

Handling Missing Words by Mapping Across
Word Vector Representations

Rajendra Banjade, Nabin Maharjan, Dipesh Gautam,Vasile Rus
Department of Computer Science / Institute for Intelligent Systems

The University of Memphis, USA
{rbanjade, nmhrjan, dgautam, vrus}@memphis.edu

Abstract
Vector based word representation models are often devel-
oped from very large corpora. However, we often encounter
words in real world applications that are not available in a
single vector model. In this paper, we present a novel Neu-
ral Network (NN) based approach for obtaining representa-
tions for words in a target model from another model, called
the source model, where representations for the words are
available, effectively pooling together their vocabularies.
Our experiments show that the transformed vectors are well
correlated with the native target model representations and
that an extrinsic evaluation based on a word-to-word simi-
larity task using the Simlex-999 dataset leads to results
close to those obtained using native model representations.

 Introduction
Different approaches have been proposed over the years to
represent the semantics of words, phrases, sentences, or
even larger texts in continuous vector representations
(Landauer et al., 1998; Turian et al., 2010; Collobert et al.,
2011; Mikolov et al. 2013b; Pennington et al., 2014). The-
se vector representations have been widely used in many
NLP applications (Manning 2008; Collobert et al., 2011;
Lei et al., 2014; Socher et al., 2013; Banjade et al., 2015).
 Preferably, and which is often the case, meaning repre-
sentations of words are derived in an unsupervised way
from extremely large collections of texts. For instance, the
pre-trained word2vec (Mikolov et al. 2013b) and GloVe
(Pennington et al., 2014) word vector representations
trained on texts containing billions of tokens and cover
millions of unique words: the pre-trained word2vec model
covers 3 million unique words, and the GloVe model has
coverage of 1.9 million words (see Data section for specif-
ic details about the models). Similarly, an LSA model de-
veloped from the whole set of Wikipedia articles

Copyright © 2016, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

(LSAwiki)1 (Stefanescu et al., 2014; Rus et al., 2013) con-
tains word representations for 1.1 million words.
 While these are impressive numbers compared to manu-
ally created resources such as WordNet (Miller, 1995), it is
interesting to observe that the previously mentioned unsu-
pervised vector models share a limited number of words, as
illustrated next. The GloVe and word2vec have about
154,000 words in common. Only about 107,000 words are
common to all three models, which equates to only 3 to
10% of the words depending which model’s vocabulary
size is used as a reference. This clearly indicates that a sig-
nificant chunk of words in each of these models are unique
to the respective models and that they are missing from the
other models. One question arises about how to handle this
acute problem of missing words in one particular model
and the related question of how to make the best use of
existing word vector representations in various models as
together they cover a significantly larger vocabulary, i.e.
5,226,598 unique words altogether in the three models
discussed above.
 In this paper, we provide a solution to the above issue of
missing word representations in vector based models. The
basic idea is to train Neural Network models to map word
vector representations from one model (where they are
present; the source model) to another (where they are miss-
ing; the target model). That is, we exploit existing re-
sources in combination with the NN-based mapping ap-
proach to extend the coverage of a given target model such
that there will be less words missing in that model when
used by real world applications. For instance, given an
arbitrary word X and let’s assume that it is not present in a
model A but is present in model B. By developing a trans-
formation model from B to A, we can obtain the represen-
tation of word X in model A. The benefit of our approach
is that we extend the coverage of a target model without

1Wiki_NVAR_f7 at http://semanticsimilarity.org/

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

250

the need to collect any extra texts and retrain the model,
which is non-trivial.
 We intrinsically and extrinsically evaluated our ap-
proach (c.f. Evaluation Methodology) on source-target
model permutations of two different pre-trained word vec-
tor models: word2vec, and GloVe. The results show that it
is possible to obtain word representation for one model
from another without loss of meaning representation power
relative to the native target vectors.

