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Abstract

The principle of maximum entropy (MaxEnt principle) pro-
vides a valuable methodology for reasoning with probabilistic
conditional knowledge bases realizing an idea of information
economy in the sense of adding a minimal amount of assumed
information. The conditional structure of such a knowledge
base allows for classifying possible worlds regarding their in-
fluence on the MaxEnt distribution. In this paper, we present
an algorithm that determines these equivalence classes and
computes their cardinality by performing satisfiability tests
of propositional formulas built upon the premises and con-
clusions of the conditionals. An example illustrates how the
output of our algorithm can be used to simplify calculations
when drawing nonmonotonic inferences under maximum en-
tropy. For this, we use a characterization of the MaxEnt dis-
tribution in terms of conditional structure that completely ab-
stracts from the propositional logic underlying the condition-
als.

Introduction

Probability theory is one of the most powerful and popu-
lar frameworks for nonmonotonic reasoning, and the prin-
ciple of maximum entropy (MaxEnt principle) constitutes
a most appropriate form of common-sense probabilistic rea-
soning when the given knowledge is incomplete (Paris 1999;
Shore and Johnson 1980; Jaynes 1983). However, the Max-
Ent principle is often constituted as a black box method-
ology due to its non-transparency. In this paper, we sys-
tematically exploit the conditional structure of knowledge
bases consisting of probabilistic conditionals of the form
(B|A)[x] with the meaning “if A holds, then B follows
with probability x” in order to make MaxEnt calculations
more understandable and simple. Formally, the MaxEnt dis-
tribution can be obtained by solving a nonlinear equation
system depending on the evaluation of the stated condition-
als within possible worlds (Kern-Isberner 2001). Here, we
give a characterization of the MaxEnt distribution that ab-
stracts from these possible worlds and does only depend
on equivalence classes induced by the conditional structure.
The main contribution of this paper is an algorithm that com-
putes the equivalence classes (and their cardinalities) of pos-
sible worlds with respect to the conditional structure. Start-
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ing from a (qualitative) knowledge base, it iteratively splits
the set of possible worlds into disjoint subsets depending on
whether the possible worlds satisfy the premises and/or the
conclusions of the conditionals in the knowledge base. In or-
der to avoid unnecessary computations, consistency is tested
at every step. The algorithm can be seen as a base algorithm
that provides various means of modification and optimiza-
tion. Although there are investigations on extracting the con-
ditional structure from a given knowledge base (Beierle et
al. 2015), to our knowledge, this is the first approach for
systematically computing the aforementioned equivalence
classes without having to look at every possible world.

The rest of the paper is organized as follows: First, we
give some preliminary notes, especially on the concept of
conditional structure and the MaxEnt principle. Then, we
present our algorithm for calculating the equivalence classes
of possible worlds. Afterwards, the output of the algorithm is
used for answering an inference query by way of illustration.
Finally, we conclude and point out future work.

Conditionals and the MaxEnt Principle

We consider a propositional language LV over a finite alpha-
bet V that is equipped with the logical connectives ∧ (and),
∨ (or), and ¬ (negation). Roman uppercase letters denote
atoms or formulas in LV . We write AB instead of A ∧ B
and A instead of ¬A to shorten formulas. Let ΩV be the set
of possible worlds, i.e., a complete set of interpretations of
LV . We identify each possible world ω ∈ ΩV with the com-
plete conjunction that has exactly ω as a model. If ω satis-
fies a formula A, we write ω |= A and call ω a model of A.
A conditional is of the form (B|A) where A,B are propo-
sitional formulas, and (B|A) has the intention of a default
option “if A, then typically B”. Formally, conditionals lead
to a three-valued logic as (B|A) is verified in ω ∈ ΩV iff
ω |= AB, it is falsified iff ω |= AB, and it is not applicable
iff ω |= A. By assigning each conditional a probability, we
obtain a probabilistic conditional language

(LV |LV)prob = {(B|A)[x] | A,B ∈ LV , x ∈ [0, 1]}.
Let P be a probability distribution over ΩV where possible
worlds are understood as elementary events and atoms in LV
as random variables. Then, every formula A can be assigned
a probability via P(A) =

∑
ω|=A P(ω), and satisfaction of

Proceedings of the Twenty-Ninth International  
Florida Artificial Intelligence Research Society Conference

690



a conditional is defined by

P |= (B|A)[x] iff P(A) > 0 and x =
P(AB)

P(A)
.

