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Abstract 

While many expect that the use of advanced learning tech-
nologies like intelligent tutoring systems (ITSs) will substi-
tute for human teaching and thus reduce the influence of 
teachers on student outcomes, studies consistently show that 
outcomes vary substantially across teachers and schools 
(Pane et al. 2010; Pane et al. 2014; Ritter et al. 2007a; 
Koedinger et al. 1997; Koedinger and Sueker 2014). Despite 
these findings, there have been few efforts (e.g., Schofield 
1995) to understand the mechanisms by which teacher prac-
tices influence student learning on such systems. We present 
analyses of Carnegie Learning’s Cognitive Tutor ITS data 
from a large school district in the southeastern United 
States, which present a variety of usage and implementation 
profiles that illuminate disparities in deployments in practi-
cal, day-to-day educational settings. We focus on differen-
tial effectiveness of teachers’ implementations and how im-
plementations may drive learner efficiency in ITS usage, af-
fecting long term learning outcomes. These results are con-
sistent with previous studies of predictors and causes of 
learning outcomes for students using Cognitive Tutor. We 
provide recommendations for practitioners seeking to de-
ploy intelligent learning technologies in real world settings. 

 Introduction   
Why are teachers important? Intelligent learning technolo-
gies like intelligent tutoring systems (ITSs) offer the prom-
ise of solving Bloom’s two sigma problem (Bloom 1984) 
by providing instruction as effective as one-on-one tutor-
ing. However, real-world ITSs like Carnegie Learning’s 
Cognitive Tutor (CT) (Ritter et al. 2007) are not intended 
to replace qualified, engaged instructors or teachers in a 
classroom. Indeed, Bloom’s task in his famous two sigma 
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paper was to find methods of group instruction to achieve 
substantial improvement in learning outcomes, of which 
ITSs like CT are but one.  
 Nevertheless, data-driven research on ITSs and other 
learning technologies tends to focus on student- or learner-
level usage patterns and factors as predictors and possible 
causes of learning outcomes. While quality of implementa-
tion is noted as an important factor that drives outcomes 
(Pane et al. 2010; Pane et al. 2014; Ritter et al. 2007a; 
Koedinger et al. 1997; Koedinger and Sueker 2014), there 
are few studies, with notable exceptions, that delve into 
specifics about how, precisely, teacher and administrative 
behaviors affect outcomes of students using learning tech-
nologies like ITSs. One notable, early exception consid-
ered how teacher and student behavior changed after the 
introduction of an ITS for geometry proofs (Schofield 
1995). This study noted how teachers’ roles became more 
of those of collaborators and helpers to students working 
through geometry content; further, more individual atten-
tion could be provided to students who were struggling 
most because of automated tutoring affordances of the ITS. 
Other work explores implementation fidelity and teacher 
“buy in” of learning technologies within the context of a 
random field trial of the ASSISTments system as a form of 
homework support in mathematics (Feng et al. 2014). An-
other recent study considers aspects of instructor imple-
mentation fidelity with the Reasoning Mind blended learn-
ing system for elementary and middle school mathematics, 
taking a data-driven approach to detecting, from log data, 
whether teachers are providing proactive remediation (Mil-
ler et al. 2015).   
 A recent study of CT also takes a data driven approach 
to explore elements of implementation fidelity by consider-
ing the extent to which teachers implement mastery learn-
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ing within the ITS. Some teachers manually move students 
within the system so that they “stay with the class,” rather 
than allowing students to move at a pace determined by 
mastery (Ritter et al. 2016).  Students in classes with 
teachers who allowed mastery learning to run its course 
tended to have less variability in error rates, reflecting the 
fact that they were progressing at an appropriate pace with 
problems geared to their current level of knowledge as they 
moved through the CT curricula. In contrast, students who 
were moved forward in violation of mastery learning made 
progressively more errors, reflecting increased gaps in their 
prerequisite knowledge. The willingness or ability to im-
plement pedagogical practices intended within the system, 
like mastery learning, is thus one way that teachers influ-
ence student outcomes when using an ITS. However, im-
plementations differ from class-to-class and school-to-
school for a bevy of reasons beyond whether teachers im-
plement mastery learning. In this paper, we present a case 
study of another important way in which teachers matter, 
particularly teachers’ differential engagement with students 
interacting with ITSs in their classrooms and computer 
labs. This engagement affects student time and efficiency 
using learning technologies, and, consequently, student 
learning outcomes.  
 Although many reasonably consider increased “time-on 
-task” as connected to improved outcomes, and there are 
many ways to conceptualize and measure time-on-task (see 
Kovanović et al. 2015 for a thorough review of the litera-
ture), researchers examining school time provide a nuanced 
(if perhaps imperfect) view. They define three categories 
of time in learning settings (Aronson, Zimmerman, and 
Carlos 1998): instructional time, engaged time, and aca-
demic learning time. School policy fundamentally deter-
mines instructional time, the amount of time scheduled for 
particular classes (e.g., the length of class periods in com-
puter labs in which students can use an ITS like CT). 
Teachers also have influence on instructional time, since 
they may decide, for example, whether classes will make 
use of computer lab time scheduled for their math classes.  
 Research shows that providing students more instruc-
tional time may improve outcomes. Double periods of al-
gebra instruction (i.e., doubling instructional time in alge-
bra) were found to provide substantial short-term and long-
term improvements for under-performing students in an 
analysis of data from Chicago Public Schools (Cortes, 
Goodman, and Nomi 2013). Other studies find short-term 
benefits of increased instructional time in math but dimin-
ishing long-term effects, while noting costs to such in-
creases in math instructional time, namely that increases to 
instructional time in math “crowds out” important time for 
other subjects (Taylor 2014). 
 Teacher practices and, to a lesser extent, school policy 
determine engaged time, which refers to instructional time 
that is devoted to learning, as opposed to time spent on 