Related Work
Research in the area of vector based meaning representa-
tions has gained momentum in recent years. However, only
a few research works that address the problem of handling
missing word representations are found in the literature.
 Bengio et al. (2003) and Alexandrescu and Kirchhoff
(2006) proposed deriving continuous word representations
for unknown or missing words in Neural Language Models
(NLMs) based on the words in context. However, (full)
context of a word is not always available and the process
can be computationally costly. Mikolov et al. (2013a)
demonstrated that word2vec vectors capture enough syn-
tactic and semantic linguistic regularity to derive vector
representations of missing words based on simple vector
operations. For example, the following expression illus-
trates a singular/plural relation: v(‘cats’) = v(‘dogs’) –
v(‘dog’) + v(‘cat’). However, such nice linguistic features
might not hold for complex and rare words and their vector
representations might not be properly estimated (Luong et
al., 2013). It will also not work if certain word representa-
tions that are needed on the right hand side of an expres-
sion like the one above are not available. Recursive Neural
Networks (RNNs) have also been used to construct missing
word representations from the vectors of its morphemes
(Luong et. al., 2013). This approach works only if the
missing word can be broken into morphemes and represen-
tations for morphemes are available. Banjade et al. (2015)
used representation of one of the synonyms when the given
word is missing. Though this approach works well for the
words available in the thesaurus, such as WordNet, we
generally need more than that. For instance, there can be
millions of named entities that are not found in a single
model and also they do not have the notion of synonyms.
 In our approach, we directly transform representations
from one model to another model effectively making any
single model covering large vocabulary.

Approach
As discussed earlier, words missing from a target model
may be present in another model, called the source model.
Therefore by learning a word vector mapping model that

can map one vector representation onto another, represen-
tations for missing words in the target model can be ob-
tained from a source model where the word is present.
 As illustrated in Figure 1, we have developed Neural
Network based models to learn a mapping function from
one representation model to another. The input to the mod-
el is in the form of source model vectors (SrcV) and the
output of the transformation model (TrV) is similar to tar-
get model vectors (TgV). The source vectors and target
vectors can be of different types. For instance, the source
vectors can be Glove vector representations while the tar-
get vectors can be word2vec vector representations and
vice versa. Also, the dimensionality of the source and tar-
get vectors may be different.

Fig 1: Schematic diagram of transformation model.

 Specifically, we learned NNs to map between two mod-
els: word2Vec model and GloVe model. It is important to
note that these basic models are quite different in their un-
derlying principles to derive meaning representations and
that they both are unsupervised (see Data section for addi-
tional details).

Evaluation Methodology
We evaluated our mapping approach intrinsically and ex-
trinsically. We used a simulation based approach in both
cases, i.e. we simulated a set of missing words from the
target model by removing them from it. This simulation
based approach enables us to assess the transformed repre-
sentations with respect to the native representations in tar-
get model.
 For intrinsic evaluation, we calculated the average cor-
relation (AvgCorr) across a set of words, where the corre-
lation for a given word was computed between the corre-
sponding values in the transformed vector (TrV) and the
native target vector (TgV). We chose as our simulated
missing words a set of words that are present in both the
source and target models so that the transformed vectors
could be directly compared to the native vectors, i.e. the
representations generated using the underlying target mod-
el itself. In the ideal case, the transformed vectors would be
same as the native vectors.

251

 For extrinsic evaluation, we used a word-to-word simi-
larity task which is one of the approaches to measure the
quality of word meaning representations. We used word
pairs from the Simlex-999 dataset (described in Data sec-
tion) and computed their similarities using the normalized
dot product (cosine) based on the transformed vector repre-
sentations and also the target representations. Then, corre-
lations between the similarity scores and human judgments
were computed in each case.
 Baseline. We have also generated results using a base-
line method which randomly selects vectors from the
source model to be mapped onto the target model using our
trained NN mapping model. In fact, we preselected these
random vectors before training the NN mapping model
such that none of the randomly selected vectors for the
words in Simlex-999 dataset would be used for training.
These random baselines help detect whether the system is
actually learning something or is simply a random map-
ping.

