
Meta-Path Selection for
Extended Multi-Relational Matrix Factorization

Fatemeh Vahedian, Robin Burke, Bamshad Mobasher
Center for Web Intelligence, Depaul University, Chicago, IL 60604

{fvahedia,rburke,mobasher}@cs.depaul.edu

Abstract
Multi-relational matrix factorization is an effective
technique for incorporating heterogeneous data into
prediction tasks, such as personalized recommendation.
Recent research has extended the set of relations that
can be applied within heterogeneous network settings
by composing non-local relations using network meta-
paths. One of the key problems in applying this tech-
nique is that the set of possible non-local relations is es-
sentially unbounded. In this paper, we demonstrate that
an information gain based technique for heuristic prun-
ing of relations can enhance the performance of multi-
relational matrix factorization recommenders.

Introduction
Multi-relational factorization is a learning technique appli-
cable when there is a target relation to be learned in the con-
text of multiple associated relations (Gantner et al. 2010;
Drumond et al. 2014). For example, in predicting scien-
tific collaborations, there may be co-authorship relations be-
tween individuals contributing to papers and articles, but
there may also be relations of common membership in or-
ganizations, of common venues of publication, of citation,
etc. The multi-relational approach allows the full variety of
such relations to be applied to control the learning of the
target relation.

Recent work has extended the locally-oriented multi-
relational approach to include relations composed from
multi-step typed network paths. For example, in the scien-
tific publication area, it may be useful to include a relation
from an author to the papers cited by papers written by his
or her co-authors. This author-paper relation, which does
not appear directly in the data, can be composed from exist-
ing relations: author-paper and paper-citation. Following re-
search in heterogeneous networks (Sun and Han 2012), our
approach conceives of each relation as a typed edge in a het-
erogeneous network, and the composition of these relations
as the expansion of meta-paths within the network.

Researchers have shown that incorporating extended rela-
tions based on meta-paths improves the accuracy of recom-
mender systems based on multi-relational matrix factoriza-
tion(Vahedian, Burke, and Mobasher 2015). However, this
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Figure 1: Network schema for the DBLP dataset

approach raises additional computational questions: namely,
how to limit the set of relations to consider and how to bal-
ance accuracy gains against training time. The set of meta-
path expansions in a heterogeneous network is unbounded,
but not all such relations contribute to improved perfor-
mance. In addition, there are significant computational costs
in incorporating a large number of relations.

In this paper, we show that a metric based on informa-
tion gain can be used to prune relations before the multi-
relational learning step and that pruned models exhibit im-
proved recommendation accuracy.

Meta-path-based relations
A heterogeneous network is a network with multiple types of
nodes (for example, movies and actors) and multiple types
of edges (for example, an “acted-in” relation between an ac-
tor and a movie, and a “directed-by” relation between a di-
rector and a movie). Edge types are defined by the types
of nodes that they connect. Such networks are extremely
common in social media applications: consider LinkedIn’s
users, employers, interest groups, educational institutions,
job postings, posts, comments, etc. as just one example. A
network schema is a high-level view of a heterogeneous net-
work showing the node types and edge types.

Figure 1 shows the schema for the scientific publication
network, DBLP, used in this paper with nodes for authors,
papers, and venues where papers are published. There are
edges between authors and papers they have written, and be-
tween papers and the venues in which they have appeared.
In addition, there is a self-loop: citations in linking papers to
each other.

Proceedings of the Twenty-Ninth International  
Florida Artificial Intelligence Research Society Conference

566



A meta-path is a sequence of edges through the network
schema – a sequence of edge types. Traversing a meta-
path on a heterogeneous network means following all edges
of a given type from a node to all possible successors.
For example, consider a meta-path with a single edge type
author − paper within the fragment of the DBLP dataset
shown in Figure 2. If we start with the author R.B and fol-
low this meta-path, we will arrive at a set of destination
nodes: {P1, P2, P3}. In our examples, we typically denote
an edge type with the initials of the beginning and ending
node types. The meta-path in our example would be the ap
meta-path. For clarity, we will use the letter c to refer to the
paper destination node when that node is reached via a cita-
tion edge, as opposed to an author or venue edge.
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Figure 2: DBLP dataset meta-path example

With the meta-path formalism, it is possible to examine a
wide variety of relations. For example, the author−paper−
author − paper (apap) meta-path encodes a relation be-
tween an author and a paper, based on shared co-authors.
The relation includes all papers written by any of the origi-
nal author’s co-authors. It can be viewed as a kind of profile
expansion based on connections through the network.

