Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

Selecting Vantage Points for an Autonomous Quadcopter Videographer

Rey Coaguila Gita Sukthankar Rahul Sukthankar
Google University of Central Florida Google
Mountain View, CA Orlando, FL Mountain View, CA

reyc@google.com

Abstract

A good human videographer is adept at selecting the
best vantage points from which to film a subject. The
aim of our research is to create an autonomous quad-
copter that is similarly skilled at capturing good pho-
tographs of a moving subject. Due to their small size
and mobility, quadcopters are well-suited to act as
videographers and are capable of shooting from loca-
tions that are unreachable for a human. This paper eval-
uates the performance of two vantage point selection
strategies: 1) a reactive controller that tracks the sub-
ject’s head pose and 2) combining the reactive system
with a POMDP planner that considers the target’s move-
ment intentions. Incorporating a POMDP planner into
the system results in more stable footage and less quad-
copter motion.

Introduction

The “flying selfie bot” has emerged as an important commer-
cial application of quadcopters, due to the voracious con-
sumer demand for high quality photos and videos to share on
social media platforms (Schneider 2015). Although most ef-
forts target outdoor and sports photography, quadcopters can
be valuable for indoor photographers as well. For instance,
Srikanth et al. (2014) demonstrated the utility of quadcopters
at providing rim illumination of a moving subject.

To make the best use out of its limited battery life, an au-
tonomous system must solve the same optimization problem
faced by a lazy videographer who seeks to produce a steady
stream of good footage, with minimal effort, commemorat-
ing the event. A practiced human photographer is skilled at
finding the best vantage points from which to capture the
scene. This paper tackles a constrained version of the van-
tage point selection problem in which the aim is to produce a
stream of high-quality frontal photos of a single moving sub-
ject over a short time period with minimal quadcopter mo-
tion. We evaluate two approaches implemented on a Parrot
AR.Drone: 1) a reactive system that tracks the subject’s head
pose using PD control and 2) coupling the reactive system
with a movement policy produced by a POMDP (Partially
Observable Markov Decision Process) solver that considers
the subject’s movement intentions. Head pose is estimated in
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Figure 1: The autonomous quadcopter videographer

real-time using a face detector system to calculate a bound-
ing box, along with the facial yaw. The distance between
facial landmarks is then used to extract the 3D location of
the face relative to the robot’s camera. We demonstrate that
adding a POMDP planner to the system generates more sta-
ble footage. In contrast, the PD controller must constantly
respond to the subject’s vacillations, resulting in unneces-
sary motion and lower quality footage.

Related Work

Autonomous photography can be divided into several sub-
problems including subject identification, scene composi-
tion, and camera positioning. Byers et al. (2003) imple-
mented an autonomous event photographer that followed
this procedure to take candid snapshots of conference at-
tendees using an iRobot B2lr mobile robot. Subjects were
identified using a color-based skin detection model, and
vantage points were selected using an objective function
that included a combination of photograph features and
reachability considerations. Our evaluation metrics are sim-
ilar in spirit to this objective function, combining image
quality and robot motion. The event photographer was
programmed using the same composition rules commonly
taught to human photographers. In contrast, Campbell and
Pillai (2005) created an autonomous photographer that did
not use content-based heuristics for image composition. In-
stead of relying on color models, a depth clustering pro-
cess was used to locate subjects based on motion parallax.
One advantage of this system is that it could photograph



non-human subjects, assuming that they posed for the cam-
era. Since our goal is to produce real-time streaming video
footage of a single rapidly-moving subject, our quadcopter
videographer does not discard frames or crop images, unlike
these systems.

The aim of the related FollowMe system was to do hands-
free filming with a quadcopter; for this application, Naseer
et al. (2013) demonstrated autonomous human-following us-
ing an on-board depth camera. The FollowMe human tracker
recovers full body pose from warped depth images, which
are also used for gesture recognition. Our proposed sys-
tem relies on head pose estimation; the human’s movement
intentions are anticipated using a POMDP, rather than a
gesture-based command system.

Our work differs from existing work on tracking humans
or vehicles using UAVs (Teuliere, Eck, and Marchand 2011)
in that our focus is on filming a subject from a specific
(frontal) vantage point rather than simply maintaining a sub-
ject in the camera’s field of view. The problem is more chal-
lenging because a small change in the subject’s facing can
require large quadcopter motions and thus requires more
complex motion planning.

