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Abstract

Computer-based human activity recognition of daily living
has recently attracted much interest due to its applicability to
ambient assisted living. Such applications require the auto-
matic recognition of high-level activities composed of mul-
tiple actions performed by human beings in a given environ-
ment. We propose a deep neural architecture for kitchen activ-
ity recognition, which uses an ensemble of machine learning
models and hand-crafted features to extract more informa-
tion of the data. Experiments show that our approach achieves
the state-of-the-art for identifying cooking actions in a well-
known kitchen dataset.

1 Introduction

Effective assistive applications require accurate identifica-
tion of the activities being performed by the user being
helped. Here, activity recognition refers to the task of deal-
ing with noisy low-level data directly from sensors (Suk-
thankar et al. 2014). Failure to correctly identify the activity
a user is performing has a cascade effect that often leads to
users being frustrated and giving up on an assistive applica-
tion. Such task is particularly challenging in the real (phys-
ical) world, since it either involves fusing information from
a number of sensors or inferring enough information using a
single sensor.

Single-sensor activity recognition often relies on a video
camera feed (Karpathy et al. 2014), which until recently
has posed a challenging research goal in computer vision.
Advances in hardware and greater availability of data have
allowed deep learning algorithms in general, and Convolu-
tional Neural Networks (CNNs) in particular, to consistently
improve on the state-of-the-art. CNNs achieve the state-of-
the-art results when dealing with image-based tasks such
as object recognition, detection, and semantic segmentation
(Krizhevsky, Sutskever, and Hinton 2012; Long, Shelhamer,
and Darrell 2015). Encouraged by those results, novel ap-
proaches use deep neural architectures to perform video-
based tasks (Karpathy et al. 2014).

In this paper, we address the problem of recognizing hu-
man activities in an indoor environment with a single static
camera. Our contribution focus on supporting people when
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they are in the kitchen, with the final goal of recognizing
their actions when cooking meals. Our approach relies on
a deep neural architecture that comprises multiple convo-
lutional neural networks that are fused prior to perform-
ing the action classification. We perform experiments us-
ing the Kitchen Scene Context based Gesture Recognition
dataset (KSCGR) (Shimada et al. 2013), and we show that
our proposed approach outperforms the current state-of-the-
art method (Bansal et al. 2013) for this particular dataset.

This paper is organized as follows. Section 2 provides
a background on artificial neural networks and deep learn-
ing. Section 3 details our novel deep neural architecture for
action recognition, whereas Section 4 presents a thorough
experimental analysis for assessing the performance of our
proposed approach. Section 5 points to related work and we
finish this paper with our conclusions and future work direc-
tions in Section 6.

2 Background

Ordinarily, machine learning algorithms such as artificial
neural networks (ANN) have been used to support many
challenges of activity recognition. Conventional machine-
learning techniques were limited in their ability to process
natural data in their raw form (LeCun, Bengio, and Hin-
ton 2015). For decades, constructing machine learning sys-
tems required considerable domain expertise to create an
internal representation (feature construction (Sondhi 2009))
from which the learning subsystem could detect or classify
patterns in the input. Deep learning such as convolutional
neural networks mitigates this problem by automatically
learning representations, such that representations are ex-
pressed in terms of hierarchical features, allowing the com-
puter to build complex concepts out of simpler concepts.
This hierarchical representation allows a machine to be fed
with raw data and to automatically discover the represen-
tations needed for detection or classification tasks. CNNs
use these feature hierarchies for learning different represen-
tations from unstructured data such as images, videos and
audio (Krizhevsky, Sutskever, and Hinton 2012). They have
been shown to accurately classify images (Simonyan and
Zisserman 2014b) and videos (Karpathy et al. 2014). How-
ever, CNNs have some limitations such as overfitting (due to
the large number of parameters), which makes it challenging
to to create a knowledge model that is capable of generaliz-

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

56



ing and accurately classifying unseen data.