Prior work has demonstrated that meta-paths of various
lengths could contribute to a multi-component weighted hy-
brid in a variety of network settings (Burke and Vahedian
2013; Burke, Vahedian, and Mobasher 2014; Vahedian and
Burke 2014; Vahedian 2014). However, as should be clear
from the discussion above, there is no inherent limit to the
number of meta-paths that can be constructed. Limiting the
set of relations is a key goal and was explored in the context
of weighted hybrid recommendation in (Burke, Vahedian,
and Mobasher 2014).

Multi-relational matrix factorization
Multi-relational matrix factorization computes latent factors
used to map users to items that they will prefer, but instead
of using only rating profiles, as in standard factorization
schemes such as (Koren 2008), it allows for the creation
of additional latent factors based on other auxiliary rela-
tions (Drumond et al. 2014). (Gantner et al. 2010) uses a

movie recommendation domain in which user-movie is the
target relation (the system is predicting movies that users
will prefer) and the auxiliary relations are movie-genre,
movie-director, movie-actors, and movie-credits (a superset
of actor, director and other key roles, such as cinematogra-
pher).

In the multi-relational matrix factorization model DMF
from (Gantner et al. 2010), different latent feature models
are defined for each relation. Parameters are learned from
the factorization process in such a way that they are opti-
mized for the best performance on each relation individually.
The DMF model associates one latent feature vector model
with each relation r. Different feature matrices (shown as
Φt,r in the equation below) are associated with each relation
r for different target relations. The DMF loss function de-
composes over the target relation and each component can
be optimized independently of each other. For example, the
parameter learning model for the UM relation as a target re-
lation with R auxiliary relations is calculated as

(ϕ∗(A),Φ∗
AB) = argmin

LAB(DAB , ŷAB(.;ϕAB(A),ΦAB))+

R∑

i=1

αAB,MPiLMPi(DMPi , ŷAB,MPi(.;ϕAB(U),ΦAB,MPi))

(1)
where ϕ is the set of model parameters and yAB(.;ϕ) is the
prediction model for relation AB parameterized with ϕ. In
this model the functions ŷAB,MPi

form the auxiliary recon-
struction of relation MPi when the AB relation is the target
relation. LAB is the loss function and αAB,x the importance
of relation x when AB is predicted such that 0 < αa,b < 1
and αa,a = 1. Each MPi is an auxiliary relation and R de-
notes the number of such relations. Essentially, the model is
optimizing the AB relation while treating the other relations
as regularization parameters.

The CATSMF model (Drumond et al. 2014) aims to im-
prove the efficiency of the DMF model when applied to mul-
tiple targets. Since the DMF model must learn parameters
for each relation individually, the number of parameters to
be learned grows by a factor of number of relations in the
network. In order to deal with this problem, CATSMF limits
the parameters needed for the auxiliary relations by coupling
them together. It also enables the learning of interactions be-
tween the different auxiliary relations.

There is no inherent restriction on the types of relations
that can be incorporated as auxiliary relations. This cre-
ates an attractive opportunity to integrate extended rela-
tions built from meta-paths. However, like other factoriza-
tion techniques, DMF and CATSMF work best over sparse
relations. When relations are dense (as happens with longer
meta-paths), the learning process slows greatly: dense rela-
tions add many more calculations and also many more con-
straints. Incorporating additional relations has a similar ef-
fect – this problem being the key motivation for the develop-
ment of CATSMF. It is also the case that the indiscriminate
addition of relations may lead to overfitting and decreased
accuracy.
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Controlling meta-path generation
As we have seen, relation generation is in principle un-
bounded: nodes and edges can be revisited, as seen in a rela-
tion like author−paper−author−paper. In addition to the
problems of factorization for dense relations and overfitting,
there are significant computational costs in generating nu-
merous relations in large networks. Still, prior research has
shown that the inclusion of some longer meta-paths can sig-
nificantly improve recommendation accuracy. It is therefore
important to control this process – ideally, we would like to
be able to estimate in advance what relations are likely to
make a substantial contribution and include only those com-
ponents.

