
Text Processing Chains: Getting Help from Typed Applicative Systems

Marie Anastacio, Ismaïl Biskri 
LAMIA-Université du Québec à Trois-Rivières 

{Marie.Anastacio ; Ismail.Biskri}@uqtr.ca

Abstract 
A processing chain must be the result of a discovery process 
that requires constant back and forth between theoretical 
description of the solution, software implementation, testing 
and refinement of the theoretical description in the light of 
the results of experimentation. This process is iterative. 
Some projects based on this philosophy have seen the light 
in the last years. However, they lack flexibility and formal 
foundations. The model we propose has strong logical 
foundations. It allows rapid prototyping and supports a 
maximal re-use and composition of existing modules.  

Introduction��

"Language and text processing" is a broad field of research 
including retrieval, classification, and information's 
analysis. As Web is a big source of information, this field 
can have a lot of implications on several sectors of society. 
Compared to the quick expansion of data quantity, the 
evolution of their analysis is too slow and insufficient. 
 A big challenge in these fields is the multitude of 
disciplines needed to go further. So, experts of different 
domains need to work together. 
 In the literature about data-mining and text-mining, 
many projects aim to allow the creation of complex 
processing chains. Aladin (Seffah, Meunier, 1995),
D2K/T2K (Downie & al., 2005), RapidMiner (Mierswa et 
al., 2006), Knime (Warr, 2007) and WEKA (Witten et Al., 
2011) use processing chains for language engineering, 
Gate (Cunningham et Al., 2002) use it for linguistic 
analysis. The processing chains are widely used, but the 
solutions previously mentioned suffer from limitations. 
They are strongly bonded to their specific platforms and 
programming languages. To take the best advantage of 
them, the user needs to have knowledges about the 
developed software and sometimes about programming 
language. 
 In previous papers (Biskri et al., 2015; 2013), we 
presented a flexible and modular architecture for text 
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processing. Each task is represented by a function that is 
independent from the others. Inspired by Applicative and 
Combinatory Categorial Grammar (ACCG) (Biskri, 
Desclés, 1997), our model is composed of rules based on 
combinatory logic and typed applicative systems. As some 
rules of the model were limited to functions taking one or 
two inputs, the current paper presents the extension of this 
model to functions with any number of inputs. 

Combinatory Logic and Typed Applicative 
Systems 

Combinatory logic was introduced with the work of 
Schönfinkel in 1924 and later extended by Curry and Feys 
(Curry, Feys, 1958; Hindley, Seldin, 2008). The notion of 
combinators was introduced with the purpose of bringing a 
logical solution to some paradoxes, such as Russel's 
Paradox, and to eliminate the need of the variables in order 
to avoid variable telescoping. Combinators are abstract 
operators. They act as functions over argument within an 
operator-operand structure. Each rule is represented by a 
unique rule called β-reduction; which defines the 
equivalence between the logical expression without 
combinator and the one with combinator. Elementary 
combinators can be associated to others to create complex 
combinators. Our model uses only the four elementary 
combinators, whose notations and β-reductions are shown 
in the table below.

Combinator Role β-Reduction
B Composition B x y z → x (y z)

C Permutation C x z y → x y z

S Distributive 
composition

S x y u → x u (y u)

W Duplication W x y → x y y

B, C, S and W are elementary combinators.
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 The composition combinator B combines two operators 
x and y together and form the complex operator B x y that 
acts on an operand z. 
 The permutation combinator C uses an operator x in 
order to build the complex operator Cx that acts on the 
same two operands as x but in reverse order. 
 The composition combinator S distributes an operand u 
to two operators x and y.  
 The duplication combinator W takes an operator x that 
acts on the same operand twice and form the complex 
operator Wx that acts on this operand only once. 

 We can combine those combinators together to create 
complex combinators. For example, we could have an 
expression such as "S B C x y z u v". Its global action is 
determined by the successive application of its elementary 
combinators (first S secondly B and finally C).

