
TAO: System for Table Detection and Extraction from PDF Documents

Martha O. Perez-Arriaga, Trilce Estrada, and Soraya Abad-Mota
Departments of Computer Science, and Electrical and Computer Engineering

University of New Mexico
{marperez, estrada, soraya}@cs.unm.edu

Abstract

Digital documents present knowledge in most areas of
study, exchanging and communicating information in a
portable way. To better use the knowledge embedded
in an ever-growing information source, effective tools
for automatic information extraction are needed. Tables
are crucial information elements in documents of sci-
entific nature. Most publications use tables to represent
and report concrete findings of research. Current meth-
ods used to extract table data from PDF documents lack
precision in detecting, extracting, and representing data
from diverse layouts.
We present the system TAble Organization (TAO) to
automatically detect, extract and organize information
from tables in PDF documents. TAO uses a process-
ing, based on the k-nearest neighbor method and lay-
out heuristics, to detect tables within a document and to
extract table information. This system generates an en-
riched representation of the data extracted from tables
in the PDF documents. TAO’s performance is compara-
ble to other table extraction methods, but it overcomes
some related work limitations and proves to be more ro-
bust in experiments with diverse document layouts.

1 Introduction

Scientific digital documents allow us to present and share in-
formation in different areas of knowledge. The ever-growing
number of documents available on the Internet makes it diffi-
cult to analyze them at the same pace they are produced. The
myriad topics and ways in which digital documents present
the information hinder the extraction and management of
their contents.

Scientific publications use tables to represent results and
associations. Tables are simple representations of informa-
tion that show relationships between concepts. People iden-
tify tables within documents easily, but given the number of
documents to analyze, the identification is time consuming.
Performing this task automatically is difficult due to the vari-
ety of document formats (e.g., PDF, HTML), tables’ layouts
and types of information.

The main challenge in detecting tables in digital docu-
ments is that tables are mixed with other elements, such

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as figures and text. Also, the PDF documents present more
challenges to detect tables due to the lack of table tags. Our
approach focuses on PDF documents.

Current methods (Liu et al. 2007; Oro and Ruffolo 2009)
for automatic table detection and extraction in PDF docu-
ments are useful, but still have some restrictions. These re-
strictions include detection of tables only in documents with
single column, detection relying on patterns not present in
all tables, and extraction lacking elements needed to accu-
rately reconstruct the information provided in a table. To
overcome these limitations, we propose the TAble Organi-
zation (TAO) system that not only provides automatic table
detection and extraction in digital documents, but also gener-
ates a detailed representation of table elements for structural
and functional analyses.

TAO is efficient, comprehensive and robust. It is efficient
because it takes advantage of the structure formed by tables,
avoiding an exhaustive search of table elements where there
is no such structure. It is comprehensive because it discovers
metadata (e.g., header, font, data type, coordinates) and data
from tables embedded in a document. Finally, TAO is robust
because it does not depend on fixed patterns or layouts to
detect tables, and it is able to detect them on different lay-
out documents (see Section 2). Even though scientific pub-
lications are an important target for TAO, its methods serve
the purpose of extracting information from any PDF doc-
ument containing tables. TAO is compared to related work
(see Sections 3,4). TAO’s output portable format facilitates
information organization and sharing, and further analysis
(see Section 5).

Our main contributions are: 1) an adaptive method to de-
tect and extract tables’ information, 2) an annotated repre-
sentation of the information extracted from tables for further
structural, functional, and semantic analyses, and 3) a web-
based prototype of the system at http://integra.cs.unm.edu.

2 Table Detection and Extraction

The TAble Organization (TAO) system is capable of detect-
ing and recognizing tables within PDF documents. Table
detection is the process of identifying tables from a docu-
ment, and table recognition of identifying and extracting the
cells contained in a table (Hu et al. 1999). To acomplish this
processing, TAO combines a supervised machine learning
method with layout heuristics, and consists of three main

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

591

modules: 1) document conversion, 2) table detection, and 3)
table extraction, (see Figure 1).