To achieve this goal, we use an information gain com-
putation for each meta-path to estimate the amount of infor-
mation that is available through it. Intuitively, the idea is that
each incorporated relation should add information to the rec-
ommendation calculation. If it is redundant or overly noisy,
then it can be omitted from the model.

Consider a relation AB created by following some meta-
path that begins with A and ends with B, and containing
an arbitrary number of composed relations in between. We
wish to compute the information to be gained starting from
A and arriving at B via this meta-path. We will represent
this value as the information gain IG(A,B) and compute
it as follows: IG(A,B) = H(A) − H(A|B) where H(A)
is entropy of dimension A and H(A|B) is the conditional
entropy of A given B.

H(A) is the entropy of entity type A. It is a func-
tion of the probability of the items in A: H(A) =
−∑

i p(ai)log(p(ai)). To associate probabilities with each
node ai in A, we use the property of graphs that the prob-
ability of encountering a node on a random walk is, in the
limit, proportional to its degree. Therefore, the probability
of node ai relative to other nodes in dimension A is calcu-
lated as p(ai) = Degree(ai)/

∑
n∈A Degree(n)

Conditional entropy measures the uncertainty of one di-
mension, given another dimension. Considering an AB pro-
jection of a network, we make use of a two-dimensional
matrix to calculate the probability of dimension B given A
(P (B|A)) as follows. The probability of reaching node b in
dimension B is calculated as the fraction of meta-path ex-
pansions from node a leading to node b out of all possible
expansions from node a reaching some node in B. The con-
ditional probability is therefore calculated as

P (b|a) = #path(a → b)∑
n∈B #path(a → n)

For example, consider the author − paper − citation−
paper − citation meta-path and the AC projection relation
derived from it. We calculate the overall entropy of the au-
thor dimension using the degrees of the author nodes. Then
we calculate all meta-path expansions for the meta-path and
count how many times, for each author, a particular paper is
encountered by following this expansion. With this informa-
tion, we can calculate H(A|C) for this meta-path. Note that
this value could be quite different than what would be calcu-
lated for a different meta-path connecting the same entities:

author − paper − citation, for example. If the values for
H(A) and H(A|C) are roughly the same, then IG(A,C)
will be near zero, suggesting that this particular meta-path
does not add much information beyond what is already con-
tained in A.

Normalized information gain
Normalization of the information gain measure is essential
because we are comparing relations with different starting
and ending entity types. We compute the normalized infor-
mation gain (NIG) value for two entity types in the network
A and B, as the information gain value is normalized by the
square root of the product of the entropies of the two dimen-
sions: NIG(A,B) = IG(A,B)/

√
H(A)H(B)

Dataset
DBLP is a database of bibliographic information on com-
puter science journals and proceedings. We augmented this
with additional citation data1, and explored two different
recommendation tasks: venue recommendation and citation
recommendation.

As a preliminary step, we removed papers with fewer than
15 citations. The nodes in this network are author, paper,
and venue,2 and the direct links used for this dataset are
author − paper, paper − venue and paper − citation as
seen in Figure 1.

The venue recommendation task involves recommend-
ing venues of possible publication to authors. In order to
build this recommendation model, we generate author pro-
files based on the author−paper−venue (apv) meta-path,
then select an author who has published in at least five dif-
ferent venues.

The second recommendation task we explored is citation
recommendation. For this model, we assume that an author
has written a paper (or is considering writing a paper) and
the task is recommending a list of relevant citations. The
target relation for this recommendation task is the paper −
citation (pc) path.

Experiments and methodology
For each dataset, the target relation was randomly parti-

tioned into 80% training and 20% test data. Relations were
generated from the training data starting with the direct re-
lations used in the basic DMF model and adding two-step
and three-step meta-paths starting from the first entity of the
target relation. These are DMF, DMF2 and DMF3 in our fig-
ures.