3 Architecture Design

In this paper, we develop a deep neural architecture for ac-
tion recognition in indoor environments with a fixed camera.
Our architecture has three main components: i) data pre-
processing, ii) convolutional architecture for action recog-
nition; and iii) fusion strategies for the final classification.

Figure 1 illustrates the pipeline of our architecture: RGB
represents the regular dataset with the RGB video frames;
OFL represents the dataset generated by dense optical flow;
CNN represents the Convolutional Neural Network architec-
ture we use to recognize activities; NN is a neural network
that weights the contribution of the probabilities generated
by the output of two previous CNNs; Mean computes the
arithmetic mean of the classification probability output from
the two previous CNNs; and SVM is a Support Vector Ma-
chine classifier with linear kernel that classifies the output
vectors from the two previous CNNs.

Figure 1: Pipeline of our methodology for activity recogni-
tion.

The pipeline starts receiving images from our dataset and
pre-processing them, generating optical flow and RGB im-
ages with resolution of 256× 256. Each resized image feeds
a convolutional neural networks (CNN) that yields the val-
ues of probability to each class. Each fusion method (NN,
Mean and SVM) receives these values of probability from
CNNs and predicts the class to the input image. In what fol-
lows, we further detail each of the components of the pro-
posed architecture.

3.1 Data pre-processing

Pre-processing consists of two steps: image resizing and op-
tical flow generation. Resizing is important because it re-
duces the number of features for each image inside the CNN
as well as the processing time. This step resizes all images
of the dataset to a fixed resolution of 256 × 256. The sec-
ond step generates the dense optical flow (Farnebäck 2003)
of each pair of images. Optical flow represents the 2D dis-
placement of pixels between frames generating vectors cor-
responding to the movement of points from the first frame
to the second. A dense optical flow generates these displace-
ment vectors, i.e., vectors for horizontal and vertical dis-
placements, for all points within frames. In order to gen-
erate the final image for each sequence of frames, we com-
bine the 2-channel optical flow vectors and associate color to

their magnitude and direction. Magnitudes are represented
by colors and directions by hue values. Two new datasets
compose the output of the pre-processing component: the
original data with RGB channels and resized size (hereafter
called RGB dataset), and the optical flow data representing
the motion across frames (hereafter called OFL dataset).

3.2 CNN Architecture

Although a number of off-the-shelf CNN architectures
are available (Simonyan and Zisserman 2014a; 2014b), in
this work we develop an architecture based on inception
modules (Szegedy et al. 2015), due to their top perfor-
mance and, at the same time, reduced number of param-
eters. The proposed architecture is 22-layer deep and its
inception modules contain convolutional filters in differ-
ent scales/resolutions, covering clusters of diverse infor-
mation. The network receives video frames as input that
goes through several convolutional layers, pooling layers
and fully-connected layers (FC). After a Softmax layer, the
network outputs a vector containing the probability of the
image for each class. In our pipeline, we use the same CNN
architecture and training parameters to process both RGB
and OFL datasets.

3.3 Fusion Methods

As the output of each CNN yields a vector containing the
probability scores for each class, our model architecture al-
lows for the application of three different fusion methods.
The fusion methods intend to merge these vectors in order
to increase the accuracy for the action recognition task. Fig-
ure 1 shows the 3 different approaches: i) a neural network
(NN) that weights the contribution of the two probability
vectors, ii) the standard arithmetic mean, i.e., weight 0.5 for
both vectors (Mean), and iii) a multi-class linear Support
Vector Machine (SVM) (Crammer and Singer 2001).

The NN fusion contains a one-layer neural network to
optimize the weights of the probabilities derived from the
output of both CNNs. Figure 2 illustrates the structure of
this neural network, where w1 and w2 are learned weights,
[A] is the vector containing the probabilities from the out-
put of the CNN that processes the optical flow images, [B]
is the vector containing the probabilities for each class gen-
erated by the output of the CNN that processes the RGB
images, and [C] is the vector containing the weighted mean
for each class. The idea behind this neural network is that
its weights (w1 and w2) can be learned automatically by
minimizing a loss function and backpropagating the gradi-
ents. During test time, this fusion method uses the learned
weights to identify the class that has the greatest weighted
mean. The Mean fusion receives the output vector from both
RBG and OFL CNNs and calculates the arithmetic mean for
each class, assigning to the image the class with the highest
score. The SVM fusion contains a multi-class linear Support
Vector Machine trained with the CNN output from the vali-
dation dataset. At test time, the SVM predicts the class with
the largest score.
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Figure 2: Single-layer neural network developed to compute
the weighted mean from the outputs of two CNNs.