TAO’s input is a PDF document. Using PDFMiner, the
PDF document is converted to an XML format contain-
ing all elements in the document (e.g., characters, figure’s
placeholders, layouts). PDFMiner’s output includes separate
XML tags for every character and every space. The second
module, table detection, parses this large XML file and iden-
tifies table candidates, storing them in a per-page fashion.
The third module, table extraction, uses the table candidates
to find particular cells and their content. Once the tables
are identified, this module augments tables with informa-
tion regarding their metadata and position within the doc-
ument. TAO’s output is a JSON document with the table’s
information and augmented information extracted from the
PDF. Optionally, this information can be stored in a NOSQL
database for easy access and search. In the following sec-
tions, we describe the methods built into the system to per-
form automatic table detection and extraction.

Figure 1: The TAble Organization (TAO) system

Document Conversion

Document conversion uses the PDFMiner (Shinyama 2010)
extraction tool, which allows converting PDF documents to
text, HTML, XML, and tagged PDF formats. PDFMiner
outputs the coordinates of the text, font style and size for
each character into an XML file. We evaluated other con-
verters (Noonburg 2009; Litchfield 2004), but we selected
PDFMiner because it analyzes the structure of the informa-
tion on each page, providing a detailed hierarchy of grouped
elements based on their spatial relationships in the doc-
ument. In addition, PDFMiner has been maintained and
widely adopted.

PDFMiner converts a PDF file into an XML representa-
tion, and generates a body and a layout for each page of
the document. The body is formed by text boxes, text lines
and text (see Figure 3 for an example). Text boxes include
an identifier (id), and the coordinates (x1, y1) represent top-
left and (x2, y2) bottom-right corners of the bounding box
(bbox). Text boxes are composed of text lines. Text lines

are composed of text tags. Each text tag contains a single
character. Characters grouped in text lines form one or more
words. A text line also includes its corresponding bounding
box (bbox) coordinates. PDFMiner provides coordinates,
text font, and text size for each character.

The layout includes elements such as text groups and text
boxes. Text box elements of the layout are also found in the
body. The difference is that in the layout, text boxes are or-
ganized into text groups, indicating the coordinates of the
information structure. In the body, text boxes contain all
the page information, character by character. PDFMiner’s
output is comprehensive and long. For example, for a
10-page IEEE research paper, PDFMiner outputs approxi-
mately 60,000 lines, which varies with a document’s con-
tent. Therefore, it is practically impossible to parse, detect
and extract information manually, and not a trivial task to
do so automatically. In the remainder of this section, we
use TAO to parse this XML output and generate cleanly ex-
tracted and annotated table structures.

Table Detection

Our table detection module identifies tables within the lay-
out of the XML output provided by PDFMiner. This output
does not discriminate between text in normal paragraphs, ta-
bles or figures. The document structure elements are rep-
resented by group boxes and text boxes. Thus, TAO per-
forms a structural analysis to identify sets of text boxes that
are probable table candidates. The table detection process
includes four steps: 1) comprehensive identification of text
boxes within text groups, 2) distance calculation among text
boxes, 3) identification of structural relationships, and 4)
generation of table candidates.

In PDFMiner’s output, the coordinates of a page are top-
left (0,0) and bottom-right (approximately 750,850). Text
boxes are contained within text groups in the layout of each
page. A text box may contain one or more table elements.
For each text group, we identify the set T of all text boxes
in it. In the table detection process, we first create a list con-
taining all the text box identifiers (id) on each page. Then,
for each pair (a,b) of text boxes ∈ T , we compute their Man-
hattan distance using their top-left (x1, y1) and bottom-right
(x2, y2) coordinates. We store the proximity calculations in
an upper-traingular matrix Mdiff . Each element in the ma-
trix contains the distance of the top-left coordinates between
a and b for the first corners of the text boxes Mdiff [a, b, 1] =
[(a.x1−b.x1), (a.y1−b.y1)] and the distance of the bottom-
right coordinates between a and b for the second corners of
the text boxes Mdiff [a, b, 2] = [(a.x2−b.x2), (a.y2−b.y2)].
The distance matrix Mdiff contains the proximity of text
box pairs, defining global structural relationships (i.e., rows
and columns) among multiple text boxes. To identify mul-
tiple columns, a layout heuristic detects columns when two
or more text boxes have an alignment, (i.e., text boxes inter-
sect horizontally). In the same way, a heuristic for vertical
intersection indicates that the elements form a row. Through
experimentation we learned that the alignments have mini-
mal variation because the coordinates of each page are fixed.
Because columns are generally aligned to the left, right or
center, we find more variation in the column alignment than

