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Abstract

This paper compares features of the classical logics that
are commonly used in the TPTP-based automated reasoning
community for representing chosen aspects of “the world”,
and the consequent implications for reasoning about these
representations. The paper argues that increases in complex-
ity in terms of representation and reasoning force users to
compromise between the reliability of the representation and
the reliability of the reasoning.

Introduction

This paper compares features of the classical logics that
are commonly used in the TPTP-based (Sutcliffe 2010) au-
tomated reasoning (AR) community for representing cho-
sen aspects of “the world”, and the consequent implications
for reasoning about the representations. It provides a high-
level, novice-friendly, but also authoritative, overview, high-
lighting key characteristics of the logics, and reporting on
the state-of-the-art in reasoning for the logics. The valua-
tions made about the logics, and the conclusions drawn, are
founded in the features of the logics. Additionally, the ex-
perience of the first author using these logics and evaluating
AR systems for the logics has provided useful insights. The
analyses and discussion might be viewed as contributions to
the goals of Universal Logic (Béziau 2007).

When comparing different ways of representing and rea-
soning about a user’s domain of interest1, it is necessary for
the representation and reasoning to capture a common no-
tion of truth (Sutcliffe and Suttner 2006) (see the discus-
sion of “realism” vs. “nominalism” in (Pelletier 1991)). The
common notion of truth in classical logics is founded in
soundness and completeness. Soundness is required: The
representation does not include anything that is not actually
the case in the domain of interest, and reasoning over the
representation does not lead from truths to non-truths. In the
terminology of the AR community, the representation is the
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1The phrase “domain of interest” is used to neutrally name the
part of “the world” that the user wants to represent and reason
about. This avoids clashes with notions of “worlds” and “indices”
in, e.g., modal or tense logics.

axioms, and sound reasoning deduces only theorems. Com-
pleteness is desired: The representation includes everything
that is actually the case in the domain of interest, and rea-
soning leads to all the truths about the things that have been
represented. In the terminology of the AR community, com-
plete reasoning can deduce all theorems, and a statement
about which the user would like to determine theoremhood
is a conjecture. Together, soundness and completeness con-
stitute the reliability of the representation and the reasoning.
Reliably representing a user’s domain of interest is typically
easier with more expressive logics, but reliably reasoning
about a representation is typically easier in less expressive
logics. Thus depending on the choice of logic, the common
notion of truth can become more or less attenuated.

This paper examines a hierarchy of classical logics, of in-
creasing expressivity, for reliability. Most of these logics are
fully supported in the TPTP world, and the TPTP acronyms
for the logics are given in parentheses in the list. Description
logic has minimal support in the TPTP, and support for ex-
tended typed higher-order logic is in its infancy at the time
of writing. The logics2 are3

• Propositional Logic (PL)
• Description Logic (DL)
• Effectively PRopositional first-order logic (EPR)
• Clause Normal Form of first-order logic (CNF)
• First-Order Form of first-order logic (FOF)
• Monomorphic Typed First-order logic (TF0)
• Typed First-order logic with Arithmetic (TFA)
• Polymorphic Typed First-order logic (TF1)
• Monomorphic Typed Higher-order logic (TH0)
• EXtended Typed Higher-order logics (THX)

Each of these logics is examined in terms of features that
determine representational and reasoning reliability:

1. Representation – how easy is it to reliably describe the
user’s domain of interest?

2Equality is assumed to be included in all except PL.
3It is acknowledged that this survey does not consider other

classical logics that are not in the TPTP world, and that have dif-
ferent features and hence different representational and reasoning
reliability, e.g., quantified boolean formulae (QBF), equality logic
with uninterpreted functions (EUF).
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2. Reasoning in principle – what is the decidability; what al-
gorithms and techniques are known for reliably deducing
theorems?