non-instructional tasks like student discipline issues and 
taking attendance, among others. The amount of class time 
lost to non-instructional tasks may be surprisingly high, 
with one estimate (Karweit 1985) that only 38% of time in 
school actually being engaged time.  
 The portion of engaged time in which students are doing 
work that is appropriate to their academic goals and 
knowledge level is called academic learning time. We posit 
that a fundamental role for teachers is to ensure that en-
gaged time is mostly academic learning time as much as is 
possible, especially in situations in which necessary in-
structional resources like computer labs are not always 
available, for example. Of course, the goal is not to equate 
engaged time as academic learning time so much so that 
other important social, non-cognitive, and meta-cognitive 
learning factors are not nurtured in engaged time (e.g., al-
lowing for students to reasonably and occasionally collabo-
rate or help one another as they interact with the ITS in a 
computer lab). One way to think about the goal of adaptive 
learning systems is that they try to decrease the difference 
between student engaged time and academic learning time 
by presenting material that is appropriate to students’ 
knowledge levels. More generally, teaching practices are 
fundamental determinants of the amount of engaged time 
that is academic learning time, and the proportion of en-
gaged time that is academic learning time is one measure 
of classroom learning efficiency.  
 Since school policy is likely to largely determine in-
structional time and our present focus is the role of teach-
ers, we shift attention to engaged time and academic learn-
ing time, upon which teachers have a substantial influence. 
Recent research demonstrates that student efficiency (Rit-
ter et al. 2013) and content mastery (Sales and Pane 2015) 
in the classroom environment (i.e., a combination of suffi-
cient academic learning time and of classroom learning ef-
ficiency) is one of the best predictors of longer-term learn-
ing outcomes.  
 In the present study, we explore data from use of CT at a 
large school district in the southeastern United States. We 
find substantial variation in both academic learning time 
and learning efficiency between schools, and between clas-
ses within a school. We explore associations between stu-
dent time using the CT, efficiency of CT use, and learning 
outcomes on a state-level standardized test for algebra. Be-
fore providing these analyses, we introduce the CT for Al-
gebra as well as prior work exploring measures of student 
efficiency and progress and their correlations with stand-
ardized test learning outcomes. 

