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Abstract

Compared to common DoS/DDoS attacks that are destruc-
tive and generate massive traffic, the application layer DoS at-
tacks can be slow-and-low which means they occur at a slow
rate and do not generate a massive amount of traffic. These
attacks appear legitimate in terms of the protocol rules and
rates. These characteristics make the detection of these at-
tacks difficult. In this paper, we study the RUDY (R-U-Dead-
Yet) attack which is one of the slow-and-low application layer
attack types. RUDY attacks can bring down a server by creat-
ing long POST HTTP form submissions to the server at a very
slow rate which results in application threads at the server
side becoming stuck. The mitigation methods against RUDY
attacks are mostly host-based. In this paper, we use a ma-
chine learning approach for the detection of RUDY attacks as
well as determining the important features for their detection
at the network level. The network level detection is scalable
and it provides detection for hosts that do not have their own
detection mechanism. We extract features from bi-directional
instances of the network traffic. We then use an ensemble fea-
ture selection approach containing 10 different feature ranker
methods in order to extract the most important features for
the detection of RUDY attacks at the network level.

Introduction

Denial of Service (DoS) attacks are among the most com-
mon attack types in computer networks which makes them
a major concern in network security. The basic principle of
DoS attacks is to make services on a server unavailable to
legitimate users by exhausting the server’s resources. This
can effectively disable the whole network or organization.
Although these types of attacks usually don’t result in the
theft of information or other security loss, they can cost the
targeted machine or network a great loss of time and money.

Early DoS attacks were usually done at the TCP level by
flooding the targeted server. The server is flooded by receiv-
ing a lot of requests sent by the attacker (Damon et al.
2012). DoS attacks at the TCP level exploit the fact that a
lot of servers allocate resources at the initial phase of a TCP
three-way handshake. In order to flood the server, the at-
tacker would initiate a large amount of TCP connections to
the server and would not complete the required number of
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handshakes. The server’s resources would get saturated by
the flood of initiated, unfinished TCP connections. To de-
fend against these attacks, the defenders developed some
mitigation methods, such as delaying the buffer allocation
until the three-way handshake is completed. Therefore, the
attackers looked for other vulnerabilities, such as application
layer vulnerabilities.

Application layer DoS attacks have increased during re-
cent years !, 2. These attacks usually mimic real human be-
havior and conform to the protocol which make them harder
to detect. Layer 7 of the OSI model (Grigonis 2000), ap-
plication level, supports network applications and end user
processes and it provides services to a network application
program. It facilitates programs such as web browsers and
email services in transferring data and information across
the internet through different protocols (e.g. HTTP, SMTP).
Unlike common DoS attacks, application layer attacks re-
quire very little resources. While network flooding needs
several hundred bots to be performed, these attacks can be
activated from a single attacker computer with no need for
additional bots. This need to limited resources makes layer
7 attacks an increasingly popular strategy to perform DoS
attacks.

HTTP (Hypertext Transfer Protocol) (Fielding et al.
1999) is the foundation of data communication for the World
Wide Web (WWW). Since this protocol is a connection ori-
ented protocol, it suffers from similar vulnerabilities to TCP.
Once a connection is initiated, the resources are allocated to
it by the server and remain allocated while the connection is
open. The RUDY attack was developed to take advantages
of this vulnerability.

The RUDY attack (K.C, Shetty, and H.R 2014) opens
concurrent POST HTTP connections to the HTTP server and
delays sending the body of the POST request to the point that
the server resources are saturated. The detail of this attack is
explained in the RUDY Attack section of this paper. This
attack sends numerous small packets at a very slow rate to
keep the connection open and the server busy. This low-and-
slow attack behavior makes it relatively difficult to detect,
compared to flooding DoS attacks that raise the traffic vol-
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ume abnormally.

Most of the mitigation methods against RUDY attacks are
host-based which include monitoring of the resources allo-
cations at the server 3. It includes real time monitoring of
the server resources such as CPU, memory, connection ta-
bles and more. The advantages of a network-based mitiga-
tion are that such a detection is scalable, it provides security
for the hosts that don’t have their own security union and it
is also proper for the detection of distributed attacks. In this
paper, we analyze the internet traffic at the network level by
using machine learning methods to detect the RUDY attacks.
We also expand our analysis by further investigating on what
features are more important for the detection of this attack
at the network level.