S B C x y z u v 
B x (C x) y z u v 
x (C x y) z u v 
x x z y u v 

 The resulting expression, without combinators, is called 
a normal form. This form, according to Church-Rosser 
theorem, is unique. 

 Two forms of complex combinators got their own 
notation. The power and the distance of an existing 
combinator.
 Let χ be a combinator. The power of a combinator, 
written as a superscript, represents the number of times its 
action must be applied. It is defined by χ¹ = χ and χn = B χ

χn-1. For example, the action of the expression W² a b would 
be:

W2 a b
B W W a b  
W (W a) b 
W a b b  
a b b b 

 The distance of a combinator, written as a subscript, 
represent the number of steps its action is postponed. It is 
defined by χ0 = χ and χn = Bn χ. For example, the action of 
the expression C2 a b c d e will be:

C2 a b c d e 
B2 C a b c d e  
C (a b c) d e 
a b c e d 

 For our model, we represent the type of our 
combinatorial expressions with notations taken from 
applicative systems.

 Applicative systems represent functions with any 
number of inputs and one output. To each operand is 
associated a type and each function has an applicative type. 
These applicative type starts with "F". Types are defined as 
follows: 

1. Basic types are types. 
2. If x and y are types, Fxy is a type. 

 For example, if x and y are types, a function having an x 
typed input and returning an y typed operand will be of type 
Fxy. A function having two x typed inputs and returning a 
y typed operand will be of type FxFxy. 
 This can also be read as: a function taking an x type input 
and giving back a function taking an x type input and 
returning an y type output. 
 We use this notation to represent a combinatorial 
expression type. For example, if w is an operand that takes 
two inputs of types x and y and returning a z typed output, 
his type is FxFyz. When we apply the C combinator to it, 
we form a new operand Cw of type FyFxz. 

Formal Model 
Our model refers to programs as modules. They are 
organized in series and as such they form processing 
chains. A module acts like a mathematical function that 
takes several arguments, process them and return an output. 
We are not interested in the internal programming of the 
modules but only in their representation as functions and 
how they are organized to create processing chains. 

 A processing chain must respect two rules: 
1. The chain must contain at least one module 
2. The chain must be syntactically correct 
3.

 The semantic aspect is user's responsibility. 

 Our model tends to answer two questions: 
� Given a set of modules, what are the allowable 

arrangements that lead to coherent processing 
chains? 

� Given a coherent processing chain, how can we 
automate as much as possible its assessment? 

 Concretely, a module applies an operation to one or 
many entities and returns a new entity. We can therefore 
assign an applicative type to it. 

 We note the module named M1 of type Fxy as follow: 
[M1 : Fxy], and represent it as in fig. 1 . A processing chain 
is the representation of the order of application of several 
modules on their inputs. To be valid, the type of an input 
must be the same as the output linked to it (fig. 2). It also 
can be seen as a module itself as it has inputs and output 
(fig. 3). 
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Figure 1 – Module schematisation

Figure 2 – Valid chain of two modules in series

Figure 3 – Processing chain as a new module

 Our model allows the reduction of a processing chain to 
this unique module representation. The combinatory logic 
keeps the execution order and the rules take type in account 
to check the syntactic correctness. To reduce a chain, we 
only need the module list, their type, and their execution 
order.
 The previous model has some limitations. It doesn't 
manage with modules with a limited number of inputs. Let 
us show these rules :

APPLICATIVE RULE [X : x] + [M1 : Fxy]
------------------------------------
[Y : y]

COMPOSITION RULE [M1 : Fxy] + [M2 : Fyz]
---------------------------------B
[B M2 M1 : Fxz]

DISTRIBUTIVE 
COMPOSITION RULE

[M1 : Fxy] + [M2 : FxFyz]
----------------------------------S
[S M2 M1 : Fxy]

PERMUTATION RULE [M1 : FxFyz]
----------------------C
[C M1 : FyFxz]

DUPLICATION RULE [M1 : FxFxy]
---------------------W
[W M1 : Fxy]

 The above rules are only the core set of the previous 
model. We will extend the rules so they can be applied to 
any number of inputs. To do this we'll need some new 
notations. 
 [M1 : Fx1...Fxny] is a module M1 with n inputs of 
different types, input in place "i" is of type xi, and an output 
of type y. 

