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Abstract

Adding weights or preferences to Abstract Argumenta-
tion Frameworks can help disentangle semantics from
otherwise all-equivalent attacks. Having such informa-
tion makes possible to distil the set of found extensions
by reducing their number. In this work we provide a
new definition of weighted defence: according to it, all
the attacks from an argument to a set of arguments are
considered with a single global weight, i.e., attacks are
grouped together. This provides a coherent view w.r.t.
defence, which is usually “collective” in the literature.
Moreover, we model weighted defences from related
works in the same algebraic framework: this allows us
to compare all the different proposals together.

1 Introduction

An Abstract Argumentation Framework (AAF) (Dung 1995)
is essentially a pair 〈Args , R〉 consisting of a set of argu-
ments and a binary relationship of attack defined among
them. Given a framework, it is possible to examine the ques-
tion on which set(s) of arguments can be accepted, hence
surviving the conflict defined by R. Answering this ques-
tion corresponds to defining an argumentation semantics.
The key idea behind extension-based semantics is to iden-
tify some sets of arguments (called extensions) that survive
the conflict “together”. A very simple example of AAF is
〈{a, b}, {R(a, b), R(b, a)}〉, where two arguments a and b
attack each other. In this case, each of the two positions rep-
resented by either {a} or {b} can be intuitively valid, since
no additional information is provided on which of the two
attacks is stronger. For instance, in case the attack R(a, b) is
stronger than R(b, a), taking the position defined by a may
result in a better choice (e.g., , for an intelligent agent).

Several notions of weighted defence have been defined
in the literature. Attacks are associated with a weight in-
dicating a “strength” value of an attack, thus they repre-
sent an additional quantitative-information. Examples are
Preference-based AAFs (PAFs) (Amgoud and Cayrol 1998),
Value-based AAFs (VAFs) (Bench-Capon 2003), frame-
works considering a probability or uncertainty score of at-
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tacks (Li, Oren, and Norman 2011), a fuzzy measure of their
strength (Janssen, Cock, and Vermeir 2008). Preferences can
also be given qualitatively (Martı́nez, Garcı́a, and Simari
2008; Modgil 2009).

Having such weights naturally brings to generalise the no-
tion of AAF into Weighted AAF (WAAF) (Dunne et al. 2009;
Bistarelli and Santini 2010; Dunne et al. 2011). The aim
of this paper is to provide a new definition of defence for
WAAFs, here called w-defence, which encompasses also
weights in the style of similar works, as (Martı́nez, Garcı́a,
and Simari 2008) and (Coste-Marquis et al. 2012). In our
proposal, an extension B ⊆ Args defends an argument
b ∈ Args from a ∈ Args , if the “sum” (a parametric × oper-
ation from a c-semiring structure (Bistarelli, Montanari, and
Rossi 1997)) of all the attack weights from B to a is stronger
than the “sum” of all the attacks from a to B ∪ {b}. Dif-
ferently from (Coste-Marquis et al. 2012), where the arith-
metic sum of all attack weights from B to a needs to be only
stronger than the attack from a to b, we also consider the
set of attacks from a to the indented defender B. Therefore,
both our proposal and the one given by Coste-Marquis et al.
suggest a collective defence from B to a, but, differently, in
this paper we consider the group of attacks from a to b and
B as a single entity, i.e., with a single global weight.

We believe our choice provides a more coherent view: in
the literature defence is usually checked by considering all
the counter-attacks from a set B to a (e.g., in order to sat-
isfy the admissible semantics), but each attack from a to B is
treated separately. Our intent is to normalise such dishomo-
geneity.

As a second result, w-defence and the defences defined by
Coste-Marquis et al. and Martı́nez, Garcı́a, and Simari are
framed into the same parametric algebraic-framework that
exploits semirings, with the possibility to consider different
instantiations of aggregation operators. As a consequence,
we can compare all such proposals together, e.g., w-defence
implies the defence in (Coste-Marquis et al. 2012).

