
On Finding Relevant Variables in Discrete Bayesian Network Inference

Cory J. Butz
butz@cs.uregina.ca

University of Regina
Canada

André E. dos Santos
dossantos@cs.uregina.ca

University of Regina
Canada

Jhonatan S. Oliveira
oliveira@cs.uregina.ca
University of Regina

Canada

Abstract

A central task in discrete Bayesian network (BN) inference is
to determine those variables relevant to answer a given query.
Two linear algorithms for this task explore the possibly rel-
evant and active parts of a BN, respectively. We empirically
compare these two methods along with a variation of each.

Introduction

Discrete Bayesian networks (BNs) (Pearl 1988) continue to
be important today in a wide range of applications, including
deep learning (Goodfellow, Bengio, and Courville 2016).
Sum product networks (SPNs) (Poon and Domingos 2011)
are a deep learning model for which impressive empirical
results have been obtained in image completion, computer
vision, classification, and speech recognition. Studies are in-
vestigating relationships between BNs and SPNs with in-
teresting findings. Zhao, Melibari, and Poupart (2015) have
shown that any complete and decomposable SPN is equiv-
alent to a BN with size proportional to the size of the SPN.
Moreover, Kazemi and Poole (2016) have investigated ap-
plying methods for detecting barren variables (Shachter
1986) in BNs to another deep learning model, called arith-
metic circuits (Darwiche 2009). Thereby, BN advancements
may aid both the BN and deep learning communities.

One fundamental task in BN inference is to determine
the variables necessarily required to answer a query. These
variables are called relevant. Consider a query P (X|Y),
where X and Y are disjoint sets of variables in a BN B,
and let An(X ∪ Y) be ancestors of X ∪ Y in B. (Geiger,
Verma, and Pearl 1990) established that all variables not in
X ∪Y ∪An(X ∪Y) are necessarily irrelevant to answer the
query. In other words, the only variables that can possibly
be relevant are restricted to those in X , Y , and An(X ∪ Y).
Consequently, we call the sub-DAG induced by these vari-
ables the possibly relevant part of the BN. Each variable
within the possibly relevant part may or may not be relevant.
(Geiger, Verma, and Pearl 1990) gave the first linear algo-
rithm, which we will call GVP, to find relevant variables.

Bayes-Ball (Shachter 1998) is another linear algorithm of-
ten used for finding relevant variables. Bayes-Ball is a con-
ceptually simple algorithm that works by considering how

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a hypothetical ball bounces in a BN according to specified
rules. However, Bayes-Ball is a dual-purpose algorithm that
can also concurrently test whether a given conditional inde-
pendence (Pearl 1988) relation holds in a BN. More specif-
ically, given disjoint sets X and Y in BN B, Bayes-Ball can
determine at the same time both the relevant variables for
P (X|Y) and the variables conditionally independent of X
given Y . It does so by finding all variables that are reach-
able from X along active paths with respect to Y . If, how-
ever, one is only interested in finding the relevant variables
for P (X|Y), then Bayes-Ball can spend time exploring vari-
ables that are necessarily irrelevant to P (X|Y).

In this paper, we propose relevant active ancestors (RAA)
as a novel method for determining the relevant variables
for a query P (X|Y) posed to a discrete BN B. All active
paths are defined with respect to Y . The active ancestors
of a set W of variables, denoted AW , are the variables in
W together with all variables in An(W) − Y with an ac-
tive, directed path to W . AX , the active ancestors of X , are
necessarily relevant. Unfortunately, the active ancestors of
Y may contain irrelevant variables. Our solution is to first
compute the active ancestors Ay for each y ∈ Y and then
collect those Ay containing the missing relevant variables.
We establish the soundness of RAA and show that it is a
linear algorithm. As a variant of Bayes-Ball, we propose rp-
relevant as another algorithm for finding relevant variables.
In this case, rp-relevant is a slight modification of a faster
method for testing independence in a BN (Butz, dos Santos,
and Oliveira 2016). A thorough experimental analysis is per-
formed between GVP, Bayes-Ball, RAA, and rp-relevant on
16 benchmark BNs using queries of 6 different sizes. RAA
is almost always the fastest of the four.