4 Experimental Analysis

In this section, we describe the dataset used in our experi-
ments for indoor fixed-camera activity recognition and the
implementation details used in the CNN models and fusion
methods.

4.1 KSCGR Dataset

The Kitchen Scene Context based Gesture Recogni-
tion dataset1 (KSCGR)(Shimada et al. 2013) is a fine-
grained kitchen action dataset released as a challenge in
ICPR 20122. The dataset contains five menus for cooking
eggs in Japan: ham and eggs, omelet, scrambled egg, boiled
egg, and kinshi-tamago. A total of 7 different subjects per-
form each menu. The ground truth data contains the frame
id and the action being performed within the frame. There
are 8 cooking gestures in the dataset: breaking, mixing, bak-
ing, turning, cutting, boiling, seasoning, peeling, and none,
where none means that there is no action being performed in
the current frame or that the current action does not fit in any
other classification. Figure 3 illustrates example frames for
each class and the distribution of all classes in the dataset.

Figure 3: Activities of the KSCGR dataset and their percent-
age of the total number of frames in the dataset.

We divided the dataset into training, validation and test
sets. The training set contains 4 subjects, each of them per-
forming 5 recipes, i.e., 20 videos and 139,196 frames in to-

1http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/
2http://www.icpr2012.org/

tal. We use the validation set to obtain the model configu-
ration that best fits the training data, i.e., the configuration
with the highest accuracy. This set contains 1 subject per-
forming 5 recipes with 32,897 frames in total. We use the
test set to assess the accuracy of the selected model in un-
seen data. It contains 2 subjects, each performing 5 recipes,
i.e., 10 videos with 55,781 frames in total.

4.2 Implementation

CNN architecture: In order to perform the activity recog-
nition task we use an inception-based CNN architecture
(Szegedy et al. 2015). The training phase uses mini-batch
stochastic gradient with momentum (0.9). For each itera-
tion, the network forwards a mini-batch of 128 samples.
Before passing through the the layers of the network the
CNN applies a random crop, i.e., a crop in a random part
of the image, and a random horizontal flip in the input im-
age, generating a sub-image of 224 × 224. All images have
their pixels subtracted by the mean pixel of all training im-
ages. All convolutions, including those within the inception
modules, use rectified linear activation functions. Regarding
weight initialization, we employ the Xavier algorithm that
automatically determines the value of initialization based on
the number of input neurons. To reduce the chances of over-
fitting, we apply dropout on the fully-connected layers with
a probability of 70%. The learning rate is set to 10−3 and we
drop it by a factor of 50 every epoch, stopping the training
after 43.5k iterations (30 epochs).

NN: We train the neural network of the fusion method
with data from the validation set for 10 epochs with weights
w1 and w2 initialized with 0.5. We use a mean squared er-
ror loss function and optimize it through the Adam (Kingma
and Ba 2014) adaptive learning rate method with the same
learning rate used to train the CNN.

SVM: We train the multi-class Support Vector Machine
using the off-the-shelf implementation by Crammer and
Singer (2001) from scikit-learn3 toolbox. As the neural net-
work fusion, we train the SVM using the validation set. We
use the linear kernel and default scikit-learn regularization
parameter C = 1 with the square of the hinge loss as loss
function.