Cognitive Tutor Algebra & Curriculum 
Carnegie Learning’s Algebra curriculum provides a blend-
ed approach to learning, combining the adaptive CT ITS 
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with consumable texts that support student-centered in-
struction in the classroom. Carnegie Learning recommends 
a 60%-40% split between time in classrooms with teachers 
employing progressive instructional techniques and time 
using CT. Since most CT use is in the classroom or a com-
puter lab, the teacher is typically present; students use CT 
for most instruction but call the teacher over when they 
have questions that the software cannot answer. Recom-
mended usage of CT amounts to about an hour and a half 
of time per school week (i.e., ideally, approximately fifty 
hours of CT interaction in an academic year). 

CT focuses on mathematics problem solving. Students 
learn at their own pace in CT, receiving scaffolding and in-
struction customized to their own solution strategies. Using 
the probabilistic framework of Bayesian Knowledge Trac-
ing (BKT) (Corbett and Anderson 1995), CT continually 
assesses student knowledge of fine-grained skills or 
knowledge components that are a part of CT’s underlying 
cognitive model. Using BKT’s assessment of student skill 
mastery, CT provides each student with activities that em-
phasize the skills that he or she needs to learn. Topical sec-
tions, each associated with sets of skills, are completed 
when students demonstrate mastery of relevant skills by 
solving problems without requiring hints or committing er-
rors. CT breaks problems down into steps to which fine-
grained skills are mapped while collecting correspondingly 
fine-grained usage data about how students are interacting 
with the ITS (Figure 1). 
 

 
Figure 1. Screenshot of mathematics problem solving in Cogni-
tive Tutor Algebra. The student is presented a multi-step word 
problem and a table into which values are entered as responses 
to questions as well as a graphing tool to plot points and graph a 
line.  

Prior Work: Time & Efficiency in CT 
Prior studies of CT Algebra data have focused on facets of 
student time interacting with CT as well as efficiency with 
which students manage to make progress through CT con-
tent. These studies show that “clock” time using CT 
(roughly engaged time) is only weakly associated with im-

proved outcomes as indicated by various standardized test 
scores (Ritter et al. 2013; Joshi et al. 2014; Sales and Pane 
2015). These findings make intuitive sense; simply logging 
on to the software is not going to help students learn. 
 Instead, student mastery of topics presented in the ITS 
and the efficiency with which such mastery is achieved are 
more strongly associated with success. In analysis of ex-
perimental data from a large-scale effectiveness trial (Pane 
et al. 2014) of the CT, models that classified students ac-
cording to time using CT did not predict as substantial 
gains on long-term learning outcomes relative to the con-
trol group as did models based on completion of content 
(Sales and Pane 2015). This suggests students who were 
placed in environments that fostered efficient progress and 
completion of CT curricula benefited most from the CT. 
Specifically, the study found that students who completed 
at least 27 sections of CT content experienced statistically 
significant (and substantively significant) improvement in 
learning outcomes compared to equivalent students in a 
matched control group. This is perhaps surprising because 
the completion of 27 sections of CT content can usually 
occur within roughly 13 hours of CT usage, a stark contrast 
to Carnegie Learning’s recommended 50 hours of use over 
an academic year. Consistent with, and in addition to, these 
results from experimental data, observational data analyses 
suggest that the number of sections mastered per hour is al-
so a strong predictor of standardized test scores (Ritter et 
al. 2013; Joshi et al. 2014). These results allude to a simple 
fact: students need to engage with the mathematics in order 
to achieve better outcomes. That is, engaged time, and with 
the help of the CT and engaging teaching practices, aca-
demic learning time, are necessary to improve learning 
outcomes.  
 The present study provides further evidence for and a 
real world illustration of the fact that student time using 
ITSs like CT, especially instructional time and engaged 
time, is insufficient for substantially improved learning; 
teacher practices must encourage increases in academic 
learning time and its efficient use by students for learning.  

Data 
We consider CT Algebra usage data from a large school 
district in the southeastern United States, which also pro-
vided data on whether individual students passed or failed 
a state-level Algebra exam at the end of their Algebra I 
course. Our original analysis of the dataset was prompted 
by a consulting request from the district about its imple-
mentation of the CT and how it might be improved. The 
dataset includes 2,025 students across 18 high schools and 
3 middle schools. District level policy dictated that the 
high school students that failed their mathematics year-end 
standardized test in the previous academic year used CT in 
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their high school Algebra course. Students in the three 
middle schools in the dataset are somewhat more likely to 
be higher performing, as they are in Algebra courses in 
middle school. 

