
 
 

Handling Missing Words by Mapping Across  
Word Vector Representations  

Rajendra Banjade, Nabin Maharjan, Dipesh Gautam,Vasile Rus 
Department of Computer Science / Institute for Intelligent Systems 

The University of Memphis, USA 
{rbanjade, nmhrjan, dgautam, vrus}@memphis.edu 

 
 
 

Abstract 
Vector based word representation models are often devel-
oped from very large corpora. However, we often encounter 
words in real world applications that are not available in a 
single vector model. In this paper, we present a novel Neu-
ral Network (NN) based approach for obtaining representa-
tions for words in a target model from another model, called 
the source model, where representations for the words are 
available, effectively pooling together their vocabularies. 
Our experiments show that the transformed vectors are well 
correlated with the native target model representations and 
that an extrinsic evaluation based on a word-to-word simi-
larity task using the Simlex-999 dataset leads to results 
close to those obtained using native model representations. 

 Introduction   
Different approaches have been proposed over the years to 
represent the semantics of words, phrases, sentences, or 
even larger texts in continuous vector representations 
(Landauer et al., 1998; Turian et al., 2010; Collobert et al., 
2011; Mikolov et al. 2013b; Pennington et al., 2014).  The-
se vector representations have been widely used in many 
NLP applications (Manning 2008; Collobert et al., 2011; 
Lei et al., 2014; Socher et al., 2013; Banjade et al., 2015). 
 Preferably, and which is often the case, meaning repre-
sentations of words are derived in an unsupervised way 
from extremely large collections of texts. For instance, the 
pre-trained word2vec (Mikolov et al. 2013b) and GloVe 
(Pennington et al., 2014) word vector representations 
trained on texts containing billions of tokens and cover 
millions of unique words: the pre-trained word2vec model 
covers 3 million unique words, and the GloVe model has 
coverage of 1.9 million words (see Data section for specif-
ic details about the models). Similarly, an LSA model de-
veloped from the whole set of Wikipedia articles 
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(LSAwiki)1 (Stefanescu et al., 2014; Rus et al., 2013) con-
tains word representations for 1.1 million words. 
 While these are impressive numbers compared to manu-
ally created resources such as WordNet (Miller, 1995), it is 
interesting to observe that the previously mentioned unsu-
pervised vector models share a limited number of words, as 
illustrated next. The GloVe and word2vec have about 
154,000 words in common. Only about 107,000 words are 
common to all three models, which equates to only 3 to 
10% of the words depending which model’s vocabulary 
size is used as a reference. This clearly indicates that a sig-
nificant chunk of words in each of these models are unique 
to the respective models and that they are missing from the 
other models. One question arises about how to handle this 
acute problem of missing words in one particular model 
and the related question of how to make the best use of 
existing word vector representations in various models as 
together they cover a significantly larger vocabulary, i.e. 
5,226,598 unique words altogether in the three models 
discussed above.  
 In this paper, we provide a solution to the above issue of 
missing word representations in vector based models. The 
basic idea is to train Neural Network models to map word 
vector representations from one model (where they are 
present; the source model) to another (where they are miss-
ing; the target model). That is, we exploit existing re-
sources in combination with the NN-based mapping ap-
proach to extend the coverage of a given target model such 
that there will be less words missing in that model when 
used by real world applications. For instance, given an 
arbitrary word X and let’s assume that it is not present in a 
model A but is present in model B. By developing a trans-
formation model from B to A, we can obtain the represen-
tation of word X in model A. The benefit of our approach 
is that we extend the coverage of a target model without 
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the need to collect any extra texts and retrain the model, 
which is non-trivial. 
 We intrinsically and extrinsically evaluated our ap-
proach (c.f. Evaluation Methodology) on source-target 
model permutations of two different pre-trained word vec-
tor models: word2vec, and GloVe. The results show that it 
is possible to obtain word representation for one model 
from another without loss of meaning representation power 
relative to the native target vectors.  