We built multi-relational factorization models for each
collection of relations using the implementations of
CATSMF and DMF made available by the authors of (Dru-
mond et al. 2014). 3 This implementation is self-contained
and requires no external parameter setting other choosing
an optimization criterion. We chose Bayesian Personalized

1Citation-network V1 from http://aminer.org/billboard/citation
2We intend to include title and abstract information in future

research.
3http://ismll.de/catsmf/mrFac.tar.gz
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Ranking as the optimization criterion (BPR-opt), as de-
scribed in (Drumond et al. 2014). For all recommendation
models, we evaluated recall and precision on recommenda-
tion lists of length one through ten.

In addition to the DMF models generated based on meta-
paths, we calculated the normalized information gain mea-
sure to find the most informative meta-paths for those mod-
els. In order to test normalized information gain as a pruning
heuristic for DMF, the relations found to be least informa-
tive in terms of NIG were removed from the most inclu-
sive DMF model for each task. Figure 3 shows the meta-
paths included in each model for the venue recommendation
task. The striped areas indicate relations successively pruned
from the DMF-IG1, DMF-IG2, and DMF-IG3 models. Fig-
ure 4 shows the meta-paths included for citation recommen-
dation.

Note that for the purpose of this paper we did not gener-
ate CATSMF models based on extended meta-paths. In our
preliminary work, we found the CATSMF model using two
step paths did not show any accuracy improvement. Due to
the increased density of the two-step and three-step models,
CATSMF is also extremely slow in computing models using
these relations. So, we do not view CATSMF as a practi-
cal alternative for constructing models using extended meta-
paths.

Figure 3: Vnue recommendation: relations and factorization
models

Figure 4: Citation recommendation: relations and factoriza-
tion models

Results and discussion
The results from the datasets confirms earlier findings that
including relations derived from extended meta-paths in het-
erogeneous networks enhances the performance of recom-
mendation models in both recall and precision. We also see
that we can, with some reliability, estimate the importance
of each relation using the normalized information gain met-
ric. Removing paths with the lowest information gain does
not harm the performance of the factorized model and can
improve performance.

Venue recommendation
Figure 6 shows precision and recall results for the four al-
gorithm variants shown in Figure 3. The important finding
is that the versions of the DMF algorithm that incorporate
both two-step and three-step meta-paths demonstrate im-
provements in both precision and recall, with the best per-
formance found in the model incorporating two-step paths,
DMF2. Surprisingly, the model incorporating three-step ex-
tended relations (DMF3) shows a major decrease in perfor-
mance compared to DMF2, although still showing better
recall and precisions than the original DMF and CATSMF
models. One reason for the decline in performance could
be the redundancy of the relations encountered in the three-
step paths. For example, the venue profile generated based
on venue−paper−author−paper and venue−paper−
citation−paper could be very similar because both of them
generate a V P relation which may reflect a similar set of pa-
pers for each venues. We are still exploring the cause of this
finding.

We computed the normalized information gain for all the
components as shown in Figure 5. The 3-step meta-paths
do show lower NIG values except for apap and apca. The
apap meta-path is the author-paper relation in which the au-
thor is linked to all the paper written by his or her co-authors,
regardless of his or her own authorship. It is logical that the
venues related to these papers would be of interest to the tar-
get author. The apca relation is an author-author relation in
which the author is related to the authors of papers that he or
she has cited. This also makes sense in this recommendation
context, although it is interesting that this relation is more in-
formative than the one formed by the apcv meta-path, which
more directly links cited papers to venues.

Figure 5: Venue recommendation: NIG value for relations

To test meta-path selection using NIG, we generated
three different models, as shown in Figure 3, with different
levels of pruning: the relations corresponding to the striped
cells were filtered out. The best performing model is DMF-
IG3 which removes 5 of the three-step relations. DMF-IG1
in which only two relations are removed performs similarly
to DMF2 and shows enhancement over DMF3, which in-
cludes all meta-paths. The NIG measure is effective here
in filtering out longer meta-paths, without losing accuracy.
The DMF-IG2 shows only a slight decrease in performance
compared to DMF2.