Method

Figure 2 shows our system architecture. We use an un-
modified, commercially available quadcopter, the Parrot
AR.Drone, which comes equipped with two cameras (front-
facing and downward-facing), a 3-axis gyroscope and ac-
celerometer, and an ultrasound altimeter. The robot calcu-
lates its horizontal speed using vision algorithms (Bristeau et
al. 2011) that process data from the downward-facing cam-
era. This information, along with the ultrasound and gyro-
scope measurements, are sent over WiFi to our PC. In order
to command the robot, the quadcopter also receives control
messages over WiFi consisting of a desired 3D velocity and
the angular yaw velocity, all specified with respect to the
robot’s current frame of reference. The robot’s onboard soft-
ware translates these commands into rotor speeds to achieve
the desired pose.

We employ the ROS framework to handle the communi-
cation between the quadcopter and the different parts of our
system. At a high level, the localizer node tracks the current
state of the quadcopter along with the subject’s location and
relative orientation, while the controller node selects van-
tage points to best capture frontal images of the subject as
it moves and generates the appropriate motion commands.
Note that a small head turn from the subject can require the
quadcopter to sweep in a wide arc in order to photograph the
subject from a frontal vantage point.

The face localizer sub-module processes the image
stream from the quadcopter’s front-facing camera to detect
faces. If detected, the face’s yaw and 3D location are com-
puted and sent to the publisher, which transforms the detec-
tion from image coordinates to the robot’s frame of refer-
ence, using the gyroscope data.

The planner sub-module calculates a desired robot lo-
cation based either on a simple reactive plan (i.e., servo-
ing to maintain a frontal vantage point) or a more complex

387

Navigation
Data

Localizer Node Controller Node

Planner

= 5

PD Controller

Face Localizer

= 5

Publisher

Figure 2: System architecture
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Figure 3: Recovering subject’s head orientation: (a) feed
from front-facing quadcopter camera (b) landmarks detected
by the face alignment process (c) ratios between the five
landmarks that determine head orientation. Our method esti-
mates that subject is facing away at a relative yaw of 29°(d).

POMDP policy. The PD controller generates the commands
to drive the quadcopter to the desired point.

Estimating subject’s head orientation and 3D
location

To detect the subject’s face in the feed obtained from the
front-facing camera, we employ a fast detector based on the
recent work on max-margin object detector (King 2015),
which uses Histograms of Oriented Gradient (Dalal and
Triggs 2005) (HOG) features in conjunction with struc-
tural SVMs, as made available in the Dlib open-source li-
brary (King 2009).

Given the bounding box of a detected face, we use the
“millisecond face alignment” method recently proposed by
Kazemi & Sullivan (2014) to recover the locations of five
key landmarks on the subject’s face: the far corners of the
eyes and mouth, and the tip of the nose. The method uses
regression trees to localize landmarks in real time and we
employ the implementation in Dlib (King 2009) that was
pretrained on the 300-W faces in-the-wild dataset (Sagonas
et al. 2013) without additional training.

With the landmarks located, we calculate the subject
face’s orientation (relative to the front-facing camera) us-
ing the geometric method by Gee & Cipolla (1994), which
requires only the ratios of distances between certain facial
landmarks to be known. While this method could recover
the tilt and yaw of the face, we focus only on the subject’s



yaw since this dominates the out-of-plane rotation and thus
the selection of suitable vantage points. Figure 3 shows an
example of the resulting estimate of the pose.

Localizer Node: Publisher Sub-Module

The detected location and pose of the face (obtained with the
previous method) are calculated with respect to the camera’s
frame of reference. However, this needs to be transformed to
the robot’s frame of reference before computing the control
command. Also, since the quadcopter is tilted every time it
moves horizontally, the location with respect to the camera
may not be accurate. To account for this, we correct the cal-
culated location by the roll and pitch angles that are provided
by the quadcopter’s gyroscope.

While straightforward in concept, this process is compli-
cated by the fact that the image stream and the navigation
data are received at different rates and with different delays.
We address this by executing an additional step to match the
face location estimate to the most accurate quadcopter lo-
cation available, inspired by the approach used by Engel et
al. (2012). To do this, we maintain a queue of the estimated
quadcopter locations over the last second, obtained from the
navigation data, and when the face localizer returns an esti-
mate of the face with respect to the camera, we use its times-
tamp to match the best available estimate of where the robot
was when the picture was taken.

