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Abstract
The use of graph based anomaly detection has applications 
in a variety of diverse fields including health care, networks, 
finance, and insurance. Detecting anomalies using graphs 
has become important recently due to the interdependence 
of data from the web, emails, phone calls, etc. In this paper, 
we introduce a novel approach for graph-based anomaly de-
tection by adding background knowledge to the evaluation 
metrics used in a traditional graph-mining approach, where 
we bias the substructure discovery process towards discov-
ering anomalous substructures. Background knowledge is 
added in the form of rule coverage, which reports the per-
centage of the final graph covered by the instances of the 
substructure. Since one would expect that anomalies would 
be infrequent, it is our hypothesis that by assigning negative 
weights to the rule coverage, we can discover anomalous 
substructures. We are able to empirically evaluate that our 
proposed approach is comparable in accuracy to other ap-
proaches, and because the search space is reduced, do it in a 
fraction of the time. We test our approach on the well-
known KDD Cup 99 network intrusion dataset. 

 Introduction
In a highly-connected world, a huge amount of data is 
being generated from social networks, blog networks, 
telephone networks, etc. In addition to their voluminous 
nature, much of the generated data is inter-dependent in 
nature, whereby links exist or can be inferred between 
entities across domains. Representing these types of data as 
graphs provide for a meaningful representation that can be 
used for searching, analyzing, or discovering interesting 
patterns. Detecting anomalies from datasets represented in 
the form of graphs is known as graph based anomaly 
detection [Padmanabhan et al. 2014]. Graph based 
anomaly detection enables one to analyze datasets in a way 
that traditional data mining approaches cannot do easily: 
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looking for structure in a network of data [Akoglu et al. 
2014].  In this work, we present a novel approach for 
detecting anomalous substructures in a graph using 
background knowledge. The key to the proposed approach 
lies in the definition of anomaly. Our definition of anomaly 
is same as the one defined by [Noble and Cook 2003], i.e., 
anomalous substructures occur infrequently when 
compared to normative substructures. In their approach, 
they use the SUBDUE pattern discovery system which 
defines relevant substructures as those that compress the 
graph the best using the Minimum Descriptive Length 
(MDL) principle [Peter and Centrum 2005]. In earlier work 
by [Cook and Holder 1994], they use background 
knowledge to further refine the search process for 
discovering interesting normative patterns. In this work, it 
is our hypothesis that one could use background knowledge 
in the form of “rule coverage”, augmenting existing 
evaluation techniques, such as MDL and size (used in 
approaches like SUBDUE), to discover anomalous 
substructures.
The contributions of this work are as follows: 

• A novel graph based anomaly detection approach, 
• The use of a background knowledge rule, with 

MDL and size metrics, to aide in discovering 
anomalous substructures, 

• A comparative analysis of MDL and size metrics, 
• Calculating a prior value of rule coverage that 

guides the discovery of anomalous substructures, 
and

• Empirical evaluation on KDD Cup 99 datasets. 
In the following sections, first we cover basic 

definitions, types of anomalies and in particular graph 
based anomalies. Then we give related work on graph-
based anomaly detection. Next we present our proposed 
algorithms followed by detailed discussion of algorithms. 
We then present an implementation of our proposed 
approach followed by the data used in our experiments and 
the results.  We evaluate our approach on the well-known 
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KDD Cup 99 network intrusion dataset. We then conclude 
this work with comparisons and potential future work. 

Background

First, we will present some definitions related to graphs 
that we will be using in this work, followed by a discussion 
of graph-based anomalies.

Definition 1 A graph G= (V, E) consists of a set of vertices 
where V= { v1, v2, v3,... } and a set of edges where E={ e1, 
e2, e3,...}
Definition 2 A vertex, or node, in a graph represents a 
single entity [3].
Definition 3 An edge, or link, in a graph represents a 
relationship or transaction between two vertices [3].
Definition 4 Anomaly detection is the process of 
identifying data points, items or observations that do not 
conform to expected behaviour [1]. 
Definition 5 Coverage refers to the fraction of a 
substructure in a graph that is described by the instances 
of the corresponding substructure.