4.3 Results

In order to evaluate our approach, we compare the output of
each fusion method in the test set. We use the classification
generated by each individual CNN as baseline, and thus, we
can see whether the fusion method improves over each in-
dividual CNN. Table 1 shows the accuracy scores for each
class individually (None, Breaking, Mixing, Baking, Turn-
ing, Cutting, Boiling, Seasoning, Peeling) and the global ac-
curacy (All) that considers all classes at once. Rows RGB and
OFL contain the accuracy for the baselines and Mean, SVM
and NN rows contain the accuracy for the fusion methods.

As we can observe in Table 1, the fusion neural network
(NN) achieves the best results in 5 out of 9 activities (None,
Mixing, Baking, Boiling and Seasoning), obtaining a global
accuracy (All) of 72.6%. Besides for Turning, the fusion

3http://scikit-learn.org/
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methods improved the results for all other activities indicat-
ing that using a fusion method tend to improve results. A
possible reason for the low performance of the fusion meth-
ods for classifying Turning might be a mixing of the lim-
ited number of frames for this activity and the training phase
using vector probabilities generated with the validation set.
Since our fusion methods are trained with predicted proba-
bilities from validation set, any misclassification may lead
to errors in training.

Since classification accuracy takes into account only the
proportion of correct results that a classifier achieves, it is
not suitable for unbalanced datasets as it may be biased to-
wards classes with larger number of examples. By analyzing
the KSCGR dataset, we note that it is indeed unbalanced,
i.e., classes are not equally distributed over frames. Figure
3 shows the distribution of frames per classes in the dataset.
For instance, the None class has the largest number of frames
(≈ 30% of the total) followed by Baking (≈ 25% of the to-
tal), while Breaking contains only ≈ 3% of the frames. For
dealing with the unbalanced nature of the KSCGR dataset,
we measure the performance of the fusion methods based on
Precision (P ), Recall (R) and F-Measure (F ).

Table 2 shows the values of Precision, Recall, F-measure
and Accuracy achieved by the baselines (RGB and OFL) and
the fusion methods (Mean, SVM and NN). In order to com-
pare with the current state-of-the-art in the KSCGR dataset,
in Table 2 we present the results of the hand-crafted features
(HCF) proposed by Bansal et al. (Bansal et al. 2013), and
also their results after a post-processing step (HCF+PP).

Note that NN fusion methods achieve the best scores for
all measures. A large precision value means that the respec-
tive model can adjust very well to the features for identifying
the class, whereas low values indicate that it cannot extract
relevant features to identify the correct class among the re-
maining classes. The individual RGB CNN achieves 27% of
accuracy for the Breaking class and 67% of accuracy for the
Baking class, meaning that the features of the class Break-
ing are not so evident as the features of Baking. A possi-
ble reason for that the small number of training examples
given to the models from the Breaking class. Baking, on the
other hand, is much more present within the dataset, improv-
ing the training experience and making the neural architec-
ture generalize better for frames that belong to that class.
Even without a fusion method, individual RGB CNN shows
the improvement when using CNNs for activity recognition
when compared with hand-crafted features used by Bansal et
al. (Bansal et al. 2013).

The normalized confusion matrix depicted in Figure 4
shows the effect of the NN fusion method, where rows rep-
resent the predicted classes and columns the true classes.
Shades of blue represent the value in each cell, going chro-
matically from a darker blue for higher values to a lighter
blue for lower values. The confusion matrix shows normal-
ized values, i.e., predicted values are divided by the total
number of true values for each cell.

By analyzing the results for the Breaking class in Figure 4,
we can see that the system incorrectly predicts it as Peeling.
Such misclassification makes sense since both activities oc-
cur in the same region of the frame using the same objects

Figure 4: Normalized confusion matrix for the neural net-
work (NN) fusion method.

(e.g., in both activities the subject is working on the left side
of the scene and whereas in Breaking the subject breaks the
egg onto the bowl letting the white egg and yolk fall down,
in Peeling the subject peels the egg on the bowl letting the
eggshell fall into the bowl.

Even though both None and Baking classes have higher
values in the main diagonal of the confusion matrix, their
precision scores are reduced by the misclassification of other
classes. Baking, for instance, is classified many times as
Turning. This misclassification shows that the CNN could
not learn features that differ both classes. As the misclas-
sification of Breaking and Peeling, the Baking and Turning
activities occur in the same region of the scene and with the
same objects.