The paper is structured as follows: in Sec. 2.1 we present
c-semirings, while Sec. 2.2 recollects the basic definitions
of (unweighted) AAF given by Dung. Section 3 presents
WAAFs and w-defence. Afterwards, Sec. 4 exploits w-
defence to redefine the classical semantics into new w-
semantics. In Sec. 5 we describe in detail how this proposal
is placed with respect to similar works in the literature. Fi-
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nally, Sec. 6 concludes the work by summarising the main
ideas and introducing future work.

2 Background
In the following of this section we first introduce c-semirings
(Sec. 2.1), and then (Sec. 2.2) we recollect the main defini-
tions at the basis of AAFs (Dung 1995). C-semirings rep-
resent a parametric framework where to measure and com-
pose attack-weights. By changing the underlying c-semiring
instantiation, it is possible to capture different metrics (e.g.,
fuzzy or probabilistic ones).

2.1 Semirings

Definition 1 (Semirings). A commutative semiring is a five-
tuple S = 〈S,+,×,⊥,	〉 such that S is a set, 	,⊥ ∈ S,
and +,× : S × S → S are binary operators making the
triples 〈S,+,⊥〉 and 〈S,×,	〉 commutative monoids (semi-
groups with identity), satisfying
• (distributivity) ∀a, b, c ∈ S.a×(b+c) = (a×b)+(a×c).
• (annihilator) ∀a ∈ A.a×⊥ = ⊥.
Definition 2 (Absorptive semirings). Let S be a commuta-
tive semiring. An absorptive semiring verifies the absorp-
tiveness property: ∀a, b ∈ S.a + (a × b) = a, which is
equivalent to ∀a ∈ S.a+	 = 	.

Absorptive semirings are referred also as simple, and their
+ operator is necessarily idempotent. Semirings where + is
idempotent are defined as tropical semirings, or diods.
Definition 3 (C-semirings (Bistarelli, Montanari, and Rossi
1997)). C-semirings are commutative and absorptive semir-
ings. Therefore, c-semirings are tropical semirings where 	
is an absorbing element for +.

The idempotency of + leads to the definition of a partial
ordering ≤S over the set S (S is a poset). Such partial order
is defined as a ≤S b if and only if a+ b = b, and + becomes
the least upper bound of the lattice 〈S,≤S〉. This intuitively
means that b is “better” than a. As a consequence, we can use
+ as an optimisation operator and always choose the best
available solution. Some more properties can be derived on
c-semirings (Bistarelli, Montanari, and Rossi 1997): i) both
+ and × are monotone over ≤S, ii) × is intensive (i.e., a ×
b ≤S a), and iii) 〈S,≤S〉 is a complete lattice. ⊥ and 	
are respectively the bottom and top elements of such lattice.
When also × is idempotent, i) + distributes over ×, ii) × is
the greater lower bound of the lattice, and iii) 〈S,≤S〉 is a
distributive lattice.

Some c-semiring instances are: boolean 〈{F ,T},∨,
∧,F ,T 〉1, fuzzy 〈[0, 1], max,min, 0, 1〉, bottleneck 〈R+ ∪
{+∞},max,min, 0,∞〉, probabilistic 〈[0, 1],max, ×̂, 0, 1〉
(known as the Viterbi semiring), weighted 〈R+ ∪
{+∞},min, +̂,+∞, 0〉. Capped operators stand for their
arithmetic equivalent to distinguish them from + and ×.

Furthermore, it is also possible to consider several opti-
misation criteria at the same time: the cartesian product of
semirings is still a semiring. Clearly, in this case the order-
ing induced by + is partial, e.g., when we have 〈k1, k2〉 and
〈k3, k4〉, and k1 ≤ k3 while k2 ≥ k4.

1Boolean c-semirings can be used to model crisp problems.

2.2 Argument Systems

In his pioneering work (Dung 1995), Dung proposed Ab-
stract Frameworks for Argumentation, where an argument
is an abstract entity whose role is solely determined by its
relations to other arguments:

Definition 4. An Abstract Argumentation Framework (AAF)
is a pair 〈Args, R〉 of a set Args of arguments and a binary
relation R on Args called the (asymmetric) attack relation.
∀ai, aj ∈ Args, aiRaj (or R(ai, aj)) means that ai attacks
aj (R is asymmetric).