592

in rows. Therefore, we detect columns, comparing alignment
with a threshold distance of at most t = ±23 points to either
side (i.e., about 2 characters with font size 10). For rows,
the thresholds are smaller because they have minimal top
or bottom alignments. Thus, to identify rows, the distance
threshold is t±10 (i.e., 1 character) for the separation above
a text box and t± 2 for below.

Figure 2: Identification of structural relationships among
text boxes

Pairs whose proximity is less than or equal to the thresh-
olds are aligned, forming either a row or a column. All the
text boxes in the same row or column are joined. The aligned
text boxes represent the table candidates. Figure 2 shows six
text boxes (a,b,c,d,e,f) with each one displaying their align-
ments as vertical or horizontal thin arrows. Boxes whose dis-
tance is within the threshold limits are grouped either verti-
cally or horizontally, forming a preliminary structural orga-
nization of the table, which contains two columns and three
rows.

Table Extraction

The table extraction module of TAO recognizes the actual
tables, locating the cells (i.e., the intersection between a row
and a column) that belong to a particular table, and storing
the tables found on each page of the document. The text con-
tained in each cell of the table is extracted and saved in an
explicit data structure, including additional information re-
lated to the cell. The table extraction module performs the
Table recognition and Table composition tasks.

In Table recognition, we use the body of the XML out-
put produced by PDFMiner and table candidates obtained
from the Table detection module. To extract words located
in cells of the table, we follow a two-phase process: first, we
identify cells and then reconstruct the text within each cell.
To detect cells in the table, we use a similar approach to the
one explained in the previous section, but instead of compar-
ing and aligning text boxes, we compare text lines. The text
boxes are a coarse representation of possible table layouts,
while text lines are a more accurate way to detect specific
table elements (i.e., words in table cells). Thus, for this step
we also calculate an upper-triangular distance matrix Md2 to
store the proximity between pairs of text lines.

Because we identify table information in diverse formats,
a learning process to find table alignments is appropriate.
We analyzed the k-nearest neighbor (K-NN) and locally
weighted regressions methods, the former being faster and

more efficient with 4 neighbors, uniform weighting, and
Eucledian distance. Our analysis to determine parameters
found no improvement to give more weight to closer neigh-
bors. Therefore, the K-NN regression was applied to learn
the threshold t, (i.e., maximum alignment in a column), to
identify the ids of text lines in the same column. We use the
scikit tool (Pedregosa et al. 2011). The training data con-
tains 300 different samples with the font size of different
tables and their alignment between columns. To avoid noise,
we take the maximum alignment from the samples with
the same font size, yielding 55 unique samples. Recall that
the coordinates (x1, y1) represent the top-left and (x2, y2)
bottom-right corners of the bbox. For each pair of text lines
(p, q) ∈ Md2, if p.x1 − q.x1 < t and p.x2 − q.x2 < t then
(p, q) are in the same column, we add their ids to the list
of columns LC. Similarly, if p.y1 − q.y1 < fontsize and
p.y2 − q.y2 < fontsize then (p, q) are in the same row,
we add their ids to the list of rows LR. The font size repre-
sents the threshold of row separation within tables because
the alignment cannot be greater than the height of a single
row, which measures at least the font size. To identify cells
and reconstruct text within cells such as words and numbers,
we use the lists of columns LC and rows LR obtained in the
previous step. A cell in a table is the intersection of a column
c in LC and a row r in LR, cell[r, c] ← LR(r) ∩ LC(c).
The process outputs a file containing all the cells grouped
by column and row, and its associated text line. The grouped
text lines allow us to explore their associated text tags and
extract all the words in a particular cell.