Data
Simlex-999 (Simlex; Hill et al., 2014) is a recently re-
leased dataset for word-to-word similarity evaluation. In
this dataset, related but semantically less equivalent word
pairs are rated with low similarity scores by human judges.
The dataset consists of 999 word pairs.
 Word2vec2: word2vec is a neural-probabilistic word
representations model developed by Mikolov et al. (2013).
We used the 300-dimensional word vectors developed by
training distributed representations of words with the Skip-
gram model on part of Google News dataset (about 100
billion words).
 GloVe3: it is a word representation model proposed by
Pennington et al. (2013) and the model we used was
trained on 42 billion Common Crawl words. The corpus
was built over several years of web crawling. We used the
300-dimensional word representation model.
 Training, validation, and test datasets. We used exist-
ing, pre-trained models (those discussed above in this sec-
tion) for word2vec, and GloVe from which we extracted
106,028 vectors corresponding to the common words in
both models and excluding 1,028 (unique) words of the
Simlex dataset. A randomly selected set of 95,000 pairs of
vectors was used for training, and 5,000 pairs for valida-
tion. We chose to use only the common words to both
models to train, validate, and test the transformation mod-
els because it allows simulating missing words and com-
paring the transformed output with the native target model
vectors for evaluation purpose. In ideal case, the vectors
obtained using transformation model should look alike the

2 https://code.google.com/p/word2vec/
3 http://nlp.stanford.edu/data/glove.42B.300d.zip

actual target model vectors. Then 1028 Simlex words were
used for both intrinsic as well as extrinsic evaluation. The
remaining 1,028 vectors from the common vocabulary
were used for developing the baseline transformations.

Experiments and Results
We built NN models with a number of input units and out-
put units equal to the size of the vectors in corresponding
source and target models, respectively. They both were
300-dimension vectors (which was a pure coincidence and
not a constraint of our mapping model). Therefore, the
number of input units and output units were 300.

We added only one hidden layer keeping the models
relatively simple and performed experiments with varying
number of hidden units. We used the neural network
toolbox in Matlab (R2015a; Demuth & Beale, 1993) to
build the models. The NN learning algorithm was set to the
Scaled Conjugate Gradient Algorithm (Moller, 1993) and
the number of iterations was fixed to 1,000. The activation
function used was the logistic function.

Source-Target Word Sim. correlations AvgCorr
(TrV-TgV) TgSim TrSim

Baseline Systems - ~ 0.000 0.0-0.12
Word2vec-GloVe 0.427 0.360 0.663
GloVe-Word2vec 0.469 0.398 0.644

Table 1: Word-to-Word similarity results (Pearson correlation, r)
with Simlex data and average correlation (AvgCorr) between

transformed vectors (TrV) and target vectors (TgV)

 Each source-target transformation model was trained
using the training dataset of 95k pairs of vectors. The per-
formance (AvgCorr) on the validation set was used to cali-
brate the number of hidden units in the NN models. We
experimented with different number of hidden units from
100 to 800 incrementing by 100. The results were improv-
ing with an increasing number of hidden units up to 600.
Therefore, we chose to use 600 hidden unit models for the
experiment for all pairs of source-target models. However,
the differences among the results with 400-600 hidden
units were very small and in order to reduce the complexity
of the model (or risk of overfitting), the number of hidden
units could be set to 500 or 400 with small reduction in
performance. We then evaluated the learned models on the
test data. The results are summarized in Table 1.
 The TgSim column presents the Pearson (r) correlations
between the word similarities computed using target vec-
tors and the human annotated similarity scores, respective-
ly, for the word pairs in the Simlex dataset. The TrSim
column shows the same correlations for word similarities
but this time using transformed vectors, thus, indicating

252

how well the transformed vectors can act as a substitute for
word representations in the target model.
 The word-to-word similarity results using the trans-
formed vectors (TrSim) are comparable or better in some
cases with the results obtained using the native target mod-
el vectors (TgSim). For instance, the word-similarity corre-
lation between human similarity judgments and the simi-
larity scores obtained using the native GloVe vectors is
0.427 while the correlation obtained using transformed
vectors from the word2vec model is close at 0.360.
 The average correlation scores of TrVs with correspond-
ing TgVs (in AvgCorr columns) were 0.663 for Simlex
words. These correlation scores indicate that the trans-
formed vectors closely resemble the target model vectors.
 Results for the baseline transformations are presented as
a range because the results were similar for the two differ-
ent transformations corresponding to the two combinations
of of source-target models. The highest average correlation
(AvgCorr) was 0.12 for the GloVe to word2vec transfor-
mation of Simlex words. That means that providing ran-
dom vectors from the source model as input or using ran-
domly selected words for missing words in the target mod-
el has no significant outcome. Furthermore, we checked
the direct correlation between native source and target vec-
tors but it was approximately zero when tested on the Sim-
lex words, indicating that learning a mapping function is
needed

Conclusions
This paper showed that the neural network model can be
used effectively to map from one word representation to
another. Such a mapping that vastly increases the coverage
of a target model can be very useful in many NLP applica-
tions which most likely need to handle missing words. Ad-
ditionally, the proposed solution can be used to obtain
phrase representations which are even sparser than words,
a topic for future research.
 In the future, we intend to apply this approach in other
types of word representation models, such as LSA and
analyze situations where this approach works best.