Unlike Baking that does not have many changes through
frames (e.g., the egg baking inside the pan), the None activ-
ity is labeled as anything that happens but the 8 activities,
encompassing frames in which the subject is preparing the
kitchen utensils, moving pans, and inter-activity frames such
as removing the egg from boiling to peeling. The large accu-
racy (69%) for classifying Baking may be due to this stan-
dard behavior with low variability in regions of the scene and
the larger number of frames. Despite the unbalanced nature
of the dataset, the values of accuracy follow the behavior of
the F-Measure scores, where the lowest value is obtained for
Turning and the largest value for Baking.

Since the process of identifying activities occurs frame by
frame instead of a sequence of frames, sometimes the mis-
classification of a small number of frames in an activity may
occur. For example, the misclassification of 8 frames of the
Baking activity in the middle of ≈ 200 frames of the None
activity. Following the work of Bansal et al. (2013), we ap-
ply a smoothing process on the output sequence of frames
in order to remove the frames that are probably incorrectly
classified. For instance, a frame in the middle of a sequence
of 30 frames that contains a different class probably suggests
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Table 1: Per-activity accuracy in the KSCGR dataset for all baselines and fusion methods.
Method None Breaking Mixing Baking Turning Cutting Boiling Seasoning Peeling All

RGB 0.644 0.275 0.289 0.671 0.346 0.588 0.287 0.363 0.117 0.689
OFL 0.519 0.341 0.314 0.600 0.194 0.545 0.128 0.382 0.449 0.631
Mean 0.634 0.327 0.340 0.684 0.174 0.620 0.169 0.403 0.347 0.692
SVM 0.679 0.357 0.432 0.689 0.000 0.526 0.444 0.601 0.455 0.721
NN 0.690 0.354 0.452 0.693 0.012 0.516 0.505 0.651 0.382 0.726

Table 2: Precision, recall, F-Measure, and accuracy for all
baselines, fusion methods and the current state-of-the-art ap-
proach for the KSCGR dataset.

Approach Precision Recall F-measure Accuracy

HCF (Bansal et al. 2013) 0.62 0.63 0.61 0.64
HCF+PP (Bansal et al. 2013) 0.68 0.68 0.68 0.72
RGB (ours) 0.69 0.68 0.69 0.69
OFL (ours) 0.64 0.63 0.63 0.63
Mean (ours) 0.71 0.69 0.70 0.69
SVM (ours) 0.67 0.72 0.70 0.72
NN (ours) 0.72 0.73 0.72 0.73

that the frame was misclassified, given that activities would
not occur in a single frame. To perform smoothing within the
output classes, a window of fixed size slides through frames
assigning to the target frame (the frame in the center of the
window) the majority voting of all frames within the win-
dow.

Figure 5 presents a temporal representation of the distri-
bution of classes in the frame sequence for a single video of
the test set. Classes are represented by colored vertical lines
in a temporal sequence for the original output (true labels),
for the output of the neural network fusion method (NN), and
for the NN output after smoothing. Note that in the original
output the sequence of frames contains the subject preparing
kitchen utensils (None class – gray lines), next a Cutting ac-
tivity is performed (yellow lines), and the activities continue
until the end of the current recipe.

By analyzing the output of NN in Figure 5, we can see that
some frames are misclassified such as a single Baking action
in the middle of the None class. After performing the post-
processing smoothing step in the output, those noisy frames
disappear. On the other hand, some frames that were cor-
rectly classified (e.g., with the Cutting class), also disappear.
Despite the increase in accuracy (from 86% to 88% for the
example presented in Figure 5), the smoothed output com-
pletely ignored the existence of some activities. With that in
mind, we preferred not to use any smoothing method in the
pipeline of our neural architecture.

