
archy of shapes as a heuristic. We organize sets of atomic
regions as a directed acyclic graph called the shape hier-
archy. The roots of the shape hierarchy are shapes we will
refer to as root shapes. We construct the shape hierarchy
by noting that the children of a node are shapes that are
fully contained in their parent; we link only direct con-
tainment. In Figure 5, MinSector(M,O,N) is directly con-
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tained within both Circle(O,OM) and Triangle(O,A,B) so
there exists directed edges in the associated shape hierarchy
from MinSector(M,O,N) to both shapes.

Given a shape hierarchy, for a figure Fig, our first step
is a traversal of the shape hierarchy to compute the areas
of the shapes, if possible, and labeling the shape hierarchy
accordingly. These computations require additional geomet-
ric reasoning (e.g., to find out the length of a line segment
from given facts about the figure). The second step mimics
how a student may approach handling area calculations
by taking a series of differences. For each shape in the
hierarchy, we individually subtract each of its descendants
to acquire a region and its associated area, if possible. For
example, in Figure 5, we can compute the area of region
{(1), (3)} by taking the difference between Circle(O,OM)
and Triangle(M,O,N): Area({(1), (3)}) =
Area(Circle(O,OM)) − Area(Triangle(M,O,N)). Simi-
larly, we may compute the area of region {(3), (4)} which
defines the Trapezoid(B,M,N,A) as Area({(3), (4)}) =
Area(Triangle(O,A,B))− Area(Triangle(M,O,N)).

Deducing Area Facts from Area Facts II (Fixed-Point
Algebraic Combinations). Our last step in constructing
area facts computes areas of additional regions using a
fixed-point computation. Given the areas of regions acquired
through the shape hierarchy analysis, we exhaustively com-
bine all regions and their associated areas. That is, in each
iteration, we take two regions whose areas have been com-
puted. If the regions are disjoint, we take the sum to identify
the area of the union of the two regions. In the case where
one region is completely contained within the other region,
we compute the area of the difference of the two regions.

Finding the area of a goal region in some shaded area
problems does not require this step; however, in the case
of Figure 5 solving the problem is impossible without
this fixed-point combining process. In Figure 5 we know
Area(MajSector(M,O,N)) = 245

6 π and Area(�OAB) =

36
√
3 with respective regions {(1)} and {(2), (3), (4)}. Tak-

ing the union of the two regions results in the solution
to the problem Area(Fig) = Area({(1), (2), (3), (4)}) =
245
6 π + 36

√
3. GeoShader solves the problem in Figure 1

via this algebraic combining process.

3.4 Finding a Path in the Hypergraph

As noted in §2.2, a solution to a shaded area problem is
a path in the corresponding analysis hypergraph. Our goal
is to identify such a path for some shaded area problem
P = 〈Fig, A, g〉. Identifying a solution to problem P con-
sists of two distinct steps. The first step takes Fig and uses
the process described in §3.3 to construct the correspond-
ing analysis hypergraph, H(Fig). The second step to solve
problem P is to identify a path from the nodes correspond-
ing to A and the goal node corresponding to g in H(Fig).
The resultant solution is the DAG described in §2.2.

4 Experimental Results

Evaluation Criteria. We first describe our benchmark set
of problems and characteristics of the corresponding figure.
Second, we evaluate our solution technique with respect to
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Figure 6: Characteristics of textbook problems.
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Figure 7: (Sorted) Times for Solving Shaded Area Problems:
Atomic Region Identification (red, gray in grayscale), De-
duction Engine (yellow, light in grayscale), and Computing
the Solution and its Features (blue, dark in grayscale).

time required to construct the corresponding hypergraph and
identify the solution path. Last, we correlate structural char-
acteristics of a solution with respect to the time taken to gen-
erate that solution. We execute our solution generation algo-
rithm on a laptop with Intel Core i5-2520M CPU at 2.5GHz
with 8 GB RAM on 64-bit Windows 7 operating system.

Benchmark Problem Set. We ran our solution gener-
ation algorithm on a set of 102 figures taken from stan-
dard mathematics textbooks and workbooks from the United
States (Jurgensen, Brown, and Jurgensen 1988; Holt, Rine-
hart, and Winston 2007; Larson et al. 2007; C. Boyd 2006;
Chew 2008) as well as released exams from the Indian Class
X exam (CBSE, India 2012). Each of the 102 problems we
solved successfully. We used a uniform set of geometric area
formulas and geometric axioms for all of our experiments:
tangents, circles, quadrilaterals, congruent triangles, etc.

