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Abstract

We investigate overlapping coalition formation in multi-
sensor networks where sensor agents can track multiple
targets within their overlapping fields of view simultane-
ously. We employ a game-theoretic approach to model the
problem of sensors coordination as that of an overlapping
coalition formation problem. Our model seeks to find the
minimum-sized overlapping coalition structure that maxi-
mizes the overall social welfare of sensor networks, i.e., en-
suring targets coverage maximization while also minimizing
the number of sensors needed. We then show that finding the
optimal overlapping coalition structure of a set of agents in
this type of environment is NP -complete.

Introduction

Background

Cooperation among autonomous agents in multi-agent envi-
ronments is fundamental for agents to successfully achieve
goals for which they lack enough resources. Agents’ re-
sources and skills vary, hence a motivation for agents to
cooperate on tasks that are otherwise difficult for individ-
ual agents to complete or for which better results can be
achieved by working in a group. One way of modeling
such cooperation is via coalition formation. A coalition is a
formal agreement among self-interested agents to complete
mutually beneficial tasks jointly.

Examples of coalition formation can be found in business
(e.g., organizations forming coalitions to make more sales
and hence more profits), in academia (e.g., professors form-
ing coalitions to publish articles), in search and rescue (e.g.,
robotic agents forming coalitions in large natural disaster en-
vironments to save life and properties), and in voting (e.g.,
voters forming coalitions to win elections). Our mundane
day to day activities are not exempted from coalition forma-
tion influence. Thus, we cooperate with others to solve prob-
lems that may be difficult to accomplish individually. This
difficulty may be due to a number of factors, such as time
criticality of tasks, distribution of individual skills and/or re-
sources, and the need for our physical presence in multiple
work places simultaneously.
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Much research on coalition formation has been restricted
to non-overlapping coalition where agents are explicitly as-
sumed to participate or belong to exactly one coalition at a
time. The optimal coalition structure that emerges to execute
tasks is a partition (i.e., disjoint coalitions which are subsets)
of the original set of agents. There are environments, how-
ever, where it is appropriate for agents to belong to more
than one coalition at a time. For example, in multi-sensor
networks, agents (i.e., sensors) can track multiple targets
within their overlapping fields of view simultaneously.

We refer to coalition formation where agents may be-
long to multiple coalitions simultaneously as being overlap-
ping. We investigate overlapping coalition formation model
in multi-sensor networks. Multi-sensor networks are usu-
ally composed of several thousands sensor nodes (Vinyals,
Rodriguez-Aguilar, and Cerquides 2008). Our choice of
overlapping coalition formation in multi-sensor networks is
informed by the emergence of small and inexpensive sen-
sors that have found applications in these large environ-
ments. Their appropriateness for modeling autonomous self-
aware sensors in a flexible way is another important reason
(Vinyals, Rodriguez-Aguilar, and Cerquides 2008).

Motivation

Figure 1 depicts representation for a simple sensor node and
its field of view. The field of view is the area bounded by
the sector within which targets are observable. The area of
the sector determines the range of observation that is avail-
able to the sensor. Thus, sensor nodes have varying range
of fields of view. Sensor nodes orient their fields of view to
indicate active sensing states when tracking targets. This is
achieved by rotating in a circular mode within their fields of
view. When a node senses the presence of targets within its

Figure 1: A simple sensor node and its field of view
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field of view, the sensor reorients to track the targets.
A simple motivation for this problem considers a wire-

less sensor network of four sensor agents, a1, a2, a3, and a4
depicted in figures 2 and 3. Figure 2 shows the initial de-
ployment of the sensors in an area with three targets, t1, t2,
and t3 within the vicinity.

Figure 2: A wireless sensor network of four agents,
a1, a2, a3, and a4 with initial deployment in an area with
three targets, t1, t2, and t3 in the vicinity.

The four sensors (see Figure 2) distributedly reorient from
their initial active sensing states forming coalitions to track
the three targets as shown in Figure 3. There are three coali-
tions, C1 = {a1, a2}, C2 = {a3, a4}, and C3 = {a3} of the
sensor nodes that are formed to track the three targets, t1, t2,
and t3 respectively. Coalitions C2 and C3 are however over-
lapping as C2∩C3 �= ∅. The coalitions remain for as long as
the targets remain in the vicinity of the sensors or until more
important targets appear; at which time the sensors review
their coalitions on how best to track the new targets without
losing focus of the current targets. We infer the importance
of a target in a multi-sensor network environment by the de-
gree of risk such a target may pose compared to other targets
currently within the vicinity of the network.