A finite set KB = {(B1|A1)[x1], . . . , (Bn|An)[xn]} of pro-
babilistic conditionals is called a knowledge base. P satisfies
KB iff P satisfies every conditional in KB. If a probability
distribution exists that satisfies KB, the former is called a
model of KB and the latter consistent. For KB, we define its
qualitative counterpart KBq = {(B1|A1), . . . , (Bn|An)}.

The conditional structure (Kern-Isberner 2001) of a pos-
sible world ω ∈ ΩV with respect to KBq is defined by
σKBq (ω) =

∏n
i=1 σ

KBq

i (ω) where

σKBq

i (ω) =

⎧⎨
⎩
a+i iff ω |= AiBi

a−i iff ω |= AiBi

1 iff ω |= Ai

, i = 1, . . . , n.

The symbols a+i (resp. a−i ) indicate wether the i-th condi-
tional in KBq is verified (resp. falsified) in ω. The condi-
tional structure induces an equivalence relation ω ≡KBq ω′
on ΩV which holds iff σKBq (ω) = σKBq (ω′). We denote
the equivalence class regarding ω with [ω] = [ω]≡KBq and
the set of all equivalence classes with [ΩV ] = ΩV/ ≡KBq .
As there are three different ways a conditional can be eval-
uated within a possible world, there are at most 3n different
equivalence classes in [ΩV ], where n is the number of con-
ditionals in KBq . Note that this bound is not sharp, as Ex. 1
shows, and that |[ΩV ]| is independent of the size of V . With

vi(ω) =

{
1 iff ω |= AiBi

0 iff ω �|= AiBi
, ai(ω) =

{
1 iff ω |= Ai

0 iff ω �|= Ai
,

the conditional structure of a possible world ω is given by

σKBq (ω) =

n∏
i=1

(a+i )
vi(ω)(a−i )

ai(ω)−vi(ω). (1)

Thus, it is completely determined by the functions vi and ai.
If KB = {(B1|A1)[x1], . . . , (Bn|An)[xn]} is a consistent

knowledge base, there may exist several models of KB. The
principle of maximum entropy (MaxEnt principle) selects a
unique model among these which shows particularly good
properties for drawing inferences from KB (Kern-Isberner
2001; Paris 1994). This MaxEnt distribution is defined by

PME = PME(KB) = arg max
P|=KB

−
∑

ω∈ΩV

P(ω) logP(ω).

Defining ∞0 = 1, ∞−1 = 0, and 00 = 1, PME satisfies

PME(ω) = α0

∏
1≤i≤n
ω|=AiBi

α1−xi
i

∏
1≤i≤n

ω|=AiBi

α−xi
i

where α0 is a normalizing constant and the so-called effects
αi for i = 1, . . . , n fulfill the adjustment condition

(1− xi)α
1−xi
i

∑
ω|=AiBi

∏
j �=i

ω|=AjBj

α
1−xj

j

∏
j �=i

ω|=AjBj

α
−xj

j

= xi α
−xi
i

∑
ω|=AiBi

∏
j �=i

ω|=AjBj

α
1−xj

j

∏
j �=i

ω|=AjBj

α
−xj

j

as well as the positivity condition

αi

⎧⎨
⎩
> 0 iff xi ∈ (0, 1)

= ∞ iff xi = 1

= 0 iff xi = 0

.