In text extraction, for each text line in a particular cell,
we identify its children text tags and extract a) the particular
character, b) text box id, c) text line id, d) bbox coordinates,
e) text font, and f) text size. PDFMiner may generate text line
identifiers unsorted. Thus, finding two consecutive text line
ids in a table cell does not mean that the coordinates of these
text lines are sorted in the original Cartesian plane. To solve
this issue, we organize table elements using coordinates to
produce sorted and aligned text for the table cell. Figure 3
shows the text reconstruction process for a cell composed of
one text line containing four text tags.

Figure 3: Text reconstruction from a text line in a table cell

To avoid redundant information, we verify that the cells
contained in rows match the ones in columns. The cells are
grouped by row, preserving the coordinates of each cell to
locate the table cells’ positions. Finally, the cells identified
in a table and their contents are stored indicating the page on
which they appear in the original document. Up to this point,
multiple tables can still be stored together if they appear on
the same page.

Table composition performs table separation in the doc-

593

ument, and classifies elements of tables as header or data.
Header refers to a label representing table information (i.e.,
row or column headers), while data is the actual content or
body of the table. The composition task retrieves all cells
on a particular page, sorts coordinates of text cells grouped
by row, and calculates row separation. If, for a specific pair
of neighbor rows, this separation is larger than a threshold
ttable, we classify and assign an identifier for a new table.
To learn ttable, the K-NN regression method was applied as
in table recognition. The training data contains 300 differ-
ent samples of font size and row separation between tables.
To avoid noise, we have 55 unique font sizes related to its
maximum row separation.

Once each table is separated as an entity, cells are classi-
fied into data or header. The bold font style of the text in the
cell classifies text as a header, even though it is not at the
top row. This heuristic may fail for customized documents,
but is general enough to capture relevant cell differences in
documents. A cell is classified as a header when it it is in a
top position that groups some cells under it. Using pattern
matching, we also classify the cell content by data type (i.e.,
numeric or string of characters).

The output of this component is an explicit table repre-
sentation that can be easily ported to a database for effi-
cient search. The file contains a) extracted text of table cells
grouped by row, indicating header (i.e., metadata) or data;
b) provenance information associated with the cells consist-
ing of identifiers of text boxes and text lines from where the
text was identified; c) position of tables on each page; and
d) metadata attributes including coordinates of the text, text
size, text font, and data type. Figure 4 shows the extracted
information from four table cells.

Figure 4: Sample of table cells represented by TAO

3 Evaluation

To evaluate the usefulness and generality of TAO compared
to other PDF table extractors, a systematic assessment of its
capability to detect tables and content was performed. De-
tecting tables means identifying all the tabular elements in
the PDF documents, whether or not their content was recog-
nized accurately. Thus, we computed precision and recall.
Precision is the fraction of the correct number of tables iden-
tified divided by the total number of tables found. Recall
is the fraction of correct tables found, divided by the total
number of tables in the documents. The F1-measure com-
bines precision and recall. Recognizing tables means cor-
rectly identifying and associating cell’s content with a par-

ticular table. For the recognition task, table cells recognized
were used to measure precision and recall.

We compared and contrasted the performance of TAO
with respect to two other table extractors: Pdf-trex and Ta-
bleSeer (see Section 4). Pdf-trex code was unavailable, thus
we report the precision and recall published in (Oro and Ruf-
folo 2009). Because TableSeer’s code was publicly available
at http://tableseer.soft112.com/, we produced its outputs for
all experiments.

The first dataset TREX described in (Oro and Ruffolo
2009) was publicly available at http://staff.icar.cnr.it/ruffolo/
pdftrex/dataset.zip. This dataset was intended to be a stan-
dard benchmark for automatic table extraction with 100 PDF
single-column documents in the English and Italian lan-
guages, containing more than 100 pages with around 150
tables. TREX does not reflect the format of standard research
papers, but, rather, technical reports containing tables with a
variety of formats and styles.

The second dataset, obtained from the Cornell University
Library site at http://arxiv.org/, comprised of twenty scien-
tific publications selected randomly. Two of them did not
contain tables. This dataset, to which we refer to as COR-
NELL, included one- and two-column documents containing
more than 300 pages with 79 tables. This dataset allowed
us to measure TAO’s performance in multiple page scien-
tific publications. Additionally, we used the COMBINED
dataset results from the merging of the TREX and COR-
NELL datasets to generate a more diverse one.