5 Related Work

Before the advent of CNN and neural networks in gen-
eral, approaches used to recognize activities based on com-
plex hand-crafted features extracted from video sequences
(Bansal et al. 2013). Convolutional Neural networks on the
other hand, learn automatically a hierarchy of features au-

Figure 5: Temporal representation of classes for the frame
sequence of a single video in which true labels are compared
with labels predicted by our approach.

tomating the process of feature construction. Thus, many
authors propose to mix the still images with information
encoded by hand-crafted features using CNNs (two-stream
CNNs) (Simonyan and Zisserman 2014a). Recent research
encodes the temporal dimension performing 3D convolu-
tions in the convolutional layers of CNNs (3D CNNs) (Ji
et al. 2013) capturing features along both the spatial and
temporal dimensions. Although such approaches recognize
activities, they are applied in other datasets and are not com-
parable to our work.

Bansal et al. (Bansal et al. 2013) perform daily life cook-
ing activity recognition based on hand-crafted features for
hand movements and object use in the KSCGR dataset (Shi-
mada et al. 2013). Their method first detects hand regions
through color segmentation and skin identification. They
consider that objects may give hints of the activity, thus,
identifying objects as “Not in use” and “In use”. A hybrid
model that combines a dynamic Support Vector Machine
(SVM) and a Hidden Markov Model (HMM) considers both
the structural and temporal information to jointly infer the
activity, achieving 64% of accuracy. In order to improve the
performance of the system, they perform a post-processing
step of the output, removing noisy frames, i.e., frames that
are incorrectly classified among a cluster of correctly classi-
fied frames. Since some activities are temporally dependent
of others (e.g., Peeling only occurs after Boiling), they cre-
ate a context grammar to select the the most likely guess
for misclassified frames. Note, however, that making use of
a human-made context grammar may not be an option in
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several real-world applications. Nevertheless, by using this
post-processing step, Bansal et al. increase in ≈ 7% the ac-
curacy for the activity recognition, reaching 71%.

Ni, Moulin, and Yan (2015) propose an adaptive motion
feature pooling scheme that utilizes human poses as side in-
formation. They extract hand-crafted features from the im-
ages, such as histogram of oriented gradient, motion bound-
ary histogram, histogram of optical flow and trajectory shape
in order to obtain more relevant features. The principal com-
ponent analysis (PCA) algorithm reduces the dimension of
the extracted features. Improved Fisher vectors encode the
resulting features and a second application of PCA reduces
once again the dimensionality. Finally, they train a Linear
SVM in order to classify video segments. They perform ex-
periments using two datasets, the KSCGR dataset (Shimada
et al. 2013) and the MPII kitchen activity dataset (Rohrbach
et al. 2012). Since their work only focus on object detection
and tracking of movements, they do not present specific re-
sults for activity recognition, preventing us of performing a
fair comparison with their work.

6 Conclusions and Future Work

In this work we developed a novel neural architecture for
indoor fixed-camera kitchen activity recognition based on
static and temporal data encoding using different fusion
methods. The pipeline of the architecture includes the train-
ing of deep inception-based convolutional neural networks
to extract features from images and classify unseen frames.
Using optical flow and RGB frames from the kitchen scene
dataset (KSCGR), we perform experiments showing that the
convolutional networks can indeed learn high-level relevant
features for the activity recognition task at hand. Experi-
ments show that our approach that employs fusion meth-
ods achieve better results when compared with the current
state-of-the-art work that employs only hand-crafted fea-
tures (Bansal et al. 2013) or when compared with deep ap-
proaches that make use of RGB/optical flow images alone.

As future work, we intend to explore other hand-crafted
features such as histogram of gradients (HOG), motion
boundary history (MBH) and dense trajectories to extract
more features from unbalanced data and feed them to deep
convolutional neural networks. We also plan to employ other
deep learning architectures such as Long-Short Term Mem-
ory networks (LSTM) (Hochreiter and Schmidhuber 1997)
and 3D CNNs (Ji et al. 2013) considering that they are
also capable of encoding temporal features, and use trans-
fer learning in order to achieve better results.
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