An example is given in Fig. 1. An argumentation seman-
tics is the formal definition of a method (either declarative
or procedural) ruling the argument evaluation process. In
the extension-based approach, a semantics definition spec-
ifies how to derive from an AAF a set of extensions, where
an extension B of an AAF 〈Args, R〉 is simply a subset of
Args. In Def. 5 we define the first semantics, which is at
hearth of all the other ones:

Definition 5 (Conflict-free). A set B ⊆ Args is conflict-free
iff no two arguments a and b in B exist such that a attacks b.

All the other semantics presented in this section rely (ex-
plicitly or implicitly) upon the concept of defence:

Definition 6 (defence (D0)). An argument b is defended by
a set B ⊆ Args (or B defends b) iff for any argument a ∈
Args, if a attacks b then B attacks a.

An admissible set of arguments according to Dung must
be a conflict-free set which defends all its elements. For-
mally:

Definition 7 (Admissible). A conflict-free set B ⊆ Args is
admissible iff each argument in B is defended by B.

The four classical semantics refining admissibility are de-
fined in the following three definitions:

Definition 8 (Complete). An admissible extension B ⊆
Args is a complete extension iff each argument which is de-
fended by B is in B.

Definition 9 (Preferred and Grounded). A preferred exten-
sion is a maximal (w.r.t. set inclusion) admissible subset of
Args. The least (w.r.t. set inclusion) complete extension is
the grounded extension.

Finally, the stable semantics corresponds to the most strin-
gent among all:

Definition 10 (Stable). A conflict-free set B ⊆ Args is a sta-
ble extension iff for each argument which is not in B, there
exists an argument in B that attacks it.

If σ = {adm, com, stb, prf , gde} respectively stand for
admissible, complete, stable, preferred, and grounded se-
mantics, we recall that given any framework F , stb(F ) ⊆

a b c d e

Figure 1: An example of AAF.
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prf (F ) ⊆ com(F ) ⊆ adm(F ) always holds. Moreover, for
each σ except stb we have σ(F ) �= ∅ holds.

Consider the AAF F = 〈A,R〉 in Fig. 1,
with A = {a, b, c, d, e} and R = {(a, b), (c,
b), (c, d), (d, c), (d, e), (e, e)}. We have that adm(F )
corresponds to {∅, {a}, {c}, {d}, {a, c}, {a, d}},
com(F ) = {{a}, {a, c}, {a, d}}, prf (F ) = {{a, c},
{a, d}}, stb(F ) = {{a, d}}, and gde(F ) = {a}.

3 Weighted Abstract AFs

In the following of this section we rephrase some of the
classical definitions given in Sec. 2.2, with the purpose to
parametrise them with the notion of weighted attack and
c-semiring. Such notions, e.g., the one of w-defence, are
the premise behind the new semantics we then propose in
Sec. 4. The following definition presents semiring-based
WAAF (Bistarelli and Santini 2010), called WAAF S:

Definition 11 (c-semiring-based WAAF (Bistarelli and San-
tini 2010)). A semiring-based Argumentation Framework
(WAAF S) is a quadruple 〈Args, R,W, S〉, where S is a
semiring 〈S,+,×,⊥,	〉, Args is a set of arguments, R the
attack binary-relation on Args, and W : Args×Args −→ S
is a binary function. Given a, b ∈ Args, ∀(a, b) ∈ R,
W (a, b) = s means that a attacks b with a weight s ∈ S.
Moreover, we require that R(a, b) iff W (a, b) <S 	.

In Fig. 2 we provide an example of a weighted inter-
action graph describing the WAAF S defined by Args =
{a, b, c, d, e}, R = {(a, b), (c, b), (c, d), (d, c), (d, e),
(e, e)}, with W (a, b) = 7,W (c, b) = 8,W (c, d) =
9,W (d, c) = 8,W (d, e) = 5,W (e, e) = 6, and S =
〈R+ ∪ {∞},min, +̂,∞, 0〉 (i.e., a weighted semiring).