Figure 3: Sensors distributedly reorient forming coali-
tions to track targets. There are three coalitions, C1 =
{a1, a2}, C2 = {a3, a4}, and C3 = {a3} that are formed
to track the three targets, t1, t2, and t3, respectively. Coali-
tions C2 and C3 are overlapping as C2 ∩ C3 �= ∅.

There are several possible ways sensor nodes can coor-
dinate to form coalitions. We refer to the three coalitions
above together (i.e., {{a1, a2}, {a3, a4}, {a3}}) as an over-
lapping coalition structure. This is just one of the several
overlapping coalition structures from coordination among
the sensor agents. Agents’ decisions to participate in par-
ticular coalitions are influenced by important factors such
as the coalition value (i.e., the largest value a coalition can

achieve by cooperating) and also by the allocation of the
coalition value (i.e., the distribution of the coalition value
among the members of the coalition). We consider this prob-
lem to be one of coalition structure generation. A coalition
structure in non-overlapping domain is a partition of the set
of agents. In our setting, an overlapping coalition structure
is not necessarily a partition of the set of agents since coali-
tions may overlap. Our main results are as follows:

• We use a game-theoretic approach to model the prob-
lem of sensors coordination as that of an overlapping
coalition formation problem. Our model seeks to find the
minimum-sized overlapping coalition structure that maxi-
mizes the overall social welfare of multi-sensor networks.

• We then show that finding the optimal overlapping coali-
tion structure of a set of agents in this type of environment
is NP -complete.

Previous Work

Coalition formation is widely studied and has been ap-
plied to many problems including task allocations (Shehory
and Kraus 1995), multilateral trades (Yeung, Poon, and Wu
1999), multi-sensor networks (Dang et al. 2006), mobile net-
works (Lee and Chen 2006), and human coalition forma-
tion (Khandaker and Sohs 2009). Much research on coalition
formation has been restricted to non-overlapping coalition
where it is assumed that agents may only participate in a
single coalition at a time, so the optimal coalition structure
that emerges to execute tasks is a partition of the original set
of agents. We are concerned in this work with overlapping
coalition formation in multi-sensor networks.

The maiden study of overlapping coalition formation
is the work of Shehory and Kraus (Shehory and Kraus
1996). Their approach is appropriate for agents in a Dis-
tributed Problem Solving (DPS) system where agents are
concerned with the global performance of the system rather
than individual benefits. The paper provides insights into
overlapping coalition formation in a restricted blocks-world
environment where goals or tasks have precedence or-
der. Agents can complete tasks in sequence by belonging
to several coalitions required for the ordered tasks using ap-
propriate capabilities or skills as tasks demand. The work
assumes a sub-additive environment where addition of new
agents to coalitions may lead to overhead from coordination
and communication costs that grows with the size of coali-
tions. Thus, they have restrictions on the size of coalitions
that may form, and, in particular, the grand coalition may
not form. Their overlapping coalition strategy is restricted
to precedenced blocks-world environment and similar do-
mains which is not appropriate for the multi-sensor network
environments that we consider in this work.

Dang et al. (Dang et al. 2006) propose two efficient cen-
tralized algorithms suitable for overlapping coalition for-
mation in multi-sensor network environments. Similar to
Shehory and Kraus work, the paper is concerned with the
overall welfare of the entire system in a cooperative envi-
ronment. They seek to find a coalition structure of agents
that maximizes the system’s welfare. Hence, their algo-
rithms’ performance is judged by the entire welfare of the
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network. The idea of their overlapping coalition formation
ensues when sensors belong to multiple coalitions track-
ing multiple targets simultaneously. Since multi-sensor net-
works are usually composed of several thousands of sensor
nodes (Vinyals, Rodriguez-Aguilar, and Cerquides 2008), it
is clear that centralizing the network may be infeasible for
many reasons - due majorly to resources. A single agent
may not be powerful enough to have all the required re-
sources (e.g., hardware) to globally solve the overlapping
coalition formation problem in the multi-sensor environment
using Dang et al.’s algorithms exclusively.