Recently, machine learning methods have been applied
for intrusion detection applications (Tsai et al. 2009), (Na-
jafabadi et al. 2014). Machine learning methods are able to
extract patterns and similarities in the data in order to do
classification tasks, e.g. the detection of attack from normal
traffic in the network data. Extracting discriminative features
is a very critical step in any machine learning task. Usually,
this step is done through feature engineering. Feature engi-
neering is the process of using domain knowledge about the
data in order to extract potentially-useful features. However,
not all the extracted features from feature engineering are
equally important for building the predictive models. Some
feature can be redundant or irrelevant. Feature selection is
a pre-processing step in applying machine learning meth-
ods to build the predictive models. The goal is to increase
the overall effectiveness of the model by removing redun-
dant and irrelevant features without adversely affecting the
classification performance (Najafabadi, Khoshgoftaar, and
Seliya 2016).

In this paper, we use machine learning algorithms in order
to build predictive models for the detection of RUDY attacks
at the network level. We also use feature selection methods
to determine which of the defined features are more impor-
tant for the detection of RUDY attacks. Using less features
increases the efficiency of the detection method and provides
faster analysis. In addition, the selected features reveal the
important characteristics of the RUDY attack that are bene-
ficial for its detection.

We used the SANTA dataset (Wheelus et al. 2014) for
our experiments. To determine the important features for
the detection of the RUDY attack, we applied 10 differ-
ent feature ranker methods and aggregated their results. We
applied three classification methods to build the predictive
models. Finally, we applied ANOVA (Berenson, Goldstein,
and Levine 1983) to compare the predictive models perfor-
mances when the whole feature set with those models when
the selected feature sets are used. Our results show that the
selected feature set provides very similar performance re-
sults to the case where all the features are used in the build-
ing of the predictive models. The selected features include
the features which represent three main characteristics, in-
cluding the traffic size, the self-similarity between packets

3https://www.incapsula.com/ddos/attack-glossary/rudy-r-u-
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and the traffic velocity.

The rest of the paper is organized as follows. The Related
Work section contains the previous research regarding fea-
ture selection in the intrusion detection domain. In the Case
Study section we explain the SANTA data. In the Machine
Learning Methods section we explain our machine learn-
ing approach which includes the classifiers we used in our
analysis, the feature selection methods and the performance
metrics used. The Results section presents the results of our
work. Finally the Conclusion section concludes the paper
and presents the topics for the future works.

Related Work

Elimination of redundant and insignificant features in an in-
trusion detection task leads to a simplified and faster analy-
sis. Reducing the complexity may also provide better accu-
racy. The problem of feature selection in intrusion detection
has been studied in different works.

In (Sung and Mukkamala 2002) two wrapper-based fea-
ture selection methods are used: performance-based ranker
and SVM-specific ranker. The experiments are done on the
DARPA dataset . In the performance-based ranker, one in-
put feature is eliminated at a time, the classifier is then
trained and tested. The classifier’s performance is compared
with that of the original classifier which uses all the features.
Based on the performance comparison, the importance of
the feature is identified by a set of rules and each feature is
categorized as being “important”, “secondary” or “‘unimpor-
tant”. In the SVM-specific feature ranker, the features are
ranked based on their contribution in the support vector de-
cision function. The procedure then calculates weights from
the support vector function and ranks the importance of the
features by the absolute values of the weights. According to
the feature ranks, they are again categorized as “important”,
“secondary” and “unimportant”. SVM and Neural Networks
are used to build the classification models and test them by
using only the important features. Their results show that
using important features for each class (attacks and normal)
gives the best performance. The testing time decreases, the
accuracy for the normal class increases while the perfor-
mance of the other classes are similar to the performance of
using the whole feature set. They listed the features which
were selected as important by both feature selection meth-
ods, however, the important features for each specific class
are not presented.