Therefore, each attack is associated with a semiring value
that represents the “strength” of an attack between two ar-
guments. We can consider the weights in Fig. 2 as supports
to the associated attack, as similarly suggested in (Dunne
et al. 2009) and (Dunne et al. 2011). A semiring value
equal to the top element of the c-semiring 	 (e.g., 0 for
the weighted semiring) represents a no-attack relation be-
tween two arguments: for instance, (a, c) �∈ R in Fig. 2 cor-
responds to W (a, c) = 0. Note that, when R(a, b), we al-
ways have W (a, b) �= 	 (in Fig. 2, e.g., W (a, b) = 7). On
the other side, the bottom element, i.e., ⊥ (e.g., ∞ for the
weighted semiring), represents the strongest attack possible
(e.g., ∀s ∈ S, s ≥S ⊥ and 	 ≥S s).

In Def. 12 we define the attack strength for a set of argu-
ments that attacks an argument, a different set of arguments,
or an argument that attacks a set of arguments; the former
and the latter are what we need to define w-defence. In the
following, we will use

∏
to indicate the × operator of the

c-semiring S on a set of values:

a b c d e
7 8 5

9

8

6

Figure 2: An example of WAAF.

Definition 12 (Attacks to/from sets of arguments). Given a
WAAF S, WF = 〈Args, R,W, S〉,
• a set of arguments B attacks an argument a with a weight

of k ∈ S if

W (B, a) =
∏

b∈B
W (b, a) = k

• an argument a attacks a set of arguments B with a weight
of k ∈ S if

W (a,B) =
∏

b∈B
W (a, b) = k

• a set of arguments B attacks a set of arguments D with a
weight of k ∈ S if

W (B,D) =
∏

b∈B,d∈D
W (b, d) = k

For example, looking at Fig. 2 we have that
W ({a, c}, b) = 15, W (c, {b, d}) = 17, and
W ({a, c}, {b, d}) = 24.

We now ready to define our version of weighted defence,
i.e., w-defence:
Definition 13 (w-defence (Dw)). Given a WAAF S, WF =
〈Args, R,W, S〉, B ⊆ Args w-defends b ∈ Args iff, given
a ∈ Args s.t. R(a, b), then W (a,B ∪ {b}) ≥S W (B, a); B
w-defends b iff it defends b from any a s.t. R(a, b).

As previously advanced, a set B ⊆ Args defends an argu-
ment b, if the × of all the attack weights from B to a (for any
a s.t. R(a, b)) is worse-equal (w.r.t. ≤S) than the × of the at-
tacks from a to B ∪ {b}. For example, the set {c} in Fig. 2
defends c from d because W (d, {c}) ≥S W ({c}, d), i.e.,
(8 ≤ 9). On the other hand, {d} in Fig. 2 does not defend d
because W (c, {d}) �≥S W ({d}, c).

As defined, w-defence implies the classical Dung’s de-
fence in Def. 6:
Proposition 1 (Dw ⇒ D0). Given a WAAF S, WF =
〈Args, R,W, S〉, a subset of arguments B, and b ∈ Args,
“B w-defends b” ⇒ “B defends b (Dung 1995)”.

Proof. As hypothesis we have R(a, b) (from Def. 13), then
W (a,B ∪ {b}) �= 	. Therefore, if W (a,B ∪ {b}) ≥S

W (B, a) is true (i.e., B w-defends b from a), this implies
that W (B, a) �= 	. This can be also read as “B attacks a”,
which exactly corresponds to the original definition of de-
fence (see Def. 6).

Moreover, the following proposition equates defence and
w-defence in case we adopt the boolean c-semiring (see
Sec. 2.1):
Proposition 2. Given a WAAFB, WF = 〈Args, R,W,
S〉, where S = 〈{true, false},∨,∧, false, true〉 (i.e., the
boolean semiring), “B w-defends a” ⇐⇒ “B defends a”.