We prepared the gold standard, (i.e., the actual informa-
tion from the tables in the datasets). A program compared
the gold standard against the cells extracted and organized
by TAO, and assisted to calculate the recall and precision.

Results and Discussion

In the first set of experiments, we compared TAO, Pdf-trex,
and TableSeer using the TREX dataset. The TAO’s output
from this dataset yielded an F1-measure of 91.9% for ta-
ble detection and 86.4% for recognition. Pdf-trex’s results
in (Oro and Ruffolo 2009) had an F1-measure of 91.7%
for table detection and of 84.6% for recognition. For this
dataset, we found 148 tables and Pdf-trex reports 164. We
believe that this difference is because we did not account
lists as tables. TAO’s reliance on PDFMiner can be a limita-
tion because this converter cannot extract information from
a PDF file when the document is password protected or mal-
formed. Still, PDFMiner converted 89 PDF documents out
of 100. While TAO detected 137 tables out of the 148 and
also identified 12, 504 correct table cells out of 14, 466, Ta-
bleSeer performed badly for this set of experiments identi-
fying only 18 tables, whose F1-measure was 21.6% for ta-
ble detection and 5.0% for recognition. This poor perfor-
mance is due to the fact that this dataset does not adhere
to the common rigorous formatting standards for scientific
publications. Therefore, TAO performed similarly to Pdf-
trex, but better than TableSeer. From the first experiment,
we corroborated that TAO adapts the thresholds depending
on the different PDF documents’ font sizes. Because tables
are composed of rows and columns in any language, TAO’s
structural approach was able to detect tables in Italian and

594

Table 1: Experiments using COMBINED
Table Detection

Method Precision Recall F1 measure
TAO 0.903 0.886 0.895

TableSeer 0.962 0.453 0.616
Table Recognition

Method Precision Recall F1 measure
TAO 0.884 0.894 0.889

TableSeer 0.436 0.465 0.450

English. The language poses a challenge for semantic anal-
ysis on table’s cells.

Our second experiment used the CORNELL dataset.
TAO’s output yielded an F1-measure of 87.0% for Table de-
tection and 91.1% for recognition. TableSeer yielded an F1-
measure of 84.9% for detection and 89.5% for recognition.
TAO detected 67 tables, and TableSeer 62. Also, TAO de-
tected 4, 738 out of 6, 003 text cells. For this and the next
experiments, Pdf-trex was not evaluated because it was un-
available. One limitation of TAO using this dataset is that
it produced more false positives (i.e., figures and equations)
than TableSeer. To solve this problem, we need to detect the
rows that do not contain table cells, but other elements, such
as graphs. TAO may extract the information of two different
cells into a unique cell. Even though this issue is related to
PDFMiner’s output, we need to analyze cells further to pro-
duce more accurate information. Although it is uncommon
to find two consecutive horizontal tables, TAO needs to learn
how to separate them. The distance between table rows and
two consecutive tables may vary in a single document, mak-
ing it more difficult for TAO to separate tables consistenly.
However, TAO still performs satisfactorily.

Finally, for completeness and to quantitatively assess the
generality of our method, we report aggregated experiments
using the COMBINED dataset. Table 1 reports a summary
for table detection and recognition for TAO and TableSeer.
TAO is more robust and general because TableSeer depends
on particular keywords to perform accurate Table Detection.
TAO recognized and extracted 17, 242 correct table cells,
while TableSeer recognized only 6, 389. Similarly, TAO is
more general and robust than Pdf-trex because it can han-
dle double-column documents and Pdf-trex cannot, as doc-
umented in (Oro and Ruffolo 2009).

The K-NN method produced rapid and accurate results
using training data with characteristics of different table for-
mats. The training sets can increment data from more table
formats. TAO’s prototype enables to submit a PDF docu-
ment online, and receive the output by email with the orga-
nized table’s information in JSON.

4 Related Work

This section describes briefly a) general definitions of ta-
ble identification, b) document converters, and c) works that
perform table identification and to which we compare TAO’s
performance.