Background

Let U = {v1, v2, . . . , vn} be a finite set of variables (nodes).
Let B denote a directed acyclic graph (DAG) on U . A di-
rected path from v1 to vk is a sequence v1, v2, . . . , vk with
directed edges (vi, vi+1) in B, i = 1, 2, . . . , k − 1. For each
vi ∈ U , the ancestors of vi, denoted An(vi), are those vari-
ables having a directed path to vi, while the descendants of
vi, denoted De(vi), are those variables to which vi has a
directed path. For a set X ⊆ U , we define An(X) in the
obvious way. The children Ch(vi) and parents Pa(vi) of
vi are those vj such that (vi, vj) ∈ B and (vj , vi) ∈ B,

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

730

respectively. An undirected path in a DAG is a path ignor-
ing directions. A singleton set {v} may be written as v and
{v1, v2, . . . , vn} as v1v2 · · · vn. The cardinality of a set W
is denoted |W |.

A Bayesian network (BN) (Pearl 1988) is a DAG B
on U together with conditional probability tables (CPTs)
P (v1|Pa(v1)), P (v2|Pa(v2)), . . . , P (vn|Pa(vn)). For ex-
ample, Figure 1 (i) shows a BN, where CPTs P (a), P (b|a),
. . . , P (l|k) are not provided. We call B a BN, if no con-
fusion arises. The product of the CPTs for B on U is a
joint probability distribution P (U). Given pairwise disjoint
X,Y, Z ⊆ U , the conditional independence (Pearl 1988) of
X and Z given Y holding in P (U) is denoted I(X,Y, Z).
It is known that if IB(X,Y, Z) holds in B by d-separation,
then I(X,Y, Z) holds in P (U) (Pearl 1988).

(i) (ii) (iii)

Figure 1: A BN B in (i). Given query P (g|b, d, i), (ii) the
possibly relevant part considered by GVP and RAA, and (iii)
the active part considered by Bayes-Ball.

All methods discussed here for finding relevant variables
are based upon the linear implementation of d-separation in
(Geiger, Verma, and Pearl 1990). d-Separation (Pearl 1988)
tests independencies in BNs and can be presented as follows
(Darwiche 2009). Let X , Y , and Z be pairwise disjoint sets
of variables in a DAG B. We say X and Z are d-separated
by Y , denoted IB(X,Y, Z), if at least one node on every
undirected path between X and Z is closed. There are three
kinds of nodes v: (i) a sequential node means v is a parent of
one of its neighbours and a child of the other; (ii) a divergent
node is when v is a parent of both neighbours; and, (iii) a
convergent node is when v is a child of both neighbours. A
node v is either open or closed. A sequential or divergent
node is closed, if v ∈ Y . A convergent node is closed, if
(v ∪De(v))∩Y = ∅. A path with a closed node is blocked;

otherwise, it is active.
Inference is a fundamental task in BNs. The task is to an-

swer a given query P (X|Y) posed to a BN B, where X and
Y are disjoint sets of variables in B. More specifically, the
problem is to identify those variables necessarily required
to answer the query. These variables are called relevant, de-
noted R. Determining the relevant variables is useful as the
query can be answered using only the CPTs of the relevant
variables. As a running example, consider query P (g|b, d, i)
posed to the BN B in Figure 1 (i). The relevant variables are

R = {a, b, e, f, g, i}, (1)

since only P (a), P (b|a), P (e|d), P (f |e), P (g|f), and
P (i|a, e) are necessarily required to answer P (g|b, d, i).

(Geiger, Verma, and Pearl 1990) gave the first linear
method, which we will call GVP, for finding relevant vari-
ables. There it is shown that all variables not in X ∪ Y ∪
An(X∪Y) are necessarily irrelevant to answer P (X|Y). In
other words, the only variables that can possibly be relevant
to P (X|Y) are restricted to X∪Y ∪An(X∪Y). We call the
sub-DAG of B restricted to these variables the possibly rele-
vant part of B. In our running example, the possibly relevant
part of B is depicted in Figure 1 (ii). Given a query P (X|Y)
posed to a BN, (Geiger, Verma, and Pearl 1990) finds rele-
vant variables as follows. First, compute Y ∪An(Y). Next,
find variables reachable from X along active paths with
respect to Y in an iterative fashion by considering adja-
cent edges (to X initially) and adding those that are legal.
(Geiger, Verma, and Pearl 1990) decide active paths in the
BN by constructing a directed graph contain every edge of
the BN in the forward and reverse direction, adding an aux-
iliary node s with an edge from s to every node in X , and
specifying a set F of illegal pairs of edges. The relevant vari-
ables are the reachable variables.