In contrast to Dang et al.’s, our model assumes that agents
operate in distributed multi-sensor network environments.

Definitions and Notation

Our treatment of overlapping coalition formation in multi-
sensor networks uses ideas from coalitional game the-
ory. We give the following definitions and notation that are
used in the paper. Let I = {1, . . . , n} be a set of n ∈ N
agents. The non-empty subsets, C ⊆ I are called coalitions.
Definition 1. Let (I, v) define a transferable utility coali-
tional game. v : 2I → R is called the characteristic func-
tion of the game, and associates with each coalition C, a
real-valued payoff v(C). v(C) is the largest value that C
can attain by cooperating. The term transferable means that
v(C) can be shared in any manner that the members of C
choose.
Definition 2. Cost, reward, and value of a coalition. Let C
be a coalition of sensor agents that is tracking a target t. Let
the sensing cost SCai

and the communication cost CCai
be

the costs incurred by each sensor ai ∈ C. We define

Q(C) =
∑
ai∈C

SCai
+ CCai

as the overall cost of forming the coalition C. Furthermore,
let R(C) be the reward achieved by coalition C from track-
ing target t. We define v(C), the coalitional value achieved
by C as the net income gained from tracking t as

v(C) = R(C)−Q(C).

Definition 3. An overlapping coalition structure over I is
a collection of non-empty subsets OCSI = {C1, . . . , Ck}
such that

k⋃
i=1

Ci = I and Ci ∩ Cj �= ∅

for some i, j, 1 ≤ i, j ≤ k, and such that i �= j.
This definition implies that the distinct coalitions in

OCSI are not necessarily disjoint. For example, suppose we
have three sensor agents, I = {a1, a2, a3}. The following
are some possible overlapping coalition structures for I:
{
{{a1}, {a1, a2}, {a3}}, {{a2, a3}, {a3}}, {{a1, a2}, {a2, a3}}

}

Definition 4. Let OCSI be an overlapping coalition struc-
ture over I . The value of OCSI denoted by V (OCSI) is

V (OCSI) =
∑

C∈OCSI

v(C).

Definition 5. Overlapping Coalition Structure Generation
(OCSG) Problem. Let Γ(I) be the set of all coalition struc-
tures for I . The optimal overlapping coalition structure
OCS∗

I , is given as:

OCS∗I = arg min
OCSI∈Γ(I)

|OCSI |
(
arg max

OCSI∈Γ(I)
V (OCSI)

)

We seek to find the minimum-sized overlapping coalition
structure that maximizes the overall social welfare of the
system. We want to maximize targets coverage while min-
imizing the number of sensors. We prefer coalition struc-
tures which are small in size because they are easier to form
and manage. Also, intra and inter coalition coordination,
communications, and other overheads increase with coali-
tion structure size.

Example 1. Consider a wireless sensor network of three
sensor agents, a1, a2, and a3, with initial deployment in an
area with two targets, t1 and t2, in their vicinity. We required
that all targets be covered. Let the values for tracking targets
t1 and t2 by coalitions of the sensor agents in this environ-
ment be define as follows.
t1:

v({a1}) = v({a2}) = v({a3}) = 3

v({a1, a2}) = v({a1, a3}) = v({a2, a3}) = 6

t2:
v({a1}) = v({a2}) = v({a3}) = 2

v({a1, a2}) = v({a1, a3}) = v({a2, a3}) = 4

In the non-overlapping coalition domain, the optimal
coalition structure consists of any two-agent coalition track-
ing t1 and a single coalition tracking t2 for a total value of
8. For example,

{
{a1, a2}, {a3}

}
. However, in the overlap-

ping coalition domain, the optimal coalition structure con-
sists of any two-agent coalitions tracking t1 and t2 for a total
value of 10. For example,

{
{a1, a2}, {a2, a3}

}
. Note that

since a coalition can track only one target at a time, then the
grand coalition consisting of all the agents should not form
in both the overlapping and non-overlapping domains.

Complexity Analysis

We show that the OCSG problem is NP -complete. The
well known Set Cover Problem (SCP ) is defined as fol-
lows. Given a collection of n sets S1, S2, . . . , Sn and an in-
teger k. Is there a subcollection of k sets Si1, Si2, . . . , Sik

such that

n⋃
i=1

Si =

k⋃
j=1

Sij .