3. Reasoning in practice – what is the state-of-the-art in im-
plemented systems for reliably deducing theorems?
For reasoning in principle and in practice, it is assumed

that the underlying hardware and software are reliable. For
reasoning in principle it is assumed that infinite time and
memory (and randomness if required) are available, while
for reasoning in practice it is acknowledged that the reality
of finite resources affects reliability.

About the Logics

Propositional Logic (PL)

Representation: In PL the only unit of representation is
the proposition – a statement that is either true or false, but
has no further internal structure. There is no way to explic-
itly denote objects in the user’s domain of interest. These
restrictions limit the representational reliability.

Reasoning in principle: PL is decidable. PL supports a
range of decision procedures. The simplest approach is to
use a truth table, but more sophisticated methods are more
practically useful. The most commonly used algorithms are
the Conflict-Driven Clause Learning (CDCL) and Davis-
Putnam-Logemann-Loveland (DPLL) algorithms (Biere et
al. 2009).

Reasoning in practice: There are modern trusted imple-
mentations, probably the best known of which is (one of the
implementations of) MiniSAT (Eén and Sörensson 2005).

Reliability: The representational reliability of PL is rather
low – the inability to denote objects, parameterize truth
statements by objects, or make quantified statements, makes
it difficult to represent any other than the most simple do-
mains of interest. Reasoning in PL is highly reliable, al-
though representations with a large number of propositions
can absorb significant resources.

Description Logic (DL)

Representation: DL statements are built from individuals
in the domain of interest, classes that place the individuals
into sets, and roles that specify binary relationships between
individuals. There is no way to denote non-explicit objects,
e.g., a DL representation can include the individual Geoff,
but is unable to refer to the uncle of Geoff without includ-
ing an explicitly named individual to be the uncle. Different
DL variants include extensions that add varying expressive
power. Most DLs can be seen as fragments of FOF, although
some DLs provide operators that are second-order. Thus the
representational reliability is greater than PL and some re-
stricted fragments of FOF, but generally less than that of
FOF.

Reasoning in principle: DL is decidable, and the com-
plexity of various reasoning tasks is well understood (Donini
2003). One of the important operations in DL is subsump-
tion, to determine which classes are subclasses of which
others. Modern algorithms for reasoning in DL are mostly
based on semantic tableaux.

Reasoning in practice: The DL community has produced
some reasonably effective and trusted implementations. Re-
cent evaluations point to the Konclude system (Steigmiller,
Liebig, and Glimm 2014) as being the most reliable.

Reliability: DL limits representational reliability as a
trade-off against maintaining decidability in the reasoning
component. As such, users are restricted as to what aspects
of their domains of interest can be represented, but if enough
can be represented then reasoning is very reliable in princi-
ple. In practice the reasoning reliability is acceptable, al-
though not as mature as for other logics that have a longer
history of reasoning tool development, e.g., PL and FOF.

Effectively Propositional Logic (EPR)

Representation: EPR is a restriction of CNF, to clause
sets that are known to be reducible to PL, e.g., CNF prob-
lems that have no functions with arity greater than zero. The
restrictions that make the clause sets reducible to PL limit
the representational reliability, e.g., the absence of functions
with arity greater than zero means that, as in DL, it is im-
possible to represent objects implicitly.

Reasoning in principle: EPR is decidable, and is NEX-
PTIME complete. If an EPR problem is translated to PL,
e.g., (Schulz 2002a), then the principles for reasoning in PL
apply. However, other approaches e.g., Inst-Gen (Ganzinger
and Korovin 2003), normally perform better.

Reasoning in practice: The EPR logic has been a focus
of research in the AR community for about 14 years. Early
claims that standard saturation-based systems for CNF such
as Vampire (Kovacs and Voronkov 2013) would be most ef-
fective for EPR have now been dispelled by systems with
specialized EPR reasoning, e.g., iProver (Korovin 2009).

Reliability: The representational reliability of EPR is lim-
ited by the constrained use of connectives, and by the in-
ability to refer to non-explicit objects. However, EPR is ad-
equate for many current applications in software and hard-
ware verification. Reasoning in EPR is highly reliable, with
well-understood theory, principles, and practice. All to-
gether, EPR is reliable if the logic is adequate for represent-
ing the domain of interest.