References
Alexandrescu, A., and Katrin K. (2006). "Factored neural lan-
guage models." Proceedings of the Human Language Technology
Conference of the NAACL, Companion Volume: Short Papers.
Banjade, R., Niraula, N. B., Maharjan, N., Rus, V., Stefanescu,
D., Lintean, M., & Gautam, D. (2015). NeRoSim: A System for
Measuring and Interpreting Semantic Textual Similari-
ty. SemEval-2015, 164.
Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A
neural probabilistic language model. The Journal of Machine
Learning Research, 3, 1137-1155.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu,
K., & Kuksa, P. (2011). Natural language processing (almost)
from scratch. The Journal of Machine Learning Research, 12,
2493-2537.
Demuth, H., & Beale, M. (1993). Neural network toolbox for use
with MATLAB.
Gabrilovich, Evgeniy, and Shaul Markovitch. "Computing Se-
mantic Relatedness Using Wikipedia-based Explicit Semantic
Analysis." IJCAI. Vol. 7. 2007.
Hill, F., Reichart, R., & Korhonen, A. (2014). Simlex-999: Eval-
uating semantic models with (genuine) similarity estima-
tion. arXiv preprint arXiv:1408.3456.
Landauer, Thomas K., Peter W. Foltz, and Darrell Laham. "An
introduction to latent semantic analysis." Discourse process-
es 25.2-3 (1998): 259-284.
Lei, Tao, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi
Jaakkola. "Low-rank tensors for scoring dependency structures."
In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, vol. 1, pp. 1381-1391. 2014.
Luong, Minh-Thang, Ilya Sutskever, Quoc V. Le, Oriol Vinyals,
and Wojciech Zaremba. "Addressing the rare word problem in
neural machine translation." In Proceedings of ACL. 2015.
Luong, Minh-Thang, Richard Socher, and Christopher D. Man-
ning. "Better word representations with recursive neural networks
for morphology." CoNLL-2013104 (2013).
Manning, Christopher D., Prabhakar Raghavan, and Hinrich
Schütze. Introduction to information retrieval. Vol. 1. Cam-
bridge: Cambridge university press, 2008.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). "Effi-
cient estimation of word representations in vector space." arXiv
preprint arXiv:1301.3781.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J.
(2013b). "Distributed representations of words and phrases and
their compositionality." Advances in neural information pro-
cessing systems.
Miller, G. A. (1995). WordNet: a lexical database for English.
Communications of the ACM, 38(11), 39-41.
Moller, Neural Networks, Vol. 6, 1993, pp. 525–533
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove:
Global vectors for word representation. Proceedings of the Em-
piricial Methods in Natural Language Processing (EMNLP
2014), 12, 1532-1543.
Rus, V., Lintean, M. C., Banjade, R., Niraula, N. B., & Stefanes-
cu, D. (2013, August). SEMILAR: The Semantic Similarity
Toolkit. In ACL (Conference System Demonstrations) (pp. 163-
168).
Socher, R., Huang, E. H., Pennin, J., Manning, C. D., & Ng, A.
Y. (2011). Dynamic pooling and unfolding recursive auto encod-
ers for paraphrase detection. In Advances in Neural Information
Processing Systems (pp. 801-809).
Ștefănescu, D., Banjade, R., & Rus, V. (2014). Latent semantic
analysis models on wikipedia and tasa. LREC 2014.
Turian, J., Ratinov, L., & Bengio, Y. (2010, July). Word repre-
sentations: a simple and general method for semi-supervised
learning. In Proceedings of the 48th annual meeting of the asso-
ciation for computational linguistics (pp. 384-394).

253