Example 1. Consider query P (g|b, d, i) posed to BN B in
Figure 1 (i). The possibly relevant part is in Figure 1 (ii). A
directed graph D′ is then constructed with edges:

{(a, b), (b, c), (c, d), (d, e), (e, f), (f, g), (e, i), (a, i),
(b, a), (c, b), (d, c), (e, d), (f, e), (g, f), (i, e), (i, a)}.

Based upon the definition of active paths, the set F of illegal
pairs of directed edges in D′ includes

[(a, b), (b, c)], [(c, d), (d, e)], and [(a, i), (i, e)]. (2)

Mark nodes g and s as reachable and consider edge (s, g).
There are 4 adjacent edges to evaluate, including (g, f).
Since the pair of edges

(s, g), (g, f) (3)

is legal (the pair is not in F), node f is marked as reachable.
Now, in an iterative fashion, consider (g, f). The 3 adjacent
edges to evaluate are (e, f), (f, e), and (f, g). As the pair

(g, f), (f, e) (4)

is legal, node e is marked as reachable. The remainder of
the example follows similarly, yielding reachable variables
R = {a, b, e, f, g, i}.

731

Notice that variable i is necessarily a convergent variable
in B, but GVP treats it as sequential in (2). Similarly, vari-
able a is necessarily divergent, by definition, but GVP treats
it as sequential when considering (b, a), (a, i).

Bayes-Ball (Shachter 1998) is another linear algorithm
that concurrently solves two problems related to two disjoint
sets X and Y in a BN B. First, it can determine the rele-
vant variables needed to answer P (X|Y). Second, it can de-
cide whether a set Z is conditionally independent of X given
Y . Bayes-Ball solves these two problems using three main
variables: V denotes the variables that have been visited;
T denotes the variables marked on top; and B denotes the
variables marked on bottom. The relevant variables are T .
The independence I(X,Y, Z) holds in B, if Z ⊆ (U − B).
Bayes-Ball is given as Algorithm 1 (Shachter 1998).

Algorithm 1 Bayes-Ball gives the relevant variables T for
query P (X|Y) and B for the independence I(X,Y, U−B).

1: procedure BAYES-BALL(X , Y , B)
2: Create a schedule of nodes to be visited, initialized

with each node in X to be visited as if from a child.
3: while there are still nodes scheduled to be visited do
4: Remove any node v from the schedule.
5: Mark v as visited. � Update V
6: if the visit to v is from a child and v /∈ Y then
7: if v’s top is not marked then
8: mark its top � Update T
9: schedule its parents to be visited.

10: if v’s bottom is not marked then
11: mark its bottom � Update B
12: schedule its children to be visited.
13: if the visit to v is from a parent then
14: if v ∈ Y and v’s top is not marked then
15: mark its top � Update T
16: schedule its parents to be visited.
17: if v /∈ Y and v’s bottom is not marked then
18: mark its bottom � Update B
19: schedule its children to be visited.
20: return T ,B

Example 2. Given X = {g} and Y = {b, d, i}, let us
run Bayes-Ball in the BN B of Figure 1 (i). The reader
can verify that upon termination: the visited variables are
V = {a, b, d, e, f, g, h, i, k, l}; the variables marked on
top are T = {a, b, e, f, g, i}; and the variables marked on
bottom are B = {a, e, f, g, h, k, l}. The variables marked
on top T are precisely the relevant variables in (1). More-
over, the conditional independence

I(X,Y, U −B) ≡ I(g, bdi, bcdij) ≡ I(g, bdi, cj)

holds in B meaning that the set of variables that are condi-
tionally independent of g given {b, d, i} is {c, j}.

Example 2 highlights the elegance of Bayes-Ball. In fact,
Bayes-Ball and GVP can run on BNs with functional nodes,
as well as on influence diagrams (Shachter 1998). These
properties are outside of the scope of this study and are omit-
ted.

Finding Relevant using Active Ancestors

We begin by introducing the key notion of active ancestors.
All active paths are defined with respect to Y in P (X|Y).
Definition 1. The active ancestors of a set W of variables
in BN B, denoted AW , are the variables in W together with
all variables in An(W)−Y with an active, directed path to
W .