Onut and Ghorbani (Onut and Ghorbani 2007) proposed
a ranking mechanism to evaluate the effectiveness of differ-
ent features for the detection of different types of attacks.
Their statistical feature ranking process is designed as a 3-
tier method. The ultimate goal is to calculate the probability
of each individual feature being able to detect one of the
main types of attacks defined in the used dataset (DARPA).
The higher the probability, the better the feature is for the
detection of attacks. Once all the probabilities are computed,
the features are ranked based on their corresponding proba-
bility values. The top selected features for the DoS attack
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are the ones correlating to Internet Control Message Proto-
col (ICMP) such as the number of ICMP bytes sent by the
source IP or the number of ICMP packets sent by the source
IP.

Bhoria et al. (Bhoria and Garg 2013) used the NSI KDD
dataset ° to find the relevant set of features for the detection
of DoS attacks. They did not use any specific feature selec-
tion method to select the features. Three sets of features are
formed and compared together. The first set includes all the
41 features in the KDD dataset. The second set includes 28
features from the 41 features in the KDD dataset which are
selected by combining basic and time based traffic features.
The third set includes 8 features; however, the authors did
not explain specifically how these feature sets are chosen.
They applied the decision tree algorithm on these three sets
of features along with cross validation to compute the per-
formance values. Their results show that the feature set with
8 features provides the best classification accuracy as well
as the shortest classification time.

In this paper, we apply feature selection methods in order
to find the important features for the detection of RUDY at-
tacks based on network traffic. The selected feature set not
only provides more efficient predictive models for the de-
tection of RUDY attacks, it also shows what kind of features
should be focused on more for the detection of these attacks,
as well as quite likely for other attacks with similar behavior
to RUDY attacks.

The RUDY Attack

The Rudy attack is a slow rate application layer DoS at-
tack. This attack attempts to open a relatively low number
of connections to the targeted machine over a period of time
and keeps them open as long as possible to keep the ma-
chine’s resources suspended. Eventually these open sessions
exhaust the targeted machine and make it unavailable to the
legitimate users. The low and slow traffic associated with
this attack makes it hard for the traditional mitigation tools
to detect.

RUDY attack exploits a weakness in the HTTP protocol
which was originally designed to provide service to the users
with very slow rate traffic (such as dial up users). RUDY
attacks take advantages of the fact that an HTTP POST
operation allows for the connection to remain open indefi-
nitely in cases where the POST data arrives very slowly; for
example one byte per second. The attacker sends a legiti-
mate HTTP POST request with an abnormally long “content
length” header field. Then it starts injecting the content at a
very slow rate (usually one byte at a time) to the server. The
long “content length” field prevents the server from clos-
ing the connection. The information is not only sent in very
small chunks, but also it is sent at a very slow rate. On the
server side, this traffic creates a massive backlog of applica-
tion threads, while it does not close the connection because
of the long “Content-Length” field. The attacker launches
simultaneous connections to the server. Since the server is
hanging while waiting for the rest of these HTTP POST re-
quests, eventually its connection table gets exhausted and

>http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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the server crashes.

Case Study Data
SANTA Dataset

The SANTA dataset (Wheelus et al. 2014) is collected from
an operational network of a commercial Internet Service
Provider (ISP). The network data includes a mixture of vary-
ing types of internet traffic. The ISP hosts a wide range of
server traffic that is accessed by users from across the inter-
net, including web servers, email servers, and other various
internet services that are common to internet providers. The
customer networks accessing the internet through the ISP
network generate traffic such as email, browser and all other
types of internet traffic that an average business might gen-
erate in the course of day-to-day operation.

The data is collected from two border routers that connect
the ISP network to the outside world, therefore the collected
traffic does not include the internal traffic (from one internal
host to another internal host). Since the collected data only
includes the border traffic the features are defined based on
two concepts: inbound and outbound traffic. Inbound traffic
is the traffic which is targeting the network and the packets
are originating from the hosts outside of the network. Out-
bound traffic is the traffic which is leaving the network and
the originating hosts are the ones in the network which are
sending the packets to the outside world. The two concepts
are used in order to define bi-directional network instances
which include both inbound and outbound packets. This al-
lows the extracted features to include inbound and outbound
traffic information simultaneously for one network instance.
The RUDY attack traffic was produced through penetration
testing.