In terms of the conditional structure (1), the MaxEnt distri-
bution PME may be rewritten to

PME(ω) = α0

n∏
i=1

α
vi(ω)−xiai(ω)
i , (2)

and the adjustment condition leads to

∑
[ω]∈[ΩV ]

(vi(ω)− xi ai(ω)) |[ω]|
n∏

j=1

α
vj(ω)−xjaj(ω)
j = 0

for i = 1, . . . , n. Since the MaxEnt distribution assigns the
same probability to each possible world within the same
equivalence class, PME([ω]) = |[ω]| PME(ω) holds. Thus,
PME and particularly the adjustment condition no longer de-
pend on possible worlds but on equivalence classes of possi-
ble worlds induced by the conditional structure. Finally, the
MaxEnt distribution yields a nonmonotonic inference rela-
tion |∼ME with KB |∼ME (B|A)[x] iff PME |= (B|A)[x]. For
any MaxEnt computation or MaxEnt inference task, being
able to use the class-based representation of PME yields sig-
nificant advantages because of the reduction of the complex-
ity. However, while the αi’s can be found by solving a non-
linear equation system, computing the equivalence classes
of possible worlds and their respective sizes is non-trivial.
In the next section, we present an algorithm that systemati-
cally reproduces the conditional structure.

An Algorithm for Clustering Possible Worlds

The algorithm CONDSTRUCTOR(KBq,V) (Fig. 1) com-
putes the equivalence classes in [ΩV ] as well as their car-
dinalities. It follows ideas from (de Salvo Braz et al. 2015),
where an algorithm is presented that allows for probabilistic
inferences modulo theories in general. Our approach instead
takes advantage of the specific algebraic structure induced
by conditional knowledge.

The core idea behind the tree-based algorithm is as fol-
lows: Starting from the complete qualitative knowledge base
KBq , it will iteratively select an unresolved conditional
(B|A) and split the current case into three more specific
cases: One where (B|A) is verified, one where it is falsified,
and one where the conditional is not applicable. In order to
do that, it checks if the premise A or its negation A is consis-
tent with the previous selections of the algorithm and creates
new nodes for those cases. If the premise can be satisfied in
the current node, the algorithm will check if the conclusion
B or its negation B can be satisfied as well. The selection of
an unresolved conditional and the splitting into new nodes
is done until all conditionals have been resolved. Finally, for
each leaf node, the algorithm counts the number of worlds
that satisfy the accumulated condition.

We now highlight some technical details of
CONDSTRUCTOR(KBq,V). Its main method initial-
izes the set S with a tuple (KBq, 1,	,V) mainly containing
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CONDSTRUCTOR(KBq = {(B1|A1), . . . , (Bn|An)},V)
Input: a qualitative knowledge base KBq and an alphabet V
Output: a set of tuples S where every tuple comprises an
equivalence class and its cardinality

1 S ← {(KBq, 1,	,V)}
2 WHILE e x i s t s (E,L,C, P ) ∈ S wi th E �= ∅
3 S ← SPLIT((E,L,C, P ), S)
4 FOR each (∅, L, C, P ) ∈ S
5 (∅, L, C, P ) ← (∅, SATCALCV(C) L,C, ∅)
6 RETURN S

SPLIT((E,L,C, P ), S)
Input: a tuple (E,L,C, P ) ∈ S and the set S itself
Output: an updated version of S where (E,L,C, P ) is split
according to a conditional in E

1 SELECT((Bj |Aj), E)
2 S ← S \ {(E,L,C, P )}
3 E ← E \ {(Bj |Aj)}
4 IF SATV(CAj) = true THEN
5 IF SATV(CAjBj) = true THEN

6 S ← S ∪ {(E,Lα+
j , CAjBj , P )}

7 IF SATV(CAjBj) = true THEN

8 S ← S ∪ {(E,Lα−
j , CAjBj , P )}

9 IF SATV(CAj) = true THEN

10 S ← S ∪ {(E,L,CAj , P )}
11 RETURN S

Figure 1: Pseudo code of CONDSTRUCTOR(KBq,V) and
SPLIT((E,L,C, P ), S)