Related Work 
Research in the area of vector based meaning representa-
tions has gained momentum in recent years. However, only 
a few research works that address the problem of handling 
missing word representations are found in the literature. 
 Bengio et al. (2003) and Alexandrescu and Kirchhoff 
(2006) proposed deriving continuous word representations 
for unknown or missing words in Neural Language Models 
(NLMs) based on the words in context. However, (full) 
context of a word is not always available and the process 
can be computationally costly. Mikolov et al. (2013a) 
demonstrated that word2vec vectors capture enough syn-
tactic and semantic linguistic regularity to derive vector 
representations of missing words based on simple vector 
operations. For example, the following expression illus-
trates a singular/plural relation: v(‘cats’) = v(‘dogs’) – 
v(‘dog’) + v(‘cat’). However, such nice linguistic features 
might not hold for complex and rare words and their vector 
representations might not be properly estimated (Luong et 
al., 2013). It will also not work if certain word representa-
tions that are needed on the right hand side of an expres-
sion like the one above are not available. Recursive Neural 
Networks (RNNs) have also been used to construct missing 
word representations from the vectors of its morphemes 
(Luong et. al., 2013). This approach works only if the 
missing word can be broken into morphemes and represen-
tations for morphemes are available. Banjade et al. (2015) 
used representation of one of the synonyms when the given 
word is missing. Though this approach works well for the 
words available in the thesaurus, such as WordNet, we 
generally need more than that. For instance, there can be 
millions of named entities that are not found in a single 
model and also they do not have the notion of synonyms. 
 In our approach, we directly transform representations 
from one model to another model effectively making any 
single model covering large vocabulary.  

Approach 
As discussed earlier, words missing from a target model 
may be present in another model, called the source model. 
Therefore by learning a word vector mapping model that 

can map one vector representation onto another, represen-
tations for missing words in the target model can be ob-
tained from a source model where the word is present.  
 As illustrated in Figure 1, we have developed Neural 
Network based models to learn a mapping function from 
one representation model to another. The input to the mod-
el is in the form of source model vectors (SrcV) and the 
output of the transformation model (TrV) is similar to tar-
get model vectors (TgV). The source vectors and target 
vectors can be of different types. For instance, the source 
vectors can be Glove vector representations while the tar-
get vectors can be word2vec vector representations and 
vice versa. Also, the dimensionality of the source and tar-
get vectors may be different.  

 
Fig 1: Schematic diagram of transformation model. 

 
     Specifically, we learned NNs to map between two mod-
els: word2Vec model and GloVe model. It is important to 
note that these basic models are quite different in their un-
derlying principles to derive meaning representations and 
that they both are unsupervised (see Data section for addi-
tional details).  

Evaluation Methodology  
We evaluated our mapping approach intrinsically and ex-
trinsically. We used a simulation based approach in both 
cases, i.e. we simulated a set of missing words from the 
target model by removing them from it. This simulation 
based approach enables us to assess the transformed repre-
sentations with respect to the native representations in tar-
get model.  
 For intrinsic evaluation, we calculated the average cor-
relation (AvgCorr) across a set of words, where the corre-
lation for a given word was computed between the corre-
sponding values in the transformed vector (TrV) and the 
native target vector (TgV).  We chose as our simulated 
missing words a set of words that are present in both the 
source and target models so that the transformed vectors 
could be directly compared to the native vectors, i.e. the 
representations generated using the underlying target mod-
el itself. In the ideal case, the transformed vectors would be 
same as the native vectors.  
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 For extrinsic evaluation, we used a word-to-word simi-
larity task which is one of the approaches to measure the 
quality of word meaning representations. We used word 
pairs from the Simlex-999 dataset (described in Data sec-
tion) and computed their similarities using the normalized 
dot product (cosine) based on the transformed vector repre-
sentations and also the target representations. Then, corre-
lations between the similarity scores and human judgments 
were computed in each case.  
 Baseline. We have also generated results using a base-
line method which randomly selects vectors from the 
source model to be mapped onto the target model using our 
trained NN mapping model. In fact, we preselected these 
random vectors before training the NN mapping model 
such that none of the randomly selected vectors for the 
words in Simlex-999 dataset would be used for training. 
These random baselines help detect whether the system is 
actually learning something or is simply a random map-
ping. 

Data  
Simlex-999 (Simlex; Hill et al., 2014) is a recently re-
leased dataset for word-to-word similarity evaluation.  In 
this dataset, related but semantically less equivalent word 
pairs are rated with low similarity scores by human judges. 
The dataset consists of 999 word pairs. 
 Word2vec2: word2vec is a neural-probabilistic word 
representations model developed by Mikolov et al. (2013). 
We used the 300-dimensional word vectors developed by 
training distributed representations of words with the Skip-
gram model on part of Google News dataset (about 100 
billion words).  
 GloVe3: it is a word representation model proposed by 
Pennington et al. (2013) and the model we used was 
trained on 42 billion Common Crawl words. The corpus 
was built over several years of web crawling. We used the 
300-dimensional word representation model.  
 Training, validation, and test datasets. We used exist-
ing, pre-trained models (those discussed above in this sec-
tion) for word2vec, and GloVe from which we extracted 
106,028 vectors corresponding to the common words in 
both models and excluding 1,028 (unique) words of the 
Simlex dataset. A randomly selected set of 95,000 pairs of 
vectors was used for training, and 5,000 pairs for valida-
tion. We chose to use only the common words to both 
models to train, validate, and test the transformation mod-
els because it allows simulating missing words and com-
paring the transformed output with the native target model 
vectors for evaluation purpose. In ideal case, the vectors 
obtained using transformation model should look alike the 
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actual target model vectors. Then 1028 Simlex words were 
used for both intrinsic as well as extrinsic evaluation. The 
remaining 1,028 vectors from the common vocabulary 
were used for developing the baseline transformations.  