The set Y is not explicitly stated in the notation for AW ,
since all active ancestor sets are defined with respect to Y .
Example 3. Given query P (g|b, d, i) posed to B in Fig-
ure 1 (i), X = {g} and Y = {b, d, i}. Let us compute
the active ancestors AX . Variable e is an active ancestor
of g, since e ∈ An(g) − Y and there is an active, di-
rected path (e, f), (f, g) from e to g. Node a is an ances-
tor of g, but not an active ancestor of g, since the directed
path (a, b), (b, c), (c, d), (d, e), (e, f), (f, g) is blocked by b
(or d). Moreover, the path (a, i), (e, i), (e, f), (f, g) is ac-
tive, but is not directed. Variable g is in AX , since g ∈ X .
The set of all active ancestors of X in B is:

AX = {e, f, g}. (5)

The variables in AX are relevant to answer query
P (X|Y), that is, AX ⊆ R. For example, AX in (5) is in-
deed a subset of R in (1).

What remains is to find any missing relevant variables,
namely, those in R−AX . In our running example, R−AX =
{a, b, i}. To do this, we first compute the active ancestors
of each variable y ∈ Y , denoted Ay . Second, we determine
R−AX by finding all variables reachable along active paths
from X , where both nodes of each edge in the path are com-
mon to at least one set of active ancestors AX for X or Ay

for y ∈ Y .
Example 4. Let us compute the active ancestors for each
variable of Y = {b, d, i} in our running example. First, for
b ∈ Y , consider computing Ab. Since (a, b) is the only ac-
tive, directed path to b, the active ancestors of b ∈ Y are

Ab = {a, b}. (6)

Next, the active ancestors of d ∈ Y are

Ad = {c, d}. (7)

Finally, the active ancestors of i ∈ Y are

Ai = {a, e, i}. (8)

The active ancestors Ab, Ad, and Ai in Example 4 and the
active ancestors AX in Example 3 are depicted in Figure 2.

We now present the relevant active ancestors (RAA) al-
gorithm. RAA computes the relevant variables for answer-
ing a query P (X|Y) posed to a discrete BN B. RAA first
computes the active ancestors AX for X . RAA then com-
putes the active ancestors Ay , for each y ∈ Y . In order to
avoid computing the active ancestors of a variable twice, a
variable is marked as visited when it is first encountered.
Moreover, when visiting v for the first time, if a parent vi
of v will be scheduled to be visited, the edge (vi, v) in BN
B is marked. Marked edges will be used to compute R. The
RAA algorithm is now given formally as Algorithm 2.

732

Figure 2: Active ancestors AX , Ab, Ad, and Ai in Examples
3 and 4, given P (g|b, d, i) posed to B in Figure 1 (i).

Algorithm 2 Relevant Active Ancestors (RAA) returns the
relevant variables to answer query P (X|Y) posed to BN B.

1: procedure RAA(P (X|Y), B)
2: AA(X,Y,B) � Compute AX

3: for each y ∈ Y do
4: AA(y, Y,B) � Compute Ay

5: R ← {v | v is reachable along an active path from
X with respect to Y in B using only marked edges}

6: return R

Example 5. Given query P (g|b, d, i) posed to the BN B in
Figure 1 (i), let us run RAA to find the relevant variables.
Here, X = {g} and Y = {b, d, i}. Line 2 calls Algorithm 3
to compute AX . In Algorithm 3, line 2 initializes L = {g}
as the variables to visit. Node g is removed from L in line 4,
and since this is the first time g is encountered, g is marked
as visited in line 6. Consider the parent f of g in line 7.
Since f /∈ Y in line 8, the set of nodes to visit is updated
as L = {f} on line 9. The edge (f, g) is marked in B on
line 10. When considering node f on the next iteration of
the while loop in line 3, node f is marked as visited, L =
{e}, and edge (e, f) is marked in B. Consider node e on the
next iteration of the while loop. Node e is marked as visited.
When considering parent d of e in line 7, since d ∈ Y , it
is not added as a node to visit, nor is edge (d, e) marked in
B. As L = ∅, control returns to Algorithm 2. Thus, line 2 of
RAA computed AX = {e, f, g}, variables e, f , and g were
marked as visited in B, and edges (e, f) and (f, g) were
marked in B.