Wang analyzes the importance of the physical and logical

elements in tables (Wang 1996), and describes the main table
functions: to identify, understand, search and compare infor-
mation. Hurst describes a model to represent tables, includ-
ing graphical, physical, functional, structural and semantic
components (Hurst 2000). We focus on table identification,
which can be divided into table detection and recognition
(Hu et al. 1999). TAO automatically performs these tasks,
which are also known as table processing in (Embley et al.
2006). Table processing analyzes the physical and logical
structures of a table. The physical structure of a table is the
location of regions containing parts of the table, and the log-
ical structure is the type of regions that compose the table
(Zanibbi, Blostein, and Cordy 2004). Zanibbi et al. classify
table processing according to the approach used to recognize
tables, such as layout (Hu et al. 1999), heuristics (Liu et al.
2007) and statistical methods (Liu et al. 2009). TAO uses a
combination of heuristics with the k-nn statistical method.

Different document formats contain tables in HTML,
XML, text and PDF. We focus on the PDF format. Most PDF
documents lack tags, which can indicate the existence of ta-
bles, such as in HTML. To facilitate the management and
understanding of table information some works convert ta-
bles from PDF documents to another format, such as HTML
(Hassan 2003). The converters assist extracting table infor-
mation from digital documents, and include PDFBox used in
(Liu et al. 2007), Jpedal used in (Hassan 2003), PDFlib TET
used in (Liu et al. 2009), and PDFMiner (Shinyama 2010)
used in TAO. PDFMiner also converts PDF documents to
HTML. However, it does not identify table tags. The con-
verters are powerful, but they may suffer from text sequence
errors (Liu, Mitra, and Giles 2008), which occur when the
converter tool shows the text in a different order than the
original PDF document. However, some converters show co-
ordinates to process the right order.

TableSeer (Liu et al. 2007), Pdf-trex (Oro and Ruffolo
2009) and TAO identify tables in PDF documents. Besides
performing table identification, TableSeer is a table search
engine that crawls digital libraries, indexes and ranks tables.
TableSeer gets words from a PDF converter, and forms lines.
From the lines, TableSeer detects table structure and meta-
data using heuristics rules based on font size, fixed pattern
matching (e.g., TABLE), and white spaces. TAO is indepen-
dent of using pattern matching to detect tables. TableSeer
discovers other metadata for table search, such as captions
and the publication’s name. It also determines data type, lay-
out metadata (e.g., number of columns and rows), and the
position of a table within the document. However, for the ta-
ble’s content it only shows the coordinates of the columns.
An extracted cell represented in a different position makes it
difficult to recover the actual cell’s position in a table. TAO’s
output contains metadata for a table’s cell (e.g., coordinates,
font style), providing the precise location and attributes re-
quired to reconstruct tables in their original format. Table-
Seer and TAO depend on PDF converters.

Pdf-trex detects text and table areas, aligning and group-
ing text with spatial relationships. Tableseer and Pdf-trex
search elements in a table line by line, which differs from
TAO’s top-down approach which identifies structure before
analyzing the specific lines that may belong to a table. TAO

595

and Pdf-trex use similar heuristics to detect columns and
rows, allowing them to detect tables in documents in the
English and Italian languages. Also, Pdf-trex uses an ag-
glomerative hierarchical clustering algorithm to build seg-
ments and blocks that form table structure. Similar to TAO,
Pdf-trex generates coordinates for an extracted table’s infor-
mation. However, Pdf-trex’s output lacks other metadata at-
tributes to recover a table’s format and style. While Pdf-trex
extracts tables only in single-column documents, TAO con-
siders single- and multiple-column documents. A work in
(Fang et al. 2011) detects multiple-columns. However, this
work is unavailable for comparison.

TAO’s web-based prototype enables a user to upload a pdf
document, and receive organized table information by email.
TAO can be configured to process multiple PDF documents
and generate an output for each. TableSeer and Pdf-trex pro-
duce XML code to represent tables, while TAO produces a
JSON format.

5 Conclusion and Future Work

The TAble Organization (TAO) system was developed to au-
tomatically detect, extract, and organize tables from PDF
documents. TAO benefits from PDFMiner to convert PDF
documents to XML format. We defined heuristics, training
data, and learning methods to process the XML, detecting
the location of the tables within the document and extract-
ing the corresponding table cells.