Network instance and extracted features

Each instance is a network session in the SANTA dataset
, (Najafabadi, Khoshgoftaar, and Wheelus 2015). A net-
work session is constructed by grouping the correspond-
ing inbound and outbound Netflows. For example an in-
bound HTTP request would be paired with the correspond-
ing HTTP response, which is outbound traffic, to make a
session. Once a session is built, the features are extracted
from it. A Netflow is a uni-directional aggregation of net-
work packets. Conversely, a session is a bi-directional ag-
gregation of the network packets. Like communication be-
tween people, the network data context is largely dependent
on hearing both sides of the conversation. Similar to a con-
versation, in the network traffic the inbound traffic and the
outbound traffic typically result from one another. The con-
text can suffer from analyzing inbound and outbound Ne-
flows separately. The concept of “session” incorporates both
sides of a network conversation (inbound and outbound Net-
flows) in the definition of a network instance.

Three main categories of features are defined along
with features that are more analogous to those used in
other datasets, such as DARPA. The three main categories
are: self-similarity, periodicity and velocity related features.
Self-similarity represents the similarity between the pack-
ets. It is calculated by computing the variance of size of



Table 1: Description of features extracted from sessions

Feature Name Description

Protocol Transmission protocol

10 match Whether the inbound Netflow has
an associated outbound Netflow
record (Boolean)

Duration The elapsed time, from the earliest
of the associated inbound or out-
bound Netflow until the end of the
later Netflow

Bytes Total size for the session in bytes

Packets Total number of packets in the ses-
sion

Inbound Session | Self-similarity of the inbound pack-

Convergence ets in the session is determined by
examining the variance in size of the
inbound packets

Outbound  session | Self-similarity of the outbound

convergence packets in the session is determined
by examining the variance in size of
the outbound packets

Repetition The ratio of the number of most
common packet

Periodicity Standard deviation of packet size
(bytes/packets) within the session

Inbound velocity pps | Velocity of inbound traffic mea-
sured in packets per second

Inbound velocity bps | Velocity of inbound traffic mea-
sured in bits per second

Inbound velocity | Velocity of inbound traffic mea-

bpp sured in bytes per packet

Outbound velocity | Velocity of outbound traffic mea-

Pps sured in packets per second

Outbound velocity | Velocity of outbound traffic mea-

bps sured in bits per second

Outbound  velocity | Velocity of outbound traffic mea-

Bpp sured in bytes per packet

RIOT packets Ratio of inbound to outbound traffic
measured in packets

RIOT Bytes Ratio of inbound to outbound traffic
measured in bytes

Flags Cumulative OR of all the TCP flags
seen in this session

Class Class label (Attack or Normal) asso-
ciated with the Netflows within the
session

the inbound and outbound packets in one network instance,
i.e. session. To measure the periodicity, the variance of the
difference between timestamps of the inbound or outbound
packets in one session is calculated. Velocity features are de-
fined by providing bits per second, packets per second, and
bytes per packet for both inbound and outbound traffic. The
descriptions of the extracted features are shown in Table 1.

Applying Machine Learning Methods
Feature Selection Methods

Feature selection (Guyon and Elisseeff 2003) aims to exam-
ine a dataset to find which features are most important to the
class label. In this study, we apply feature ranking methods.
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Feature ranking methods use different techniques to assign a
score to each feature. The features are ranked based on these
scores in order from best to worst. The top N features are
then selected as the results of the feature selection method.
There is no standard for deciding upon a specific number
of features (N), therefore this decision should be left to the
discretion of the practitioners. In this study, we apply 10 dif-
ferent feature ranker methods on our dataset. These methods
provide ten different ranking lists of the features.

The feature ranking methods used in this study are: F-
Measure (F), Geometric Mean(GM), Kolmogorov-Smirnov
statistic (KS), Mutual Information (MI), Area Under the Re-
ceiver Operating Characteristic Curve (ROC), Fisher Score
(FS), Signal to Noise Ratio (S2N), Chi Squared (CS), Infor-
mation Gain (IG), Gain Ratio (GR). These can be divided
into three groups: threshold based, first order statistics, and
common literature techniques. Threshold-based feature se-
lection techniques use the feature values as the posterior
probabilities to estimate the classification error (This in-
cludes F, GM, KS, MI, ROC). First order statistics based
methods use first order statistical measures such as mean and
standard deviation to measure the relevance of the features
(this includes FS and S2N) and the techniques commonly
used in the literature (CS, IG and GR).