Analysis & Results
Figure 2 shows usage of CT (measured in number of 

hours per student) by school, along with the percentage of 
these students passing the end-of-year Algebra exam at that 
school. None of the schools show usage levels consistent 
with our recommended 50 hours per year, although four 
schools do show reasonable usage of more than 35 hours 
per year. The largest cluster of schools shows usage of less 
than 5 hours per student for the year. Prior research (Ritter 
et al. 2013) has shown fewer than five hours exposure to 
CT in a school year is insufficient to show any association 
or correlation with test scores. 
 Considering all schools in Figure 2, there is no evident 
relationship between pass rates and time. Such a relation-
ship might obtain if we removed schools with very low us-
age and two outliers, but this is clearly a weak basis for 
claiming a relationship. 
 Figure 3 shows the relationship between number of sec-
tions (roughly math topics) mastered per hour and passing 
rates on the end-of-year exam, by school. The use of mas-
tery per hour, as has been noted, is an efficiency measure: 
how much work do students accomplish when they are in 
class? Figure 3 demonstrates a stronger relationship be-
tween this efficiency measure and student scores. Figure 3 
also explains Outlier 1 and Outlier 2 in Figure 2. Although 
students in these two schools have spent a relatively large 
amount of time logged on to the software (cf. Figure 2), 
they are at the bottom of the scale with respect to how 
much mathematics they master in that time. 
 As this observational study arises out of a real world, 
consulting use case, when school district administrators 
were presented data about these two outlier schools, they 
immediately provided a plausible explanation; these two 
districts had long-term substitute teachers in place for 
mathematics for much of the school year. These teachers 
were likely not invested in high quality implementation, 
lacked professional development from Carnegie Learning 
staff, and likely did not actively engage students using the 
CT. It is likely that such teachers believe that the ITS is re-
sponsible for teaching students, with little intervention 
from the teacher. This illustrates the vital role of teachers 
in the implementation of ITSs like the CT. 
 In a well-implemented computer lab, most of the stu-
dents should be able to work on mathematics within the CT 
and make progress on their own, sometimes relying on 
hints within the software. This allows the teacher to talk 
one-on-one with students who have deep misunderstand-

ings or other questions that are not well addressed within 
the software. Teachers also play a strong motivational role 
in the computer lab, setting expectations for the amount of 
work that students are expected to complete and how stu-
dents may constructively interact, collaborate, and assist 
one another. Teachers also ensure that students remain on-
task, and they keep students focused on improving their 
mathematics skills while avoiding detrimental behavior 
like so-called “gaming the system” whereby students at-
tempt to make progress without deep understanding of 
mathematics content (Baker et al. 2004; Fancsali 2014). 
 

 
Figure 2. Pass rates on end-of-year Algebra exam, by school and 
Cognitive Tutor usage in the schools. The vertical bar at 5 hours 
represents minimal usage, below which we do not expect a mean-
ingful relationship between usage and outcomes. The vertical bar 

at 50 hours represents our recommended yearly usage. 
 

 
Figure 3. Pass rates on end-of-year Algebra exams, by school 
and sections mastered per hour. Two high schools with high rates 
of usage show very low rates of efficiency in section mastery, in-
dicating that the time they are spending with the software is not 
being well used. 

 Figure 4 demonstrates a readily apparent relationship be-
tween time, sections mastered, and end-of-year Algebra 
exam outcomes at the individual student level. This graph 
shows that students who use CT for a sufficient amount of 
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time (over five hours) and who use that time well (falling 
above the diagonal representing average sections mastered 
per hour) are highly likely to succeed on the year-end ex-
am. 
 As noted, a recent study (Sales and Pane 2015) lever-
aged data from a large-scale randomized control trial (Pane 
et al. 2014) to find that students who completed more than 
27 CT sections greatly outscored equivalent students using 
a standard curriculum. In that dataset, 27 sections repre-
sented the median completion rate, but this number is well 
below the scope of the full curriculum (approximately 140 
sections) or Carnegie Learning’s recommendations (75 
sections). Still, that level of engagement and success with 
the software was sufficient to produce favorable pass rates; 
approximately 72% of those completing more than 27 sec-
tions passed the year-end exam, even among many high 
school students who had previously failed the exam.  