Next, consider the for loop in line 3 of RAA, which will
compute Ab = {a, b}, Ad = {c, d}, and Ai = {a, e, i}. In
the call to Algorithm 3 in line 4 when considering b ∈ Y ,
nodes a and b are marked in B, and edge (a, b) is marked in

B, too. Similarly, the call to Algorithm 3 for d ∈ Y results
in nodes c and d, as well as edge (c, d), being marked in B.
Finally, node i and edges (a, i) and (e, i) are marked in B
during the call to Algorithm 3 for i ∈ Y .

Now consider line 5 in RAA. The marked edges in B are

(a, b), (a, i), (c, d), (e, f), (e, i), (f, g). (9)

Those variables reachable along active paths from X = {g}
with respect to Y = {b, d, i} using only marked edges are

R = {a, b, e, f, g, i}. (10)

Algorithm 3 Active Ancestors (AA) computes the active an-
cestors of W with respect to Y in a BN B.

1: procedure AA(W , Y , B)
2: L ← W � Variables to visit
3: while L 	= ∅ do
4: Remove v from L
5: if v is unmarked then � If not visited before
6: Mark v as visited
7: for each vi ∈ Pa(v) do � For each parent
8: if vi /∈ Y then � that is not in Y
9: L ← L ∪ {vi} � visit vi

10: Mark edge (vi, v) in B

RAA is sound and has linear complexity.
Lemma 1. Algorithm 3 correctly computes the active an-
cestors AW of W in B with respect to Y .
Theorem 1. The RAA algorithm correctly computes the rel-
evant variables for query P (X|Y) posed to a BN B.

Given P (g|b, d, i) posed to B in Figure 1 (i),
RAA(P (g|b, d, i),B) returns R = {a, b, e, f, g, i}. These
are precisely the relevant variables in (1).

The size of a DAG B is defined in terms of the number of
nodes and the number of edges (Koller and Friedman 2009).
Theorem 2. RAA is linear in the size of DAG B.

Experimental Results

We report on an empirical comparison of GVP, Bayes-Ball,
RAA, and rp-relevant. All methods were implemented in
Python using the NetworkX library (see networkx.github.io)
and conducted on a 2.9 GHz Inter Core i7 with 8 GB RAM.
The experiments reported in Figure 3 were carried out on the
16 BNs in Table 1. The second column of Table 1 reports the
number of nodes of each BN, while the third column shows
the percentage of leaves (nodes without children). For each
BN, 1000 queries P (X|Y) were randomly generated with
each of X and Y being set to 1%, 5%, 10%, 15%, 20%, and
25% of |U |, yielding 6000 queries in total.

Figure 3 shows the average logarithmic time in seconds
for each percentage group, where higher is faster. It can be
seen that RAA was faster than Bayes-Ball and GVP in 91
out of 96 cases. RAA was faster than rp-relevant in all cases.
RAA’s performance is inversely related to query size.

Table 2 shows the average time savings as percentage of
RAA over Bayes-Ball, GVP, and rp-relevant for each group.

733

(i) X and Y are set to 1% of |U | (ii) X and Y are set to 5% of |U |

(iii) X and Y are set to 10% of |U | (iv) X and Y are set to 15% of |U |

(v) X and Y are set to 20% of |U | (vi) X and Y are set to 25% of |U |

Figure 3: The average time to answer 1000 random queries P (X|Y) in each BN.

The average time gains of RAA over Bayes-Ball ranged
from 78% to 28%. Note that Bayes-Ball is almost always
faster than RAA in the Andes BN. Andes is perhaps con-
ducive for Bayes-Ball and hinders RAA because its topo-
logical structure has very few leaf variables relative to its
size (11%). Fewer leaf variables may suggest both a mea-
ger number of barren variables and an abundant number of
independent by evidence (Madsen and Jensen 1999) vari-

ables. This is favourable to Bayes-Ball, which explores bar-
ren but not independent by evidence, and unfavourable to
RAA, which explores the converse.

The average time gains of RAA over GVP ranged from
73% to 46%. GVP will necessarily visit the nodes in the
active part of An(Y) twice, whereas RAA will visit these
nodes only once. Moreover, GVP performs graphical ma-
nipulation, whereas RAA only performs graph traversal.

734

Table 1: Properties of the 16 BNs used in our experiments.