Graph-Based Anomalies 
An anomaly in a graph can be the result of various differ-
ent types of structural changes [Eberle and Holder 2007]. 
Structural changes include the following: 
• Insertions:  An unexpected vertex or edge is present.
• Modifications: The type of vertex or edge is 

unexpected.
• Deletions:  An expected vertex or edge is absent.
Figure 1 demonstrates each of the structural changes.

Figure 1. Example Graph Showing Different Types of Anomalies   

In Figure 1, the vertex encircled represents an 
anomalous modification (i.e., the vertex is labelled with a 
“D” rather than an expected “C”); the vertex blocked with 
a square represents an anomalous extension (i.e., an 
extension to a vertex labelled “C”, rather than “D”); and 
the edge outlined with a triangle represents an anomalous 
deletion (i.e., missing an edge).

In this work, we will adopt the definition of a graph-
based anomaly as the one defined by [Noble and Cook 
2003]. Generally, anomalous substructures occupy only a 
small portion of the entire graph. Frequent substructures 
are those which generally consist of repeatable 

substructures, whereas anomalous substructures are less 
repeatable. Take the example shown in Figure 2.

Figure 2. Sample Graph

In this example, the substructure “A-B” occurs twice, 
while the substructure “D-C” only appears in the graph 
once. Thus, “D-C” is considered anomalous.

Figure 3. Sample Graph

Figure 3 provides another example of a typical graph 
structure. In this work, our hypothesis for anomaly 
detection is based on the number of instances of each 
substructure. Substructures which have a fewer number of 
instances are considered as more anomalous. In this 
particular example, substructures “X” and “I” are more 
anomalous as they have only one instance.

Related Work
[Noble and Cook 2003] identify both anomalous 
substructures and subgraphs using a variant of the 
Minimum Description Length (MDL) principle. They 
address (1) the problem of finding unusual substructures in 
a given graph and (2) the problem of finding unusual 
subgraphs. The main insight into solving these problems is 
to look for structures that occur infrequently, which are 
roughly opposite to what are called the “best 
substructures”. However, their methods work with only 
categorical attributes, whereas many datasets often contain 
both numerical and categorical attributes. [Chakrabarti 
2004] uses the Minimum Description Length principle to 
detect outliers. His AUTOPART system is based on the 
notion that nodes with similar neighbors are clustered 
together, and the edges that do not belong to any structure 
constitute anomalies. Similarly, nodes that have many 
cross-connections to multiple different communities are 
considered not to belong to any particular cluster and thus 
also constitute anomalies. [Moonesinghe and Tan 2006] 
propose a random walk approach for outlier detection. In 
their approach, they calculate what they call the normality 
scores of vertices, where an anomalous vertex is the one 
with the lowest normality score. However, the performance 
of random walk technique is highly dependent on the 
choice of similarity measure, and does not scale well to 
large graphs. 
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     The approach by [Sun and Faloutsos 2005] detects 
anomalies in bipartite graphs. The two main problems they 
address are (1) how to find the community of a given node, 
which is also referred as the “neighborhood” of a node, and 
(2) how to quantify the level of the given node to be a 
bridge node. [Qiu at al. 2016] use weighted bipartite 
graphs to detect abnormal activities in vehicle inspection 
stations. Their idea is to detect abnormal behaviors based 
on the distribution of normality scores. [Chen et al. 2010] 
perform community-based anomaly detection using the 
concept of graph representatives and community 
representatives. Their approach is applicable to 
evolutionary networks even with overlapping communities. 
[Eberle and Holder 2007] developed the Graph Based 
Anomaly (GBAD) system to detect the three structural 
anomalies discussed earlier. However, in their GBAD 
system, if the type of anomaly is not known beforehand, 
the user may need to run all three GBAD algorithms. For 
more detailed information, the reader can refer to a survey 
on graph based anomaly detection [Akoglu et al. 2014]. 

Proposed Approach
What we are proposing in this work is a novel way to de-
tect graph-based anomalies that improve upon existing ap-
proaches by reducing the search space, false positive rates, 
and time complexity. Our first proposed approach, which 
we call Instances-based MDL Anomaly Detection 
(IMAD), uses the MDL evaluation metric (which will be 
discussed in more detail later). Algorithm 1 presents the 
steps of our IMAD approach.   