the knowledge base KBq and the set of propositions V
and iteratively selects an element (E,L,C, P ) of S to
invoke the method SPLIT((E,L,C, P ), S). The latter non-
deterministically selects an unresolved conditional (Bi|Ai)
from E by invoking the method SELECT((Bj |Aj), E) and
splits (E,L,C, P ) into three new tuples as explained above,
each corresponding to possible worlds in which (Bi|Ai)
is either verified, falsified, or not applicable. The latter is
ascertained by a SAT solver SATV(C). For each case, the
conjunction of the constraint C and AiBi, AiBi, or Ai

is built, and the appropriate factor a+i , a−i , or 1 is added
to L. SPLIT((E,L,C, P ), S) also checks if the updated
constraint is satisfiable. If so, the relevant tuple is added to
S. The algorithm terminates when there is no tuple in S with
E �= 0 which always happens since SPLIT((E,L,C, P ), S)
updates S with tuples whose entry E is reduced by an
element every time. Finally, SATCALCV(C) counts all
models that satisfy the constraint C with respect to the set of
propositions V , i.e., it solves the #SAT problem (Biere et al.
2009). At this point, each remaining tuple (∅, L, C, ∅) ∈ S
corresponds to an equivalence class [ω] ∈ [ΩV ], in particular
to the one with |[ω]| σKBq ([ω]) = L. Thus, the polynomial
Φ(KBq,V) =

∑
(∅,L,C,∅)∈S L represents all equivalence

classes and their cardinalities in principle. However, it
is useful to store the respective constraint C for every
equivalence class, too, as this allows us to determine the

corresponding equivalence class for every possible world.
This capability will be necessary for drawing inferences.

We now demonstrate the functionality of our algorithm by
means of an example.
Example 1. Let Vex = {b, f, i, s} and KBex = {r1, r2} be
with r1 = (b ∨ i|f)[0.9] and r2 = (fs|b)[0.1]. The condi-
tional r1 states that flying individuals are birds or insects
with a probability 0.9. The conditional r2 stands for the
statement that birds do not fly but swim with probability 0.1.
Fig. 2 shows one possible computation tree of the algorithm
for the knowledge base KBex; in this computation, the al-
gorithm first resolves the conditional (b ∨ i|f) followed by
(f̄ s|b). For a more readable visualization of the algorithm,
we adopted a sum-like notation for the tuples (E,L,C, P ):∑

v1,...,vk∈{true,false}
C=true

L
∏

(Bi|Ai)∈E

(Bi|Ai)i, v1, . . . , vk ∈ V.

The indices of the conditionals in Fig. 2 illustrate the corre-
spondence between ri and a±i . For example, the first equiv-
alence class in the computation tree, which is [ω1] with
σKB([ω1]) = a+1 a

−
2 , consists of the four possible worlds

that satisfy the condition f(b ∨ i)b(f ∨ s̄). In total, we get
the following six equivalence classes:

[ω1] = {fbis, fbis̄, f b̄is, f b̄is̄}, [ω2] = {f b̄is, f b̄is̄},
[ω3] = {f b̄̄is, f b̄̄is̄}, [ω4] = {f̄ bis, f̄ b̄is},
[ω5] = {f̄ bis̄, f̄ b̄is̄}, [ω6] = {f̄ b̄is, f̄ b̄is̄, f̄ b̄̄is, f̄ b̄̄is̄}.
Solving the nonlinear equation system given in the pre-

liminaries, we get the following MaxEnt probabilities:

PME(KBex)([ω1]) = 0.329, PME(KBex)([ω2]) = 0.148,

PME(KBex)([ω3]) = 0.053, PME(KBex)([ω4]) = 0.053,

PME(KBex)([ω5]) = 0.148, PME(KBex)([ω6]) = 0.268.

Drawing Inferences

As we have seen, the equivalence classes derived by the al-
gorithm can be used to compute MaxEnt distributions. An-
other application is to draw inferences, i.e., deciding for
which probability x the query PME |= (B|A)[x]? holds,
given a knowledge base KB and a conditional (B|A). For
this, we need to count how many possible worlds in each
equivalence class satisfy the premise and the conclusion of
the conditional (B|A), i.e., for each tuple (∅, L, C, ∅) in
the output S of CONDSTRUCTOR(KBq,V) with the corre-
sponding equivalence class [ωi], we need to count the mod-
els of CA and CAB, denoted by c([ωi], A) and c([ωi], AB).
Then PME |= (B|A)[x] holds for

x =

∑
[ωi]∈[ΩV ] PME([ωi])

c(ωi,AB)
|[ωi]|∑

[ωi]∈[ΩV ] PME([ωi])
c(ωi,A)
|[ωi]|

.