In the set of 102 figures from textbook problems we ob-
serve a figure in a shaded area problem has mean (and stan-
dard deviation) 11.5 (7.8) shapes and 7.3 (4.6) atomic re-
gions. We note that for many shaded area problems, there
are often more shapes than atomic regions; as an example,
consider the six shapes and four atomic regions in Figure 5.
The number of shapes and atomic regions per problem result
in right-skewed distributions as shown in Figure 6.

Problem Solving vs. Time. Solving a shaded area prob-
lem (§3) requires computing the atomic regions in the fig-
ure (§3.2), construct the logical hypergraph, constructing
the analysis hypergraph (§3.3) and path identification of the
solution (§3.4); Figure 7 shows the time required for each
of the three phases. We note a mean (and standard devia-
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Figure 9: Three Outliers
Removed from Figure 8.

tion) of 2.79 (2.53) seconds for atomic region identification,
7.29 (12.10) seconds for deduction engine construction, 3.33
(7.91) seconds for area fact deduction and computing the so-
lution, and overall time 13.4 (17.24) seconds.

Constructing the nodes and edges in an analysis hyper-
graph, which avoids eager consideration of the exponential
number of regions, is thus well-motivated since the num-
ber of atomic regions can often be large. The raw data in
Figure 8 leads to an inconclusive relationship due to three
outliers we identified as having to construct the complete
analysis hypergraph. Instead, consider the linear correlation
(r2 = 0.721) or monomial-power correlation (r2 = 0.782)
in Figure 9. In either case, solving a shaded area problem in
polynomial order of atomic regions is noteworthy.

Solution Characteristics. The solution to a shaded area
geometry problem is a DAG (§2.2) and therefore has several
quantitative features. For example, the depth of a solution is
the longest path from the assumptions to the area in the so-
lution, width is the maximal number of nodes in a level, and
the number of deduction steps corresponding directly to the
number of hyperedges in the solution. With our solutions to
the 102 shaded area problems, we see a mean (std. dev.) for
depth 7.0 (2.5), width 6.8 (3.8), and number of deductions
11.9 (8.0). For the solutions, we observe mean 13.1 (8.2)
geometry facts and 2.1 (0.9) area facts.

5 Related Work

(Alvin et al. 2014) first formalized the notion of implicit and
explicit atomic geometry facts in a given geometry figure
as well as rules for reasoning over those facts. In this pa-
per, we extend that formalism to deal with a richer class
of facts involving area facts and rules that relate these facts
with each other and also with atomic geometry facts. More
significantly, we address the novel challenge of parsing a
given coordinate-based geometry image into implicit facts
related to both atomic properties and area properties. (Chan-
drasekaran et al. ) proposed an architecture for problem solv-
ing with diagrams through different forms of information
generation; our algorithms use spatial representation of the
given figure and thus follow this architecture. (Matsuzaki et
al. 2014) also addressed solution generation for a wide range
of mathematics problems including analytic geometry based
solely on a textual description. We use a coordinate-based
approach and reason about existing figures in our solution
generation.

(Seo et al. 2014) describes a technique of diagrammatic
understanding as a component of Aristo (Etzioni, Oren and
et al. 2015), that extracts implicit, atomic geometry facts
from a figure using vision-based techniques. We present a
distinct technique to address a more involved problem of
also extracting area geometry facts. (Seo et al. ) describes a
technique for automatically understanding and solving SAT
geometry problems while we address the problem of iden-
tifying solutions to a shaded area problem (and analyzing
those corresponding structures), and not simply the exis-
tence of a solution through deduction and logical entailment.

6 Conclusions and Future Work

This paper formally defines a shaded area problem and
presents algorithms in a tool GeoShader to efficiently
solve such problems. Our cross-disciplinary approach com-
bines ideas from computational geometry, logical reason-
ing, and search heuristics. Future work will involve synthe-
sis of shaded area problems considering existing figures, but
should also consider synthesizing new, fresh figures along
with problems related to those figures.
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