Algorithm 1: IMAD (Instances-based MDL Anomaly De-
tection) Proc IMAD
1: Discover the normative substructures S from Graph G 
which minimize DL(S)+DL(G|S), DL= Description Length
2:  Identify substructures S in G having least number of in-
stances, Ik
3: Return all substructures having the least number of In-
stances.

Our second proposed approach, which we call Instances-
based Size Anomaly Detection (ISAD), uses a size evalua-
tion metric (again, we will discuss in more detail later). 
Algorithm 2 presents the steps of our ISAD approach.   

Algorithm 2: ISAD (Instance-based Size Anomaly Detec-
tion) Proc ISAD
1: Discover the normative substructures S from Graph G 
which minimize size(S)+size(G|S), size= #vertices+#edges
2: Identify substructures S in G having least number of in-
stances, Ik
3: Return all substructures having the least number of In-
stances.

The IMAD approach uses the MDL evaluation metric, 
whereas the ISAD approach uses a size evaluation metric 
for a graph G. Both algorithms first discover a normative  
substructure Si where a normative substructure S is a 
subgraph that has an associated description and a set of 
instances in the input graph, G. After which, the number of 
instances of the normative substructures, where an instance 
is an occurrence of a substructure S in a graph G, is 
returned. In the end, substructures having the fewest 
number of instances are reported. 

The difference between these two algorithms lies in the 
evaluation metric. While we can discover anomalous 
substructures using either algorithm, there are pros and 
cons to each approach.  For instance, the ISAD approach is 
faster because it uses a simple size evaluation metric, 
whereas calculating compression is slightly costlier. 
However, the structure of the graph may affect the 
discovery process.  For example, if there are many 
overlapping substructures in a graph, the size metric may 
discover anomalous substructures that the MDL metric 
may not, and vice-versa. In addition, the MDL metric is 
more widely used in the literature, and has many 
applications in various domains. Thus, we will present 
results using both evaluation metrics. 

Evaluation Metrics
The hypothesis of this work is that we can use the 
background knowledge of evaluation metrics in order to 
guide the graph-based anomaly detection process. Our 
proposed algorithm IMAD uses the MDL evaluation
metric, whereas our proposed ISAD approach uses the size 
evaluation metric.

MDL Encoding of Graphs
The concept of MDL [Rissanen.J 1984] was first intro-
duced by Jorma Rissanen. The MDL principle involves the 
relation between the regularity in data and the compression 
of data. The principle implies that whenever we are able to 
compress the data well, there is much regularity in the data. 
The concept of MDL is employed in many data mining 
tasks, including outlier detection, clustering, and feature 
selection [Charu et al. 2014]. 

In order to implement our approach, we will use the 
publicly available SUBDUE system. SUBDUE uses a 
model evaluation method called "Minimum Encoding", a 
technique derived from the MDL principle. MDL states 
that the best description of a data set is the one that 
minimizes the description length of the entire data set. In 
SUBDUE, the best description of the dataset is the one that 
minimizes DL(S)+DL(G|S), where S is the substructure, 
DL(S) is the number of bits (i.e., description length, or DL) 
required to encode S, and DL(G|S) is the length of the 
encoding of G after being compressed using S. 
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In SUBDUE, graph connectivity is represented using an
adjacency matrix. So, for an adjacency matrix A:
A[i, j]=1, when there is edge between vertex i and vertex j, 
andA[i, j]=0, when there is no edge between vertex i and j.
•  For encoding vertex labels, vbits are needed.

where, V is the number of vertices and lu is the number of 
unique labels. 
• rbits are needed to encode the rows in the adjacency 

matrix. 

where, Ki is the number of 1’s in the ith row and  b=maxi Ki.

• For encoding edges, ebits are needed. 

where, K is the number of 1’s in adjacency matrix, 
m=maxi,j e(i,j),  and e(i ,j)= number of edges that are pre-
sent in between i and j. 
• Total number of bits for the entire graph 

As an example of MDL encoding, take the simple graph 
shown in Figure 4.  