[M1 : (Fx)ny] is a module M1 with n inputs of type x and 
an output of type y. 

Composition rule 

[M1 : Fx1...Fxny] + [M2 : Fyz]
---------------------------------------------- Bn

[BnM2M1 : Fx1...Fxnz]

 The composition rule is used when two modules are in 
series (as in fig. 2). If M1 has n inputs, the power of the B 
combinator is n. For these rules, the inputs number of M2 
can be more than one. 

Duplication rule 

[M1 : (Fx)ny]
-------------------- Wn

[WnM1 : Fxy]

 The duplication rule transforms a module with n 
identical inputs to a module with only one input. It can be 
applied only if the chain give the same value to each of its 
inputs (fig. 4). 

Figure 4 – Module getting a single value in its three inputs

Permutation rule 

[M1 : Fx1...Fxny]
--------------------------- C
[Cp-1(Cp(…(Cm-2M1))) : Fx1...Fxp-1FxmFxp...Fxm-1Fxm+1...Fxny]

 The permutation rule allows to change the order of 
inputs. It takes the input at position m and moves it to the 
position p, with p<m. It's used to reorganize input to make 
the other rules applicable.

Application of the Approach  
In this section, we will show how the rules given in the 
previous section are applied and illustrate the reduction of 
a processing chain with an example. 
 Let us consider the linear connection of two modules 
(fig. 2). The module [M1 : FxFxy] applies on two identical 
inputs of type x and yield an output of type y. The module 
[M2 : Fyz] applies on this output to yield an output of type 
z. This chain is expressed by the expression: [M1 : FxFxy] 
+ [M2 : Fyz]. The composition rule can be applied and 
returns the complex module [B2 M2 M1 : FxFxy]. If the 
type of M1 output and M2 output where not the same, we 
could not have applied the composition rule. So, the 
application of the rules is a proof of syntactic correctness 
of the chain. 
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 The module [B2 M2 M1 : FxFxy] can be reduced a
second time with the duplication rule. It is reduced to the 
complex module [W (B2 M2 M1) : Fxy]. 
 The permutation rule allows to reorganise the inputs of 
a module to apply another rule. Let M be a module with 
four inputs of types x, y, z and x and an output of type t : 
[M : FxFyFzFxt]. Let X be the value given to the first and 
fourth inputs (fig. 5-a). If the fourth was in second position, 
we could apply the duplication rule to M. So, we want to 
move the fourth input to second position. The permutation 
rule returns the complex module [C1 (C2 M) : FxFxFyFzt]
(fig. 5-b). on this new module, the duplication rule can be 
applied to get a complex module [W (C1 (C2 M)) : FxFyFzt] 
(fig 5-c). 

(a) 

(b) 

(c) 
Figure 5 – inputs reorganisation 

 Let us now give the analysis of a somewhat complex 
processing chain (fig. 6). This chain is a combination of 
five modules.

� M1 of type FxFyz 
� M2 of type Fzx 
� M3 of type Fzx 
� M4 of type Fzy 
� M5 of type FxFxFyt 

 To reduce this chain, we will start with the last module 
and process from left to right. So we start with [M5 : 
FxFxFyt]. His first input takes the output of [M2 : Fzx]. 
The composition rule gives a new complex module [B M5
M2 : FzFxFyt] (fig. 7). This new module and [M3 : Fzx] 
can be reduced with the distributive composition rule to get 
the module [S (B M5 M2) M3 : FzFyt]. (fig. 8). The first 
input of this module can be reduced with the composition 
rule to get a new module [B2 (S (B M5 M2) M3) M1 : 
FxFyFyt]. (fig. 9) 
 To reduce this module with [M4 : Fzy] we want to use 
the composition rule. But to apply it, M4 output must be 
the first input of our module. We use the permutation rule 
to reorganise the inputs and got a new module [C (C2 (B2

(S (B M5 M2) M3) M1)) : FyFxFyt] (fig. 10). Finally, we 
can apply the combination rule that returns the module [B 
(C (C2 (B2 (S (B M5 M2) M3) M1))) M4 : FzFxFyt]. As 
we have only one module, and no other rule can be applied, 
the processing chain is reduced. 