By aggregating the feature ranking lists and expert analy-
sis we selected seven features. Once the features are ranked
in ten different ranked lists, we counted, for each feature,
how often the feature appears at the 1st-place, at the second-
place and so on among all ten ranking lists. When sorting the
features based on how frequently they appear toward the top
of the ten ranked lists, we realized that there are some natu-
ral cut-offs where some features tend to appear more at the
beginning of the ranked lists and the others tend to appear
at the end of the ranked lists. Based on this information, we
determined that the features that appear more than 4 times
at the top seven positions in the rank lists are of our greatest
interests. Further investigations can consider more features,
however we decided to go with 7 features since we only had
18 features to begin with and choosing more features seems
to obviate the purpose of feature selection.

Classifiers

To build the predictive models, we chose three classification
algorithms : K-Nearest Neighbor (K-NN) and two forms of
C4.5 decision trees (C4.5D and C4.5N). These learners were
all chosen due to their popular use in machine learning ap-
plications as well as their relative ease of computation. Us-
ing these learners provides a broader analysis from a data
mining point of view. We built all models using the WEKA
machine learning toolkit (Hall et al. 2009).

K-nearest-neighbors or K-NN is an instance learning al-
gorithm. K-NN stores the training instances in the memory.
When predicting the class of a new instance, its distance or
similarity to all the training instances stored in the memory
is calculated. The algorithm uses the K (in our study, K=5)
closest instances to the test instance to decide its class.

C4.5 decision tree (implementation of the J48 decision
tree in WEKA) is a tree-based learning algorithm. In these
algorithms a decision tree is built based on the training data.



Each branch of the tree represents a feature in the data which
divides the instances into more branches based on the values
which that feature can take. The leaves represent the final
class label. The C4.5 algorithm uses a normalized version
of Information Gain to decide the hierarchy of features in
the final tree structure. In this study, we employed a ver-
sion of C4.5 using the default parameter values from WEKA
(denoted C4.5D) as well as a version (denoted C4.5N) with
Laplace smoothing activated and tree-pruning deactivated.

Performance Metrics

We use Area Under the receiver operating characteristic
Curve (AUC) as well as True Positive Rate (TPR) and False
Positive Rate (FPR) as the evaluation metrics. The Receiver
Operating Characteristic (ROC) curve is a graph of the TPR
vs FPR. In the current application, TPR is the percentage
of the RUDY attack instances that are correctly predicted as
Attack. FPR is the percentage of the Normal data which is
wrongly predicted as Attack by the model. The ROC curve
is built by plotting TPR vs FPR as the classifier decision
threshold is varied. The area under the ROC graph is cal-
culated as the AUC performance metric. A higher value of
AUC means higher TPR and lower FPR which is preferable
in an intrusion detection applications.

To evaluate the performance values we used 5 fold cross
validation. In 5 fold cross validation, the data is divided into
5 non-overlapping parts (folds). In each iteration, one part
is kept out as the test data and the other four parts are used
as the training data. The final performance values are calcu-
lated by aggregating the performance values of the models
being tested on each of 5 parts of the data. In order to de-
crease the bias of randomly selected folds, we applied four
runs of 5 fold cross validation to provide each performance
value.

Results

We selected seven features by using the ensemble method
explained in the Feature Selection Methods sub-section. By
looking at the ranking lists side by side and the frequency
of different features appearing in different positions in the
ranked lists, we decided to select the features that appear
more than 4 times at the 7 first positions of all the ranked
lists as the final selected features. The selected features and
their frequency in the first 7 positions of the ten ranked lists
are shown in Table 2.

We applied three classification algorithms on the data with
the whole feature set and with the 7 selected features. The
performance values are achieved through 4 runs of 5 fold
cross validation. The cross validation results on the whole
feature set and on the selected feature set are shown in Table
3 and Table 4 respectively. The AUC values being more than
0.99 plus the high TPR and low FPR values indicate that the
machine leaning methods perform very well in the detection
of RUDY attacks with the whole or selected feature sets.