We also maintain an estimate of the drone’s position with
respect to its initial location. This is performed by integrat-
ing the (noisy) navigation information, which can result in
an inaccurate global estimate of the quadcopter’s location.
To mitigate the effects of this noise on planning for vantage
point selection, the planner operates in the current rather
than the global reference frame. The complete state, con-
sisting of location and 2D orientation (yaw) information for
the robot and subject (face) is summarized as:

(@, Yrs 20, Yoy g, yp, 25, V).

Planning Problem - Reactive and POMDP model

Once the pose of the human face is computed, our system
must decide on the actions to be executed by the quad-
copter in order to capture good video sequences. The subject
has the freedom to move anywhere so a straightforward ap-
proach is to maintain the quadcopter at a given position with
respect to the detected face. This is implemented directly us-
ing a reactive model that calculates the goal location in each
frame.

Our second approach minimizes the motion of the quad-
copter in the case when the subject is shifting slightly
around the same central location. This approach was imple-
mented with a Partially Observable Markov Decision Pro-
cess (POMDP) (Kurniawati, Hsu, and Lee 2008) planner
that considers the ‘intention’ of the human which can be ei-
ther to change pose or to preserve it. With this information,
the controller decides when to change its goal location (sim-
ilar to the reactive behavior) and when to remain in place.

Reactive Behavior The goal location, which the con-
troller will try to maintain even when the subject is moving,
is defined as a point, centered in front of the subject’s face.
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Figure 4: Reactive Behavior: The goal location is calculated
as dgront meters in front of the person. The height of the goal
is dpeight meters above the location of the eyes.

This is a desirable vantage point from which the quadcopter
can obtain frontal photos. This point is determined by two
variables:
e dpont: the frontal distance between the goal location and
the subject face.
® dheignt: the altitude of the robot with respect to the eyes
of the detected face. A value of dpeighy = 0 will maintain
the robot at the same level as the eyes of the subject.
The reactive behavior tries to maintain the robot in the goal
location, facing towards the human. In order to do this, a PD
controller calculates the specific required commands. For
the yaw command, an additional consideration is that the
robot should be facing the human at all time (to avoid losing
it from its sight). This can be seen in Figure 4, where the
command for the robot is to rotate towards the left, although
at the final goal location it will be rotated towards the right.
The simplicity of the reactive behavior allows for faster
reaction times when the person starts moving, e.g., walk-
ing around a room or turning, but the responsiveness comes
at a price. Not only is the resulting footage jerkier due to
excessive quadcopter motion but it is also possible for the
quadcopter to be frequently out of position when the subject
turns away and then back, because it responds immediately
(with large motions) to small changes in head orientation.

POMDP Planner Behavior The POMDP model attempts
to be more judicious in its selection of vantage points by
avoiding unnecessary quadcopter motion. A key observation
is that a subject may make many small motions near a loca-
tion punctuated by occasional larger motions between loca-
tions. To model this, we predict the intention of the subject

(either maintaining or changing pose with respect to quad-

copter position) and learn a “lazier” controller that executes

significant quadcopter motion only when merited.
More specifically, the POMDP quadcopter world has the
following partially observable variables:

e loc: This represents the location of the subject, modeled as
the distance from the goal, and discretized into three vari-
ables: [1, I and I3 (see Figure 5a). At each planning step,
the goal location is calculated as dy,o,¢ meters in front of



dfront

(b) Yaw model

(a) Location model

Figure 5: POMDP quadcopter world: the location is calcu-
lated by discretizing the distance from the goal, and the yaw
is calculated by discretizing the yaw between -90°and 90°.

the quadcopter. If the distance between this goal (consid-

ering only the = and y directions and not the height) and

the subject is smaller than 71, then the value for loc should
be [;. If it is between r1 and r, its value should be 5. If

it is larger than r5, it should be /3.

e yaw: The yaw is defined as the angle of the subject’s face
with respect to the quadcopter’s front-facing camera. An
angle of zero would mean that the human is facing paral-
lel to the camera (see Figure 5b). These readings are dis-
cretized into 5 variables vy, . . ., y5 defined by the limiting
angles —aig, —av1, a1 and ae (a1 < ).

e lint: Represents the “location intention” of the human to
move away from its location or not. It can have the values
move or keep.

e yint: Represents the intention of the human to rotate its
main focus point (the yaw direction). It can have the val-
ues front, rotate_left, and rotate_right.