BN #Nodes %Leaves
child 20 35%
insurance 27 22%
water 32 25%
alarm 37 30%
hailfinder 56 23%
hepar2 70 59%
win95pts 76 21%
pathfinder 109 71%
munin1 186 17%
andes 223 11%
pigs 441 32%
link 724 18%
munin2 1003 18%
munin4 1038 17%
munin 1041 18%
munin3 1041 18%

Table 2: Average time savings as a percentage of RAA over
Bayes-Ball, GVP, and rp-relevant for each group.

Algorithm 1% 5% 10% 15% 20% 25%
Bayes-Ball 78% 62% 48% 40% 34% 28%
GVP 73% 65% 57% 53% 50% 46%
rp-relevant 71% 71% 71% 73% 74% 75%

Lastly, we describe two possible applications of RAA in
deep learning. Arithmetic circuits (ACs) (Darwiche 2003)
are built from BNs and are used in deep learning (Poon and
Domingos 2011). The computation process is linear and in-
volves every node in the AC. (Kazemi and Poole 2016) at-
tempt to exploit irrelevant variables in ACs when answer-
ing a query P (X|Y) with X∪Y⊂U . Irrelevant variables are
either barren or independent by evidence (or both). Their
approach, however, detects irrelevant variables in the given
BN and then attempts to incorporate this information into
the constructed AC. Let W = X∪Y ∪An(X ∪ Y). All vari-
ables in U − W are barren (Zhang and Poole 1994). Our
key point is that the independent by evidence variables are
W−R, where R are the relevant variables returned by RAA.

Another application is (Zhao, Melibari, and Poupart
2015), where VE is applied on a BN to build a SPN. As with
ACs, the SPN inference process involves all nodes. How-
ever, if SPNs are extended to answer queries P (X|Y) with
X∪Y⊂U , then detecting relevant variables may be vital.

Conclusion

Determining relevant variables for a query posed to a BN is a
central task in inference. In this paper, we have put forth Rel-
evant Active Ancestors (RAA) as a new method for finding
relevant variables. The correctness of RAA is stated in Theo-
rem 1, while its linear complexity is in Theorem 2. RAA ap-
pears to be a very effective method in practice. The thorough
empirical evaluation in Figure 3 shows that RAA tends to be
faster than GVP (Geiger, Verma, and Pearl 1990) and Bayes-
Ball (Shachter 1998), two linear approaches for finding rele-

vant variables, by an average of 57% and 48%, respectively.
Although linear, Bayes-Ball can consider variables that are
necessarily irrelevant in its effort to be a dual-purpose algo-
rithm.

References

Butz, C. J.; dos Santos, A. E.; and Oliveira, J. S. 2016. Rel-
evant path separation: a faster method for testing indepen-
dencies in Bayesian networks. In Proceedings of the Eighth
International Conference on Probabilistic Graphical Mod-
els, 74–85.
Darwiche, A. 2003. A differential approach to inference in
Bayesian networks. Journal of the ACM 50(3):280–305.
Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.
Geiger, D.; Verma, T.; and Pearl, J. 1990. Identifying inde-
pendence in bayesian networks. Networks 20(5):507–534.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press.
Kazemi, S. M., and Poole, D. 2016. Lazy arithmetic circuits.
In Workshops at the Thirtieth AAAI Conference on Artificial
Intelligence.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Madsen, A. L., and Jensen, F. V. 1999. Lazy propagation: A
junction tree inference algorithm based on lazy evaluation.
Artificial Intelligence 113(1-2):203–245.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Poon, H., and Domingos, P. 2011. Sum-Product Networks:
A New Deep Architecture. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence,
337–346.
Shachter, R. D. 1986. Evaluating influence diagrams. Op-
erations Research 34(6):871–882.
Shachter, R. D. 1998. Bayes-ball: The rational pastime (for
determining irrelevance and requisite information in belief
networks and influence diagrams). In Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelli-
gence, 480–487.
Zhang, N. L., and Poole, D. 1994. A simple approach to
Bayesian network computations. In Proceedings of the Tenth
Canadian Artificial Intelligence Conference, 171–178.
Zhao, H.; Melibari, M.; and Poupart, P. 2015. On the rela-
tionship between sum-product networks and Bayesian net-
works. In Proceedings of Thirty-Second International Con-
ference on Machine Learning.

735