Figure 4: Sample Graph 

From Equation (1)

= 12.32192 
From Equation (2) 

= 16.28768 
From Equation (3) ebits=4(1+lg 4)+(4+1) lg 1=12 
Therefore, the total number of encoding bits (from Equa-
tion (4)) is 40.6096 (12.32192+16.28768+12). 

Size Metric

Size is also another evaluation metric used by SUBDUE. 
However, in this case, the size of an object is not computed 
from the description length, but the sum of  the number of 
nodes and the number of edges:

Taking the same example shown in Figure 4, the number of 
vertices is 5 and the number of edges is 4, so size(G) = 9

Background Knowledge to Evaluation Metrics: 
Rule Coverage 

The hypothesis of this work is that we can use evaluation 
metrics as background knowledge in order to guide the 

graph-based anomaly detection process. Specifically, we 
propose that the use of rule coverage as background
knowledge will improve upon our ability to discover 
anomalous substructures, where coverage is the percentage 
of the final graph to be covered by the instances of the 
substructure [Holder et al. 1992]

where, “I” is the set of instances of substructure S, 
“unique_structure(i)” is the amount of structure in the orig-
inal graph G covered by instance ‘i’, 
and

where size(i)=#vertices(i)+#edges(i).
Coverage: Example
Calculation of coverage is explained by taking the same 
sample graph shown in Figure 4, where the number of 
vertices is 5 and the number of edges is 4 for a total size of 
9. Using Equation (6), the values for the substructures in 
Figure 3 are shown in Table 1.

Substructure A B C A-B B-A B-C 

Coverage Value 1.222 1.222 1.111 1.667 1.333 1.333 

Table 1 Coverage Values

Among the substructures shown in Table 1 we can say 
that substructure “A-B” (value highlighted in bold italic) is 
the one with the highest coverage value, and substructure 
“C” (value highlighted in bold) is the one with the lowest 
coverage value. It should be noted that for this example, 
the list is not exhaustive, and only substructures up to two 
vertices and one edge are shown, even though the largest 
substructure would consist of 5 vertices.

Also, “matchcost(S,i)” is the cost required to match an 
instance to a substructure. Specifically, it is the number of 
vertices and edges that would need to be changed in order 
to derive a matching substructure.

Implementation
We conceptually present our proposed approach as shown 
in Figure 5. When the input graph is fed in to the SUBDUE 
system, it outputs the normative, or best, substructures. 
With the addition of background knowledge in the form of 
rule coverage, we are able to discover anomalous
substructures.
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Figure 5 Anomaly Detection- Proposed Approach

Implementation of IMAD and ISAD in SUBDUE's 
framework involve biasing the substructure discovery
towards anomalous substructures. The following are the 
steps involved in anomalous substructure discovery:

1. First we discover the evaluation values of substructures 
which minimize DL(S)+DL(G|S) in IMAD and 
size(S)+size(G|S) in ISAD.
2. We discover the coverage value of each substructure 
using equation (6).
3. Evaluation values are then raised to the power of 
coverage value with negative weight which leads to 
anomalous substructure discovery.  

Raising the power of coverage value with positive weights
leads to substructures with more instances, but we are 
interested in discovering substructures with fewer instances 
- hence we assign a negative weight.

SUBDUE implements evaluation criteria as a means to 
decide which patterns are going to be chosen as normative, 
or best, substructures. To its available evaluation metrics, 
we add background knowledge in the form of rule 
coverage (as explaining in the previous section). By 
assigning negative weights to substructures that are 
covered, we bias the substructure discovery. Our intuition 
is that anomalous substructures will have the fewest 
number of instances that cover the entire graph – i.e.,
substructures with the fewest number of instances are 
considered anomalous. Through our proposed approach, 
high evaluation values will be assigned to less descriptive 
substructures, i.e., with fewer numbers of instances, and 
thus the discovery of anomalous substructures.