 
 
Figure 4. Relationship between time spent on CT, number of sec-
tions mastered and Algebra I exam outcome. Each point repre-
sents a student. Almost 73% of students completing > 27 sections 
of the curriculum pass the exam (lighter points), as compared to 
about 37% of students who completed fewer sections. The vertical 
line at 50 hours represents Carnegie Learning’s recommended 
usage time. The horizontal line at 27 sections represents the point 
at which a previous study found strong impact of CT curriculum 
(Sales and Pane 2015). 

Finally, we estimate random and mixed effects regres-
sion models to test our intuitions and hypotheses about the 
relative contribution of school and teacher to accounting 
for the variability in student time and efficiency. First, we 
specify and estimate a random effects regression model to 
predict student time using students’ schools and classes 
each as random effects, for which we estimate random in-
tercepts with fixed means. Schools explain 19.0% of the 
variability in log-transformed student time while teachers 
explain 27.6% of this variability in the model including 
both random effects. This is somewhat surprising, as we 

expected that school-level policy would play a larger role 
in determining in time; this result suggests a larger role for 
teachers. Overall, this model explains 38.6% of the varia-
bility in log-transformed student time. This model is pref-
erable to random effects models including each factor indi-
vidually in that the combined model’s AIC and BIC score 
decreases, indicating an improved goodness of fit without 
likely over-fitting the data. 
 Next, we specified and estimated a mixed effects linear 
regression model to predict sections mastered (or complet-
ed) per hour (i.e., student efficiency) with student CT time 
as a fixed effect and school and class random effects (ran-
dom intercepts with fixed means). While time alone ex-
plains 34.1% of the variance in student efficiency, the 
teacher random effect explains an additional 11% of varia-
bility while school only explains 1.5% of variability. This 
aligns with our hypothesis that student efficiency is more 
likely to be driven by teaching practices rather than school-
level factors. Nevertheless, the school-level random effect 
stands in for a number of factors for which data were una-
vailable, including socio-demographics and other factors 
that may be associated with learning and efficiency. Model 
selection again proceeded by noting decreases in AIC and 
BIC scores; the model including all three effects accounts 
for 45.7% of variability in sections mastered per hour. 

Discussion
The present study considers an important element of teach-
ing practices in classrooms and computer labs in which in-
telligent learning technologies like ITSs, including the CT, 
are deployed to improve student learning. We use data 
from a school district that sought data-driven consulting 
about implementation factors and implementation fidelity 
to illustrate differences in how students’ time can be used 
(or not used) to work through material in the CT and have 
suggested that learner efficiency is driven by whether 
teachers take an active role in turning engaged time into 
academic learning time by cognitively, behaviorally, and 
affectively supporting students and encouraging students to 
mindfully be “on-task,” avoid wasting time and behavior 
that does not enhance learning.  
 While ITSs promise to enhance learning by providing 
tutoring that approaches the effectiveness of one-on-one 
tutoring, they are almost never intended to fully replace 
teachers in classrooms and computer labs. Focusing on 
ways in which we can help teachers, via professional de-
velopment, data-driven reporting, dashboards and other 
means, to effectively deploy and implement learning tech-
nologies, like ITSs and others, is a long-standing, but per-
haps increasingly more prominent, concern in the litera-
ture, and more pressingly in practice (e.g., Schofield 1995, 
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Feng and Heffernan 2005, Chronaki and Matos 2014, 
Cowan 2011, among many others). 
 In on-going and future research, we are exploring ways 
in which to use data to manage and optimize “hand-offs” 
between automated instructional systems like ITSs and 
human instructors and teachers. This research will help us 
to better understand when automated systems like ITSs 
might help improve learning by informing a student that 
they should seek help from their teacher. It will also help to 
develop best practices for teachers and instructors to know 
how and when it is best for them to engage students having 
difficulties in problem solving versus letting affordances 
like hints provide necessary support. 
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