Proof. This holds because, B defends b corresponds to, “if
W (a, b) �= 	 then W (B, a) �=S 	”. But, since we are using
the boolean semiring, this statement can only correspond to,
“if W (a, b) = false then W (B, a) = false”, since the set of
preferences only contains 	 (true) and ⊥ (false). Therefore,
W (a, b) ≥S W (B, a) is always true (in this case, false ≥B

false), and B w-defends b from a.
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4 Dung’s Semantics Revisited

Given all the definitions in Sec. 3, it is possible to rede-
fine the extension-based semantics summarised in Sec. 2.2.
Since w-defence does not interfere with classical conflict-
free semantics (see Def. 6), then, w-defence does not affect
w-conflict-free semantics:
Definition 14 (w-conflict-free). Given a WAAF S, WF =
〈Args, R,W, S〉, a subset of arguments B ⊆ Args is w-
conflict-free iff W (B,B) = 	.

Note that, by allowing W (B,B) �= 	 it is possible to tol-
erate a certain level of conflict inside an extension satisfying
such semantics; in this case, this definition reconnects with
the work in (Bistarelli and Santini 2010).

The notion of w-defence brings instead to the definition
of the w-admissible semantics:
Definition 15 (w-admissible). Given WF = 〈Args, R,W,
S〉, a w-conflict-free extension B ⊆ Args is w-admissible iff
all the arguments in B are w-defended by B.

Considering the framework in Fig. 2 as unweighted (i.e.,
as the one in Fig. 1), Dung’s admissible sets are: {a}, {c},
{d}, {a, c}, {a, d}. w-admissible extensions are {a}, {c},
and {a, c} instead: {a} because is not attacked by any
other argument, {c} and {a, c} because they both w-defends
c from the attack performed by d, i.e., W (d, {c}) ≥S

W ({c}, d) and W (d, {a, c}) ≥S W ({a, c}, d) (i.e., for both
of them 8 ≤ 9). Therefore, by using w-defence we restrain
the set of admissible extensions, eliminating {d} and {a, d}.
An alternative definition of the w-admissible semantics is
proposed in Prop. 3.
Proposition 3 (Alternative definition). Given WF =
〈Args, R,W, S〉, a w-conflict-free extension B ⊆ Args is
w-admissible iff ∀a ∈ Args \ B, W (a,B) ≥S W (B, a).
Proof. Given b ∈ B, w-defence, i.e., W (a,B ∪ {b}) ≥S

W (B, a), directly reduces to W (a,B) ≥S W (B, a).
Four further semantics, which refine the w-admissible

one, are introduced from Def. 16 to Def. 18:
Definition 16 (w-complete). A w-admissible extension B ⊆
Args is also a w-complete extension iff each argument b ∈
Args s.t. B ∪ {b} is w-admissible belongs to B, i.e., b ∈ B.

Definition 17 (w-preferred and w-grounded). A w-preferred
extension is a maximal (with respect to set inclusion) w-
admissible subset of Args. The least (with respect to set in-
clusion) w-complete extension is the w-grounded extension.

Definition 18 (w-stable). Given WF = 〈Args, R,W, S〉, a
w-admissible set B is a w-stable extension iff ∀a �∈ B, ∃b ∈
B.W (b, a) ≤S 	.

Note that, w.r.t. Fig. 2, the set of w-complete extensions
is {{a}, {a, c}}, the only w-preferred extension is {{a, c}},
but there is no w-stable extension, despite {{a, d}} is a sta-
ble extension according to Dung.

Theorems 1 and 2 relate new w-extensions to their coun-
terpart in the original proposal (Dung 1995).
Theorem 1. Given F = 〈Args, R〉, and WF = 〈Args,
R,W, S〉, with S as desired, then

w-stable

w-preferred

w-complete

w-grounded

w-admissible

w-conflict-free

Figure 3: Implications among w-semantics.

i) the set of w-conflict-free extensions in WF is equal to
the set of conflict-free extensions in F .

ii) the set of w-admissible extensions in WF is a subset of
the set of admissible extensions in F .

iii) the set of w-stable extensions in WF is a subset of the
set of stable extensions in F .