In each time step, the POMDP planner receives a noisy read-
ing of the location and yaw. This observation is used to up-
date the belief about the current state including the intentions
that are not directly observed. For this, we model the tran-
sition probabilities as shown in Figure 6. In our model, the
subject maintains its location and yaw direction around the
safe zones (mostly in /; and ys3, but occasionally moving and
returning from [y, 42 and y4) when the intentions are lint =
keep and yint = front. These intentions may change over time
causing the human to move away (states I3, y1, and ys). This
was pre-defined in the model by setting the probabilities of
the subject changing locations higher or lower depending on
the intention, and also setting probabilities for the intention
itself to change.

At each planning step, the robot may execute two different
actions: do_nothing or correct. The former avoids sending
any command to the quadcopter, and the latter calculates a
new goal using the same steps as in the reactive behavior and
then executes motion commands to achieve it.

We modeled the rewards in the POMDP problem such that
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Figure 6: POMDP transition model

the do_nothing action is preferred when the subjects’ inten-
tion is to maintain its pose and its yaw direction. On the other
hand, the correct action is preferred when the robot location
and yaw are in the extremes (I3, y; and ys5) or when the in-
tention has changed, such as when the robot remains in the
middle zone too long (l2, y2 or y4).

Finally, in order to connect the planner to the real time
system, the POMDP is first solved offline using the SAR-
SOP algorithm (Kurniawati, Hsu, and Lee 2008) to ob-
tain a policy. Then, during the execution, the POMDP con-
troller calculates the best action according to the policy by
observing and updating the world state each 0.5 seconds.
The resulting action is executed for the following time step.
Also, every time the correct action was selected, the con-
troller maintains this action for three seconds to complete a
full correction rather than a partial movement. The result-
ing POMDP controller exhibits the expected behavior: short
movements of the human do not affect the goal of the quad-
copter, so no commands are given, but bigger human move-
ments trigger a corresponding move from the robot. For ex-
ample, when a human is moving around in the [ area, the
robot will not move, but if he suddenly moves to the [3 area,
it will move immediately. If the human moves to the 5 area
and stays there, the robot will not move immediately, but af-
ter some time, the intention belief updates and it follows the
human.

PD Controller

When the goal is calculated (and in the POMDP case, when
the controller decides to change it), some commands need to
be given to move the quadcopter. These commands are cal-
culated with an underlying PD controller that manages the
commands in the x-direction, y-direction, z-direction, and
yaw independently. Since the commands need to be given
with respect to the frame of reference of the quadcopter, the
error (distance to the goal and required yaw rotation) is first
transformed to this frame of reference.



In order to get the derivative component of the PD con-
troller, we use the velocities reported from the navigation
data (in the x and y direction). The yaw and height compo-
nents do not need a derivative term, so only the proportional
error is used in this case.

Results

In order to test our method, we executed several runs consist-

ing of the controller commanding the quadcopter in a room

with a moving subject.! The size of the room was 7.5 by 4

meters, with a height of 2.7 meters. We consider three types

of runs, characterized by the speed of the subject’s move-
ment:

e Scenario Type 1 - Slow Motion: In this case, the subject
maintains his position for periods of 15 to 20 seconds,
executing short and slow translations (less than 1 meter)
and rotations in between.

e Scenario Type 2 - Medium Motion: The subject main-
tains his position for short periods of time, but now may
execute small movements and rotations while doing so.
The translations in between are longer (2 to 3 meters) and
faster.

e Scenario Type 3 - Fast Motion: The human does not, in
general, maintain position. He moves around and rotates
his face constantly with higher speed. Occasionally the
subject will remain in certain locations for a longer period
of time.

The length of each run is exactly five minutes, measured
from when the controller switches to an autonomous behav-
ior. The goal of the quadcopter is to be positioned 1.6 meters
in front of the human, and at the same height as the eyes. For
the POMDP planner case, the values for 7y, ro, a1, ao are
0.4 meters, 0.6 meters, 15°, and 40°respectively.

Two categories of metrics were obtained from each run.
The first includes command-related metrics that measure the
magnitude of the movements the quadcopter executed over
time:

e Total Commands x/y/z: the sum of the absolute values of
the linear velocity commands in three dimensions given
to the quadcopter during a single run.

e Total Commands Yaw: the sum of the absolute values of
the rotation commands (yaw) given to the quadcopter dur-
ing a single run.