Example 2. Consider KBex from Ex. 1 and the query
PME |= (s|b)[x]?, i.e., we are interested in the probabil-
ity that a bird can swim, given the prior knowledge from
KBex. Since the premise of (s|b) is the same as that of r2,
it is fulfilled in exactly those possible worlds in any [ω] with
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∑
b,i,f,s∈{true,false}

(b ∨ i|f)1(f̄ s|b)2

∑
b,i,f,s∈{true,false}

f̄=true

(f̄ s|b)2

∑
b,i,f,s∈{true,false}

f̄ b̄=true

1

= 4

∑
b,i,f,s∈{true,false}

f̄b=true

(f̄ s|	)2

∑
b,i,f,s∈{true,false}

f̄b(f∨s̄)=true

a−2

= 2a−2

∑
b,i,f,s∈{true,false}

f̄b(f̄s)=true

a+2

= 2a+2

f̄ s f ∨ s̄

b b̄

∑
b,i,f,s∈{true,false}

f=true

(b ∨ i|	)1(f̄ s|b)2

∑
b,i,f,s∈{true,false}

f(b̄ ī)=true

a−1 (f̄ s|b)2

∑
b,i,f,s∈{true,false}

f(b̄ ī)b̄=true

a−1

= 2a−1

f(b̄ ī)b
is not

satisfiable

b b̄

∑
b,i,f,s∈{true,false}

f(b∨i)=true

a+1 (f̄ s|b)2

∑
b,i,f,s∈{true,false}

f(b∨i)b̄=true

a+1

= 2a+1

∑
b,i,f,s∈{true,false}

f(b∨i)b=true

a+1 (f̄ s|	)2

∑
b,i,f,s∈{true,false}
f(b∨i)b(f∨s̄)=true

a+1 a
−
2

= 4a+1 a
−
2

f(b∨i)b(f̄ s)
is not

satisfiable

f̄ s f ∨ s̄

b b̄

b ∨ i b̄ ī

f f̄

Figure 2: Stepwise computation of the equivalence classes of possible worlds by splitting

a2([ω]) = 1. When counting how many possible worlds in
each of these equivalence classes additionally satisfy the
conclusion s, we get c([ω1], sb) = 2, c([ω4], sb) = 2, and
c([ωi], sb) = 0 for all other equivalence classes. Thus, given
KBex, the most reasonable probability for birds to be able to
swim is x = (0.5·0.329+0.053)/(0.329+0.053+0.148) =
0.41.

Conclusion and Future Work

We presented an algorithm for computing the equivalence
classes of possible worlds with respect to the conditional
structure induced by a knowledge base KB. Notably, the out-
put of the algorithm can be used both for establishing the ad-
justment condition of the MaxEnt distribution regarding KB
(Kern-Isberner 2001), as well as for answering MaxEnt in-
ference queries. The form of the algorithm allows for various
modifications and optimizations: For example, the splitting
procedure may be performed with respect to the truth values
of atoms, conditionals with zero probability may be used to
ignore irrelevant possible worlds, and factorization can help
decomposing the conditional structure efficiently. We are
currently working on implementations that incorporate these
approaches, and then, we want to test our implementation on
real life problems. Although this paper focuses on proposi-
tional knowledge bases, our algorithm might principally be
lifted to the relational case since the concept of conditional
structure carries over to it (Finthammer and Beierle 2012;
Beierle et al. 2015). In future work, we will pursue investi-
gations in this direction, and we are hopeful that an adaption
of our algorithm is able to offset the massive increase of the
number of possible worlds when increasing the domain size

in first-order settings.
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