Citation recommendation
The precision and recall curve for citation recommenda-
tion is shown in Figure 8 for the five algorithm variants
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Figure 6: Venue recommendation: recall vs. precision

shown in Figure 4 including twelve meta-path driven rela-
tions. The same pattern as venue recommendation can be
seen: the DMF2 model including two-step meta-paths is su-
perior. However, the decrease in performance for DMF3 is
small compared to the venue recommendation case.

Figure 7: Citation recommendation: NIG value for relations

Figure 7 shows the distribution of NIG values for the
different relations used in this task. Of the 3-step relations,
papa and papc have the higher information gain values. The
papc meta-path is retrieving papers cited by the papers of co-
authors. It is reasonable to expect these will be good recom-
mendations for citations. The papa suggests using authors
one step removed in the co-authorship graph: co-authors of
co-authors. This suggests a certain amount of intermural co-
citation behavior, which is also to be expected.

Three models are built using the meta-path filtering tech-
nique. DMF-IG1, which filters out only one relation, per-
forms exactly the same as DMF3. Despite the lower NIG
values, removing additional low-information-gain meta-
paths causes a slight decline in performance compared to
DMF3. All variants are still significantly improved over both
the DMF and CATSMF models.

Related Work
Recommender systems based on complex networks have
been studied extensively in recent years (Durão and Dolog
2009; Song, Zhang, and Giles 2011)See the multi-network
approach of (Chen et al. 2012), the layered approach

Figure 8: Citation recommendation: recall vs. precision

of (Kazienko, Musial, and Kajdanowicz 2011), and the lin-
ear weighted hybrid model (Gemmell et al. 2012; Burke, Va-
hedian, and Mobasher 2014).

Although there is a great deal of research in link
prediction (Kunegis and Lommatzsch 2009; Benchettara,
Kanawati, and Rouveirol 2010), we find this work less com-
pelling as a basis for recommender systems. Link predic-
tion research does not typically take a user-centered view
of the task, and considerations such as diversity and per-
sonalization are absent. Also, these approaches are typically
designed for homogeneous networks incorporating a single
relation type. Note in particular that the venue recommenda-
tion task explored here cannot be formulated as a link pre-
diction problem because there are no edges between authors
and venues in the original network.

In addition to network-oriented techniques, a separate
thread of research has developed in multi-relational matrix
factorization to make predictions for highly correlated data.
Singh and Gordon (Singh and Gordon 2008) proposed col-
lective matrix factorization, as a model of pairwise relation
data. Coupled matrix factorization and tensor factorization
can extend the multi-relational model to deal with higher ar-
ity relations as shown in (Acar, Kolda, and Dunlavy 2011).

Normalized mutual information has been studied as a
measure for feature selection in different areas (Fleuret
2004; Peng, Long, and Ding 2005). In the recommendation
domain, it has been used to predict the contribution of rec-
ommendation components in a weighted hybrid recommen-
dation model (Vahedian and Burke 2014).

Conclusion
Recommendation using multi-relational matrix factorization
in networked data can be enhanced through in the inclu-
sion of extended relations derived from meta-path expan-
sions. However, experiments have also shown that including
longer meta-paths is computationally expensive in both path
generation and factorization and may, at times, decrease the
performance of the final recommendation model. We have
demonstrated here that meta-path selection using normal-
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ized information gain enables us to choose relations with the
greatest likelihood of improving the model’s recommenda-
tions. Our results on two recommendation tasks within the
DBLP dataset show that it is possible to prune the relations
in a multi-relational model without losing significant accu-
racy, and in some cases, with improved accuracy.4

While the normalized information gain measure has
proved useful, it is clear that there are aspects of the relation
pruning problem that it does not address. The information
gain associated with a meta-path is a function of the network
structure alone. However, we know that the recommendation
task has a strong influence on what relations will be useful.
Also, normalized information gain treats each meta-path as
independent, when clearly this is not the case. In our future
work, we will examine variations of this metric to take rec-
ommendation task and relation redundancy into account.
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