The second includes the face-quality metrics, obtained by
analyzing the video recorded by the quadcopter:

e Face Size Error: This metric measures the difference in
the size of the face in different frames, with respect to the
desired size. The desired size is calculated as the mode of
the detected face rectangles in the runs with slow motion.
This area represents the size we would expect to see when
the robot is precisely at the goal distance. Then, for each
frame, we detect the face and calculate the ratio of its area
vs. the desired area. If the ratio is smaller than one, we
use its inverse. This ratio then represents how different
the area is with respect to the desired one. The total error
for a run is the average ratio over all frames.

'A video of the system is available at:
https://youtu.be/s6WJ6SalLZ1k.

390

s1.0W | REACTIVE |302.8
POMDP 202.0
MEDIUM | REACTIVE |275.4
POMDP | 220.2
FAST | REACTIVE 364.6
POMDP | 230.0
0 400

(a) Average Total Commands (x/y/z)

sLow | REACTIVE 501.9
POMDP 567.9
MEDIUM | REACTIVE 853.4
POMDP 480.7
FAST | REACTIVE 1170.4
POMDP | 7485
0 1300

(b) Average Total Commands (yaw)

Figure 7: Total commands executed by the controllers under
different scenarios. Smaller values indicate that the quad-
copter moved less, resulting in more stable movies.

e Face Location Error: This corresponds to the average ab-
solute value of the distance between the face (i.e., the cen-
ter of the detection rectangle) and the frame center in pix-
els.

e Face yaw: Average absolute value of the yaw, where zero
represents a face that is looking straight at the camera.
As shown in Figure 7, the POMDP controller generally

commands less quadcopter motion in comparison to the re-

active behavior. As a result, the videos obtained when us-
ing the POMDP planner are more stable and do not shift
as much. However, the tradeoff is that the subject may be
closer or farther than the desired distance for short periods
of time. Figure 8a shows that the face size error is slightly
greater with the POMDP controller. This occurs because the

POMDP waits longer while determining the subject’s inten-

tion before executing actions.

Figure 8b shows the error in location of the face, mea-
sured in pixels from the center of the image. The POMDP
controller exhibits a smaller error for the medium and fast
scenarios. This occurs because the subject may be farther
than the goal, hence any horizontal movement corresponds
to a smaller movement in the center of the detected face.
Thus, even though we are allowing the subject to move fur-
ther before reacting, the face will in average be closer to the
center of the frame in comparison to the reactive behavior.

Finally, Figure 8c shows the error in the yaw, measured as
the difference in the angle of the observed face vs. a frontal
face (looking directly at the quadcopter). The POMDP con-
troller achieves better results in the medium and fast scenar-
ios. By oscillating constantly while trying to maintain itself
in front of the subject, the reactive behavior creates situa-
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Figure 8: Face quality metrics measured as the average dif-
ference vs. the ideal size, location (the center of the image),
and a frontal looking face.

tions where the subject’s head pose is worse. On the other
hand, the POMDP filters small changes in the yaw so the
average error is smaller.

Conclusion and Future Work

This paper describes an autonomous quadcopter videogra-
pher that captures frontal video of the subject. Our solution
primarily employs monocular information, which is pro-
cessed to estimate the subject’s facing. We evaluate the per-
formance of two vantage point selection strategies: 1) a PD
controller that tracks the subject’s head pose and 2) combin-
ing the reactive system with a POMDP planner that con-
siders the subject’s movement intentions. The POMDP is
able to filter short motions and reacts only when the human
moves farther or rotates more. As a result, this controller
executes less motion, thus obtaining more stable video se-
quences than the PD controller alone. The ability to cap-
ture stable video footage is particularly important for quad-
copters used by professional photographers; this is often
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achieved by adding a gimbaling system, which adds both
weight and expense. The POMDP can improve the aesthetic
quality of the video in ways that a gimbaling system can-
not by anticipating the subjects’ rotation and filming from a
frontal viewpoint; this differs from commercial quadcopter
solutions that simply follow the subject. In future work, we
plan to explore more complex image composition policies to
shoot group videos. By introducing multi-frame evaluation
metrics that consider events rather than static scenes, we can
potentially improve the narrative structure of the video in
addition to the visual aesthetics.
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