We applied ANOVA analysis in order to compare whether
the selection of feature sets significantly affects the perfor-
mance. ANOVA analysis determines whether there is signif-
icant difference between the mean value of the independent
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Table 2: Selected Features by the ensemble of rankers.

Feature Number of occurrences
Outbound session convergence
Inbound session convergence
Packets
Bytes
RIOT Bytes
Outbound velocity bpp

Outbound velocity bps

~| O\ O\ O\ | |

Table 3: Cross Validation Results on the whole feature set

Classifier | AUC TPR FPR
C4.5N 0.9988 | 0.9873 | 0.000282
C4.5D 0.9940 | 0.9866 | 0.000307
5-NN 0.9999 | 0.9883 | 0.000316

Table 4: Cross Validation Results on the selected feature set
with 7 features

Classifier | AUC TPR FPR
C4.5N 0.9983 | 0.9907 | 0.00029
C4.5D 0.9996 | 0.9890 | 0.00041

5-NN 0.9944 | 0.9897 | 0.000265

groups. We applied one-way ANOVA analysis with the fac-
tor being whether the whole or selected feature set is used.
We chose a significance level of 5% for this ANOVA analy-
sis and a “Prob>F" score of less than 0.05 is considered to
be statistically significant. The ANOVA results are shown in
Table 5. The results show that there is no significant differ-
ence in the selection of feature sets which means the selected
feature set performs very similar to the whole feature set in
the detection of RUDY attacks.

By looking at the selected features shown in Table 2 we
observe that the features are in correlation with the RUDY
attack behavior explained in RUDY Attack section. In a
RUDY attack scenario, the attacker is sending small packets
in a slow rate and the server is just responding TCP acknowl-
edgement packets to the incoming slow rate attack packets
which makes the response, i.e, outbound traffic, have a small
number of bytes per packets. This also affects the speed in
which the packets are sent out, i.e. bits per second/packets.
These characteristics can be represented in Outbound veloc-
ity bps and Outbound velocity bpp features. On the other
hand, the small packet sizes sent by the attacker and the short
responses can be represented in the overall size of a session
(Bytes and Packets) features as well as RIOT Bytes which
shows the ratio of inbound to outbound traffic in bytes rep-
resenting the relative size of inbound to outbound traffic.

Another important characteristic of the RUDY attack is
the self-similarity between the request packets sent by the
attacker and the response packets sent by the server. The
two features, Inbound session convergence and Outbound
session convergence, represent the self-similarity between
inbound and outbound packets in a session respectively. So
it is expected to see these features among the important fea-
tures selected for the RUDY attack.



Table 5: ANOVA Results

Df | SumSq | MeanSq | Fvalue | Prob>F
Whole/selected | 1 6.00e-07 | 6.190e-07 0.04 0.843
feature set
Residuals 118 | 1.85e-03 | 1.568e-05
Conclusion

The RUDY attack is an application layer HTTP denial of
service attack which exploits the server behavior of support-
ing users with slower connections. It injects the application
POST body traffic at a very slow rate to the server to make
the application threads wait for the end of a non-ending
POST. By initiating simultaneous POST connections, the
RUDY attack exhausts the server connection table and leads
to a denial of service attack. Most of the mitigation meth-
ods for this attack take place at the host level which includes
monitoring the servers resource consumption, such as CPU
and memory, as well as behavior analysis of open server
connections. In this paper, we provide a machine learning
approach for the detection of the RUDY attack at the Net-
work level. We used feature selection methods to determine
which features are more important for the detection of the
RUDY attack at the network level. We used an ensemble fea-
ture selection approach including 10 different feature rank-
ing methods to investigate what features are more important
for the detection of this attack. Based on our results the fea-
tures related to the traffic size, self-similarity between traffic
packets and the velocity related features are more important
for the detection of RUDY attacks. These features provide
a very good classification performance for the detection of
RUDY attacks which based on our ANOVA results is not
significantly different from the classification performance of
the whole feature set. This information can be used in intro-
ducing features for the detection of other types of attacks
similar to the RUDY attack. In future work, we would like
to study more application level DoS attacks and the impor-
tant features for their detection.
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