Experiments and Results 
We built NN models with a number of input units and out-
put units equal to the size of the vectors in corresponding 
source and target models, respectively. They both were 
300-dimension vectors (which was a pure coincidence and 
not a constraint of our mapping model). Therefore, the 
number of input units and output units were 300.  

We added only one hidden layer keeping the models 
relatively simple and performed experiments with varying 
number of hidden units. We used the neural network 
toolbox in Matlab (R2015a; Demuth & Beale, 1993) to 
build the models. The NN learning algorithm was set to the 
Scaled Conjugate Gradient Algorithm (Moller, 1993) and 
the number of iterations was fixed to 1,000. The activation 
function used was the logistic function. 
       

Source-Target Word Sim. correlations AvgCorr 
(TrV-TgV) TgSim TrSim  

Baseline Systems - ~ 0.000 0.0-0.12 
Word2vec-GloVe 0.427 0.360 0.663 
GloVe-Word2vec 0.469 0.398 0.644 

Table 1: Word-to-Word similarity results (Pearson correlation, r) 
with Simlex data and average correlation (AvgCorr) between 

transformed vectors (TrV) and target vectors (TgV)  
 
 Each source-target transformation model was trained 
using the training dataset of 95k pairs of vectors. The per-
formance (AvgCorr) on the validation set was used to cali-
brate the number of hidden units in the NN models. We 
experimented with different number of hidden units from 
100 to 800 incrementing by 100. The results were improv-
ing with an increasing number of hidden units up to 600. 
Therefore, we chose to use 600 hidden unit models for the 
experiment for all pairs of source-target models. However, 
the differences among the results with 400-600 hidden 
units were very small and in order to reduce the complexity 
of the model (or risk of overfitting), the number of hidden 
units could be set to 500 or 400 with small reduction in 
performance. We then evaluated the learned models on the 
test data. The results are summarized in Table 1. 
 The TgSim column presents the Pearson (r) correlations 
between the word similarities computed using target vec-
tors and the human annotated similarity scores, respective-
ly, for the word pairs in the Simlex dataset. The TrSim 
column shows the same correlations for word similarities 
but this time using transformed vectors, thus, indicating 
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how well the transformed vectors can act as a substitute for 
word representations in the target model. 
 The word-to-word similarity results using the trans-
formed vectors (TrSim) are comparable or better in some 
cases with the results obtained using the native target mod-
el vectors (TgSim). For instance, the word-similarity corre-
lation between human similarity judgments and the simi-
larity scores obtained using the native GloVe vectors is 
0.427 while the correlation obtained using transformed 
vectors from the word2vec model is close at 0.360.  
 The average correlation scores of TrVs with correspond-
ing TgVs (in AvgCorr columns) were 0.663 for Simlex 
words. These correlation scores indicate that the trans-
formed vectors closely resemble the target model vectors.  
 Results for the baseline transformations are presented as 
a range because the results were similar for the two differ-
ent transformations corresponding to the two combinations 
of of source-target models. The highest average correlation 
(AvgCorr) was 0.12 for the GloVe to word2vec transfor-
mation of Simlex words. That means that providing ran-
dom vectors from the source model as input or using ran-
domly selected words for missing words in the target mod-
el has no significant outcome. Furthermore, we checked 
the direct correlation between native source and target vec-
tors but it was approximately zero when tested on the Sim-
lex words, indicating that learning a mapping function is 
needed   

Conclusions 
This paper showed that the neural network model can be 
used effectively to map from one word representation to 
another. Such a mapping that vastly increases the coverage 
of a target model can be very useful in many NLP applica-
tions which most likely need to handle missing words. Ad-
ditionally, the proposed solution can be used to obtain 
phrase representations which are even sparser than words, 
a topic for future research.  
 In the future, we intend to apply this approach in other 
types of word representation models, such as LSA and 
analyze situations where this approach works best.  
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