Proof. Concerning i, 	 represents a no-attack relation, so
	-conflict-free extensions do not include any attack. ii and
iii hold because the notion of w-defence implies the classical
notion of defence, but not vice versa (Prop. 1).

Theorem 2. Given F = 〈Args, R〉, and WF = 〈Args,
R,W, S〉, with S as desired, then

i) for each w-complete extension BWF in WF , there ex-
ists a complete extension BF in F , s.t., BWF ⊆ BF .

ii) if BWF is the grounded extension of WF , and if BA �=
∅ is the grounded extension of F , then BWF ⊆ BA.

iii) for each w-preferred extension BWF in WF , there ex-
ists a preferred extension BF in F , s.t. BWF ⊆ BF .

Proof. iii follows from Def. 9, and Def. 17: the maximal w-
admissible extensions w.r.t. set inclusion are computed over
a subset of the admissible ones (Dw ⇒ D0 in Prop. 1).
Therefore, each of them is a subset of at least one pre-
ferred extension in the corresponding unweighted frame-
work. Same considerations hold for i, since Dw ⇒ D0

less arguments need to be taken in order to have a valid w-
complete extension. ii follows from i: the least w-complete
extension is computed over subsets of Dung’s complete ex-
tensions, thus their intersection may result in a smaller set.
However, if the grounded extension BF is ∅, having smaller
w-complete extensions may lead to BF ⊆ BWF .

Moreover, Prop. 4 restates the classical implication chain
between semantics (Dung 1995), which still holds for w-
semantics as well. This is visually represented also by Fig. 3.

Proposition 4. The following implications hold between
w-semantics: w-stable ⇒ w-preferred ⇒ w-complete ⇒
w-admissible ⇒ w-conflict-free, and w-grounded ⇒ w-
complete.

Proof. All the implications are proved by definition, from
Def. 14 to Def. 18.
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5 A Comparison with Related Work

Two of the most related definitions of weighted defence (i.e.,
Def. 13) are (Coste-Marquis et al. 2012) and (Martı́nez,
Garcı́a, and Simari 2008). In the following we condense
their main features and we show how our approach differs.

In (Martı́nez, Garcı́a, and Simari 2008) attacks are rela-
tively ordered by their force, i.e., R(a, b) � R(b, a) means
that the former attack is stronger than the latter (vice-versa,
a weaker attack). Equivalent and incomparable classes are
considered as well, i.e., respectively R(a, b) ≈ R(b, a) and
R(a, b)?R(b, a). This is accordingly reflected by the defence
definition, where considering R(a, b) and R(c, a) we can
have that c is a strong, weak, normal, or unqualified defender
of b. Therefore, an argument b is defended by B if, and only
if, for any argument a such that R(a, b), there is an argu-
ment c ∈ B such that R(c, a), and according to the desired
defence strength, R(c, a) � R(a, b), R(c, a) � R(a, b),
R(c, a) ≈ R(a, b), and R(c, a)?R(a, b). For instance, when
requiring a level [�,≈], for each attacker a of b there must
must be either a strong or a normal defender c ∈ B. In
Def. 19 we exactly rephrase such defence by modelling the
total order defined by [�,≈] with a c-semiring S:

Definition 19 (D1). Given WF = 〈Args, R,W, S〉, a, b, c ∈
Args, B ⊆ Args, then b is defended by B if for any
R(a, b), ∃c ∈ B s.t. W (a, b) ≥S W (c, a).

In (Coste-Marquis et al. 2012) the authors define σ⊕-
extensions, where σ is one of the given semantics (e.g.,
admissible), and ⊕ is an aggregation function (× in a c-
semiring). ⊕ needs to satisfy non-decreasingness, minimal-
ity, and identity:2 two examples are the arithmetic sum and
max. Even the notion of defence is refined: in Def. 20 we
cast it in the same semiring-based framework.

Definition 20 (D2). Given WF = 〈Args, R,W, S〉, an ar-
gument b is defended by a subset of arguments B if ∀a ∈
Args s.t. R(a, b), we have that W (a, b) ≥S W (B, a).