The subcollection of the k sets includes possibly overlap-
ping sets. The SCP problem is known to be NP -complete
(Garey and Johnson 1979). Observe that the problem of
coalition structure generation in the non-overlapping do-
main, that is also known to be NP-complete (Sandholm et
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al. 1999), is a special case of the OCSG problem. We can
reduce SCP to OCSG. We provide a formal prove of the
following result:

Theorem 1. Finding the optimal overlapping coalition
structure of a set of agents is NP -complete.

Lemma 1. OCSG is in NP.

Proof. We consider the following decision version of the
OCSG problem: Let I be a set of n ∈ N agents and Γ(I)
be the set of all coalition structures for I . Given coalition
values v(C) for some coalitions C ⊆ I and positive real
numbers p and q, does there exists in Γ(I) an OCSI of size
|OCSI |≤ p, with value V (OCSI) ≥ q?

Let us define a nondeterministic algorithm Å that takes as
input an instance of the OCSG problem. We define Å to first
guess some structure OCSI . Then, we have Å verify that
some coalitions in OCSI are overlapping and that OCSI

defines an overlapping coalition structure for I . Further-
more, Å can efficiently check that OCSI indeed contains
at most p coalitions, and then computes its value. Clearly,
all of these verifications can be done in polynomial time. In
particular, computing V (OCSI) involves summing the val-
ues of each coalition C in OCSI , and there are at most p
such coalitions. Thus, OCSG is in NP .

Lemma 2. OCSG is NP -Hard.

Proof. We show that the OCSG problem is NP -hard by
reducing the SCP problem to it. We define a polynomial
transformation from SCP to OCSG as follows. Given a
collection of n sets S1, S2, . . . , Sn and an integer k with
|⋃n

i=1 Si| = q as an instance of SCP . The corresponding
instance of OCSG has a set I =

⋃n
i=1 Si of agents and a

collection of coalitions C1, C2, . . . , Cn that are respectively
identical to S1, S2, . . . , Sn. Note also that |I| = q. For any
coalition Ci, the value v(Ci) of the coalition is set to |Ci| if
Si belongs to a set cover in the SCP instance and 0 other-
wise. Finally, we set p = k. This construction can be done
in time that is polynomial in the size of the SCP instance.

Next, we need to show that the original instance of the
SCP is a yes instance if and only if the OCSG instance
is also a yes instance. Suppose there is a set cover S =
{S1, S2, . . . , Sk} of size at most k in the SCP instance,
then coalitions OCSI = {C1, C2, . . . , Ck} constitute an
overlapping coalition structure of size |OCSI |≤ p = k
with value V (OCSI) ≥ q. This is because each Ci in
OCSG corresponds to a set Si in SCP and hence has value
v(Ci) = |Ci| for a total value of

∑k
i=1 v(Ci) = q.

Now suppose OCSI = {C1, C2, . . . , Cp} is an overlap-
ping coalition structure for I , having size |OCSI |≤ p and
with value V (OCSI) ≥ q. Since each set Ci in the OCSG
instance is associated with each set Si in the SCP instance
and there are exactly p such coalitions implies that we have a
set cover S = {S1, S2, . . . , Sk} of size at most k = p in the
SCP instance. Furthermore, the fact that V (OCSI) ≥ q

implies that |⋃k
i=1 Si| = q since each coalition Ci has a

value v(Ci) = |Ci| if it is in the OCSI or 0 otherwise. Thus,
OCSG is NP -Hard.

Conclusions

We consider overlapping coalition formation in multi-sensor
networks where it is appropriate for sensor agents to belong
to more than one coalition at a time while tracking targets
within their vicinity. The purpose of the overlapping coali-
tion formation ideas is to maximize targets coverage while
also minimizing the number of sensors that are needed. We
use a game-theoretic approach to model this sensors co-
ordination problem. Our model is formulated to find the
minimum-sized overlapping coalition structure that maxi-
mizes the social welfare of sensor networks. We also show
that finding the optimal overlapping coalition structure of a
set of agents in this type of environment is NP -complete.

Having established the computational complexity of the
overlapping coalition formation problem in this environ-
ment, a natural future work is to develop efficient approx-
imation algorithms that sensors can distributedly use to co-
ordinate. Theoretical and empirical evaluations of such al-
gorithms to establish performance will also be considered.
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