TAO was implemented using document conversion, table
detection and extraction; it generates its output in a JSON
document for information interoperability. The table infor-
mation from the original PDF document is preserved and
enriched with data not displayed in the PDF document, such
as text font and coordinates in table cells. The extra informa-
tion helps locate the table cells’ position and format for bet-
ter representation. The output document can easily be stored
and managed in a database to facilitate analysis, sharing, and
collaboration.

We evaluated TAO on varied PDF documents with more
than 225 tables, and compared its performance to related
work. TAO overcame related work limitations. It performed
satisfactorily not only on scientific documents, but also on
non-scientific documents. In addition, it extracted tables’ in-
formation on PDF documents with large and small number
of pages, with single and double columns, and with various
tables’ formats.

We plan to use TAO’s output to recover a table cells’ infor-
mation. To better understand tables (i.e., semantic analysis),
we intend to discover context and semantic relationships for
a table’s information. The relationships exist in the text of a
table’s document, and related datasets. The semantic analy-
sis of tables enables the integration of scientific knowledge
with the semantic web.

6 Acknowledgments

The authors thank the anonymous reviewers for useful com-
ments to improve this work. Martha Perez-Arriaga thanks
the National Council of Science and Tecnology in Mexico
(CONACyT).

References

Embley, D. W.; Hurst, M.; Lopresti, D.; and Nagy, G. 2006.
Table-processing paradigms: a research survey. Interna-
tional Journal of Document Analysis and Recognition (IJ-
DAR) 8(2-3):66–86.
Fang, J.; Gao, L.; Bai, K.; Qiu, R.; Tao, X.; and Tang, Z.
2011. A table detection method for multipage pdf docu-
ments via visual seperators and tabular structures. In Doc-
ument Analysis and Recognition, 2011. 11th International
Conference on Document Analysis and Recognition, 779–
783. IEEE.
Hassan, T. 2003. Pdf to html conversion. Technical report,
University of Warwick.
Hu, J.; Kashi, R. S.; Lopresti, D. P.; and Wilfong, G. 1999.
Medium-independent table detection. In Electronic Imag-
ing, 291–302. International Society for Optics and Photon-
ics.
Hurst, M. F. 2000. The interpretation of tables in texts.
Ph.D. Dissertation, University of Edinburgh, Scotland.
Litchfield, B. 2004. Pdfbox.
Liu, Y.; Bai, K.; Mitra, P.; and Giles, C. L. 2007. Tableseer:
automatic table metadata extraction and searching in digi-
tal libraries. In Proceedings of the 7th ACM/IEEE-CS joint
conference on Digital libraries, 91–100. ACM.
Liu, Y.; Bai, K.; Mitra, P.; and Giles, C. L. 2009. Improving
the table boundary detection in pdfs by fixing the sequence
error of the sparse lines. In Document Analysis and Recog-
nition, 2009. 10th International Conference on Document
Analysis and Recognition., 1006–1010. IEEE.
Liu, Y.; Mitra, P.; and Giles, C. L. 2008. Identifying table
boundaries in digital documents via sparse line detection.
In Proceedings of the 17th ACM conference on Information
and knowledge management, 1311–1320. ACM.
Noonburg, D. 2009. xpdf: A c++ library for accessing pdf.
Oro, E., and Ruffolo, M. 2009. Pdf-trex: An approach for
recognizing and extracting tables from pdf documents. In
Document Analysis and Recognition, 2009. 10th Interna-
tional Conference on Document Analysis and Recognition.,
906–910. IEEE.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; et al. 2011. Scikit-learn: Machine learn-
ing in python. The Journal of Machine Learning Research
12:2825–2830.
Shinyama, Y. 2010. Pdfminer: Python pdf parser and ana-
lyzer.
Wang, X. 1996. Tabular abstraction, editing, and format-
ting. Ph.D. Dissertation, University of Waterloo, Ontario.
Zanibbi, R.; Blostein, D.; and Cordy, J. R. 2004. A survey
of table recognition. Document Analysis and Recognition
7(1):1–16.

596