Thus, an argument b is ⊕-acceptable if for each attack
from a against b, the aggregated weight of the collective de-
fence of b is greater than W (a, b). Such phrasing of defence
is also equivalent to (Bistarelli and Santini 2010).

By using the same semiring-based framework, it is now
possible to relate such notions of defence together (we re-
mind that Dw stands for w-defence).

Theorem 3. Dw ⇒ D2.

Proof. If W (a,B ∪ {b}) ≥S W (B, a) (i.e., Def. 13 holds)
then W (a, b) ≥S W (B, a) (also (Coste-Marquis et al. 2012)
holds), due to W (a, b) ≥S W (a,B ∪ {b}) (monotonicity of
× operator, see Sec. 2.1).

Moreover, we can link D1 and D2 as well:

Theorem 4. D1 ⇒ D2.

Proof. This is equivalent to prove that ∀R(a, b), ∃c ∈ B s.t.
W (a, b) ≥S W (c, a) ⇒ W (a, b) ≥S W (B, a). If such

2Such properties are satisfied by a c-semiring (see Sec. 2.1),
e.g., minimality in (Coste-Marquis et al. 2012) corresponds to the
absorptivity of × w.r.t. ⊥.

a

b

c

d

e

f

0.7
0.5

0.5

0.2

0.6

0.2

0.3

B

Figure 4: An example of WAAF where {b, d, e} are de-
fended by B according to D2 (using the weighted semiring).

c exists, we also know that W (c, a) ≥S W (B, a) holds,
given Def. 12 and monotonicity of ×; transitivity leads to
W (a, b) ≥S W (B, a), proving ⇒.

In case the c-semiring we use is the fuzzy one, i.e.,
〈[0, 1],max,min, 0, 1〉, then D2 collapses into D1, as Th. 5
states.
Theorem 5. If S = 〈[0, 1],max,min, 0, 1〉, then D1 ⇔ D2.

Proof. This is equivalent to prove that ∀R(a, b), ∃c ∈ B s.t.
W (a, b) ≥S W (c, a) ⇔ W (a, b) ≥S W (B, a). ⇒ can be
proven for any semiring S (see Th. 4). In order to prove ⇐,
W (B, a) is computed by using Def. 12 and min, hence there
exists at least one c ∈ B s.t. W (a, b) ≥S W (c, a).

This results permits to relate Dw and D1 when using the
fuzzy c-semiring:
Corollary 6. If S = 〈[0, 1],max,min, 0, 1〉, then Dw ⇒
D1.

Proof. This directly follows from Th. 3 when using a fuzzy
c-semiring, i.e., Th. 5.

To conclude, we show that all the three Dw, D1, and D2

collapse to the classical defence D0 (Dung 1995) when con-
sidering the framework without weights.
Theorem 7. If S = 〈{true, false},∨,∧, false, true〉, then
Dw ⇔ D0 ⇔ D1 ⇔ D2.

Proof. Dw ⇔ D0 is proved in Prop. 2. To show Dw ⇔ D2

we only need D2 ⇒ Dw (⇐ holds from Th. 3): this holds
because if W (a, b) ≥S W (B, a) it means that if W (a, b) is
false then W (B, a) is false (due to ≥S); hence, W (a,B ∪
{b}) ≥S W (B, a), i.e., Dw, holds as well. To show D1 ⇔
D2 we only need D2 ⇒ D1 (⇐ holds from Th. 4): similarly,
if W (B, a) is false, than ∃c ∈ B s.t. W (a, b) ≥S W (c, a),
since ∃c ∈ B s.t. W (c, a) = false (i.e., c attacks a).