Figure 6 – A complex processing chain 

Figure 7 – Reduction step 1 

Figure 8 – Reduction step 2 

582



Figure 9 - Reduction step 3 

Figure 10 – Reduction step 4 

Figure 11 – Reduction last step 

 As it has been completely reduced, the processing chain 
is considered as syntactically correct. Its combinatory 
expression is: B (C (C2 (B2 (S (B M5 M2) M3) M1))) M4.
Using combinatory logic-reductions, we can get the normal 
form of this expression.  

B (C (C2 (B2 (S (B M5 M2) M3) M1))) M4 Z X Y 

C (C2 (B2 (S (B M5 M2) M3) M1)) (M4 Z) X Y 

C2 (B2 (S (B M5 M2) M3) M1) X (M4 Z) Y 

B2 (S (B M5 M2) M3) M1 X Y (M4 Z) 

S (B M5 M2) M3 (M1 X Y) (M4 Z) 

B M5 M2 (M1 X Y) (M3 (M1 X Y)) (M4 Z) 

M5 (M2 (M1 X Y)) (M3 (M1 X Y)) (M4 Z) 

 This form contains the order of application of modules 
on their inputs (X, Y and Z). 

Implementation and Experimentations 
A prototype of the theoretical model was implemented. The 
rules are implemented in a F# library and a testing software 
in C# language. To implement our model we had to know 
if in some cases there were two or more applicable rules. 

As the permutation rule is applicable to any module with 
more than one input, it is considered separately. This rule 
is only used to prepare the module to apply another rule. 
For instance, it can be used to group identical inputs in the 
beginning to let us apply the duplication rule. 

 There is two cases of ambiguity. In the first case, we can 
apply the duplication rule or the composition rule (fig. 12). 
For this case, we will chose to apply the duplication rule 
first because the resulting expression is shorter. In the 
second case, we can apply the composition rule or the 
distributive composition rule (fig. 13). For the same reason, 
we will apply the distributive composition rule first. 

Figure 12 – Ambiguity between composition and duplication

Figure 13 – Ambiguity between composition and distributive 
composition 

 The library implements two reduction approaches.
 The first approach is the same as the one used in our 
previous example. The last module of the chain is 
considered as "current module". The different rules are 
tested on it and the applicable one is applied. The resulting 
module is the new current module, and so on. This 
approach is faster and human readable.
 The second approach considers all modules
simultaneously and reduces every reduceable module until 
none is reduceable anymore. This approach is slower but, 
as it reduces every valid sub chain of the processing chain, 
it can locate the invalid links inside the chain. 

 Each approach has been tested on 22 processing chains 
containing 9 syntactically incorrect chains and 13 correct 

583



chains. The results are shown in table 1 and some of the 
reduced chains are shown in figure 14. 

REDUCED NOT 
REDUCED

VALID 
CHAIN 13 0

INVALID 
CHAIN 0 9

Table 1 – Results of reduction 

Figure 14 – Set of reduced chains

Conclusion 
The need for flexible, adaptable, consistent and easy-to-use 
tools and platforms is essential. But many challenges are 
yet to be solved.  The user stays in center of its experience 
and he can change his mind. The flexibility of the tools is 
really important when it happens. Without it, user needs to 
constantly go back and forth between theoretical
description of the solution, software implementation, 
testing and refinement of the theoretical description in light 
of experimentation results. The model that we propose 
allows rapid prototyping and support a maximal re-use and 
composition of existing modules. It also ensures a firm 
compositionality of the different modules in the different 
processing chains. 

 Text analysis is only a modality of the theoretical 
framework developed here. It is possible to adapt this work 
to other types of data from various disciplines. 
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