Experimental Evaluations: Synthetic Datasets

We used the subgen tool [Eberle and Holder 2011] for our 
experiments. subgen is a synthetic generator that generates 
graphs using the following user-specified parameters:

• Size of the graph
• Names of vertex and edge labels
• Substructure pattern

• Connectivity value
• Overlap value

For all our experiments, we assigned a value of one to 
connectivity in order to keep the embedded substructure
connected to the rest of the graph. We assigned a value of 
zero to overlap parameter. In order to test our approach, we 
generated anomalies of varying sizes by randomly 
modifying vertices and edges.

Hardware specifications for all our experiments are as 
follows:

• Processor Intel(R) Core(TM) i3-5005U CPU 
@2.00GHz 2.00 GHz, 2 Core(s), 4 Logical 
Processor(s)

• RAM 4.00GB 
• Operating system: xubuntu 16.04 

For example, we experiment using a graph of 1000 
vertices and 1000 edges, with a normative pattern of 10 
vertices and 10 edges, and tracked runtimes (in seconds) as 
well as memory (bytes) needed to detect anomalies using 
IMAD as well as ISAD. We observe that IMAD is ~four 
times faster and ISAD is ~five times faster than the 
existing GBAD approach. Memory consumed by IMAD 
and ISAD is ~three times less than the existing approach.  
In these experiments, we are able to detect all anomalies 
with 100% accuracy and zero false positives.

Comparison of Proposed Approach with 
Existing Approach

In order to compare our approach against a known graph-
based anomaly detection approach (in this case, GBAD), 
we attempt to replicate the synthetic graph input files as 
they are described in the work by [Eberle and Holder
2007]. We note the running times as well as the required
memory of the three different approaches on each of the 
different types of normative patterns (Triangle, Strand, 
Star, Cycle) with graphs of varying sizes. We observe that 
IMAD is ~three times faster and ISAD is ~seven times 
faster than GBAD. Memory consumed by IMAD is ~two 
times less and ISAD is ~three times less than GBAD.     

Another limitation of the GBAD system is that in order
to run in polynomial time, it is not guaranteed that all of 
the candidate normative patterns will be generated.
However, in order for GBAD to discover anomalies, it
requires all candidate normative substructures to determine 
which substructures are closest to the normative pattern. 
So, there is the potential for GBAD to not discover all 
anomalies.

Experimental Evaluation: KDD Cup 99 
Dataset

We test our hypothesis on the KDD Cup 99 network 
intrusion dataset. The KDD training dataset consist of 10% 

        SUBDUE    
    MDL or Size 

     MDL or Size+ 
        Background        
        Knowledge    
        (Coverage) 

Input 
Graph

Normative 
Substructures 

Anomalous  
Substructures Input 

Graph 
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of the original dataset that has 41 features including the 
classification label, i.e., either normal or an attack.

Protocol Attack Name 
TCP neptune, guess_passwd, land, portsweep, 

buffer_overflow, phf, warezmaster, ipsweep, 
multihop, perl, back, ftp_write, satan, spy, 
imap, rootkit 

UDP teardrop, satan, nmap, rootkit 
ICMP normal, portsweep, ipsweep, smurf, satan, 

pod, nmap 

Table 2.  Attacks grouped by Protocol

The protocols that are considered in the KDD dataset are
TCP, UDP, and ICMP. In Table 2 we show the types of
attack grouped by protocol. Testing our approach across all
data sets, our approach is able to detect 100% of the attacks 
with no false positives. In Figures 6 and 7, we show the
runtime and memory statistics of our approach compared
against the existing GBAD approach.

Figure 6. Runtime Statistics

Figure 7. Memory Statistics

Conclusion and Future Work
In this paper, a novel approach for graph based anomaly 
detection is proposed using evaluation metrics with 
background knowledge. We demonstrate the effectiveness 
of our approach on various synthetic datasets through the 
comparison of execution times and the memory required 
for our proposed approach against an existing approach. 
Making our proposed approach scalable to large datasets is 
one of our future research directions. In this paper, 
background knowledge in the form of rule coverage with 
negative weights is added to MDL and size metrics in 

order to improve the discovery of anomalous substructures. 
However, we are planning on investigating additional rules 
that could be added to discover other interesting 
substructures that are specific to the domain. 
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