An example on how Dw, D1, and D2 differently work
is provided in Fig. 4. We read this example by con-
sidering the weighted c-semiring, i.e.,. S = 〈R+ ∪
{+∞},min, +̂,+∞, 0〉. Argument b is defended by B =
{b, c, d, e} according to Dw and (consequently) D2, since
W (a,B ∪ {b}) ≥S W (B, a) (0.7 ≤ 0.8). It is not defended
according to D1, since W (d, a) ≥S W (a, b) (0.6 ≤ 0.7)
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and W (c, a) ≥S W (a, b) (0.2 ≤ 0.7). On the other hand,
considering the attacks from f instead, Dw does not hold:
W (f, d)×W (f, e) �≥S W (d, f)×W (c, f) (ı.e., 0.8 �≤ 0.7);
however, D2 holds because W (f, d) ≥S W ({d, c}, f) (i.e.,
0.5 ≤ 0.7) and W (f, e) ≥S W ({d, c}, f) (i.e., 0.3 ≤ 0.7).
With respect to the attacks from f , even D2 holds, since
W (f, d) ≤ W (d, f) and W (f, e) ≤ W (d, f). Therefore,
over the whole WAAF in Fig. 4, only D2 holds. Reading the
same example in Fig. 4 with S = 〈[0, 1],max,min, 0, 1〉 in-
stead, D2 collapses to D1 (Th. 5) and D1 does not hold due
to R(a, b). According to Th. 6, since D1 is not valid then Dw

cannot hold as well.
In the concluding part of this section we study how admis-

sible semantics are related considering Dw, D1, and D2 in
the fuzzy c-semiring. We focus on this semantics because it
is at the core of the other ones proposed in (Dung 1995) (see
Sec. 2.2), explicitly (i.e., complete, preferred, grounded), or
implicitly (i.e., stable). We respectively call adm1 and adm2

the set of admissible extensions using D1 and D2, admw is
our proposal (using Dw in Def. 15), and adm0 adopt the clas-
sical definition of defence D0 (Dung 1995).

Theorem 8. Given WF = 〈Args, R,W, S〉 where S =
〈[0, 1],max,min, 0, 1〉, then admw(WF ) = adm1(WF ) =
adm2(WF ) ⊆ adm0(WF ).

Proof. adm1(WF ) = adm2(WF ) directly derives from
D1 ⇔ D2 (see Th. 5). In order to prove admw(WF ) =
adm1(WF ) = adm2(WF ), since we have already proved
Th. 6, we only need to show that D1 ⇒ Dw, i.e.,
∀R(a, b), ∃c ∈ B s.t. W (a, b) ≥S W (c, a) ⇒ W (a,B ∪
{b}) ≥S W (B, a). Since we need to prove that B is w-
admissible, b ∈ B. Therefore, ∃c ∈ B s.t. W (a, b) ≥S

W (a,B) ≥S W (c, a), since W (a,B) is the worst (min)
of the attacks from a to B. Given W (c, a) ≥S W (B, a)
(see Th. 6), consequently we have W (a,B) ≥S W (B, a).
Finally, due to Prop. 1, we have the last inclusion of the the-
orem, i.e., admw(WF ) ⊆ adm0(WF ).

6 Conclusion and Future Work

In this work we have defined a new notion of defence for
WAAFs. Since defence is collective in the literature (i.e., it
considers all the counter-attacks from B as a whole), our
main motivation is to provide a similar view also for all
the attacks from a to B, here considered by summing all
the attacks weights together. In addition, by casting similar
proposals (Coste-Marquis et al. 2012; Martı́nez, Garcı́a, and
Simari 2008) in the same parametric algebraic-framework,
it is possible to show all their relations in detail.

In the future we plan to compute a relaxation of w-defence
in order to let it exactly match again to the classical defini-
tion of defence given by Dung. Our intent is also to have
a computational framework where it is possible to relax i)
w-defence and ii) the internal conflict of extensions, by al-
lowing also the possibility to tolerate small amount of attack
strength-weights in the conflict-free semantics (and, conse-
quently in all the semantics based on it). Either by relax-
ing i or ii the number of extensions (for a given semantics)
increases; therefore, we want to play on such two effects

singly and simultaneously on randomly-generated and real-
world frameworks to study the outcome and formalise fur-
ther properties on WAAFs. In addition we plan to extend w-
defence to coalitions as well (Bistarelli and Santini 2013).
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