Clause Normal Form (CNF)

Representation: A CNF representation is a conjunction
of disjunctions of atomic statements and their negations.
CNF extends EPR (really, EPR restricts CNF) by the
use of functions to represent non-explicit objects, e.g.,
uncle of(geoff). If a FOF representation is translated
to an equisatisfiable CNF representation, the use of Skolem
functions to replace objects that are claimed to exist by ex-
istential quantification hampers the representational reliabil-
ity. Also in comparison to FOF, the limited set of connec-
tives can make it difficult to produce a natural encoding of
the domain of interest.

Reasoning in principle: CNF is semi-decidable. The
most common approach to establishing theoremhood in
CNF is to test the conjunction of the axioms and the negated
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conjecture for satisfiability. The most common algorithms
for establishing satisfiability are based on resolution and
some form of paramodulation (Bachmair et al. 2001), or su-
perposition (Weidenbach 2001). The soundness and com-
pleteness properties of these approaches and algorithms are
well established. Alternative approaches, based more di-
rectly on Herbrand’s theorem, e.g., as described in (New-
born 2001), are also known.

Reasoning in practice: There are mature implementa-
tions of both the resolution-based and superposition-based
approaches, e.g., SPASS (Weidenbach et al. 2009), that are
trusted to be sound due to the developer’s conservative re-
lease policy, but that do not perform as well as more re-
cent implementations, e.g., E (Schulz 2002b) and Vam-
pire. These more recent implementations use a range of
advanced techniques that improve performance, but the nec-
essarily complex implementations are regularly revealed to
have bugs. The semi-decidability of the logic assumes infi-
nite time and space, so all these systems are incomplete in
practice.

Reliability: CNF has better representational reliability
than EPR thanks to the representation of non-explicit ob-
jects. It is one of the most mature areas of AR, and as such
the reasoning reliability is high, but sometimes suffers from
developers’ quests to improve reasoning performance, re-
sulting in more complex and buggy systems (as shown in
some TPTP-based soundness testing).

First Order Form (FOF)

Representation: FOF extends the representational ability
of CNF (really, CNF restricts FOF) to allow full use of the
connectives and operators of first-order logic, in particular,
arbitrary nesting of quantifers and subformulae. This makes
it easier for users to naturally encode their domains of inter-
est with a high degree of reliability.

Reasoning in principle: FOF is semi-decidable. FOF rep-
resentations can be translated to equisatisfiable CNF repre-
sentations, so the reasoning capabilities of CNF can (and
typically are) used. Additionally, techniques that manipulate
FOF directly, e.g., analytic tableaux (Hähnle 2001), and nat-
ural deduction (Pastre 2001) have been used. The properties
of all approaches are well established, ensuring soundness
in principle.

Reasoning in practice: Currently the best reasoning sys-
tems for FOF are those that translate to CNF, e.g., E and
Vampire, and the comments regarding CNF reasoning ap-
ply. The reliability of the reasoning can be hampered if the
translation is not done with care (Nonnengart and Weiden-
bach 2001). Systems based on analytic tableaux, etc., are
hardly developed, and their implementations are rarely used.

Reliability: The benefits of the representational reliability
of FOF outweigh the negative impact of more complex rea-
soning requirements. Historically, many users of AR rep-
resented their domains of interest with CNF because rea-
soning tools for FOF were inadequately developed, e.g., see
early work by mathematicians (Wos, Robinson, and Carson

1965). Times have changed, and by now CNF is the “assem-
bly language” of AR, so that the use of FOF or even more
expressive logics is prevalent thanks to the higher represen-
tational reliability.

Monomorphic Typed First-order Logic (TF0)

Representation: One of the weaknesses of FOF is that it
does not distinguish between types of objects. The TF0 logic
adds simple types (or “sorts” - TF0 is also known as “many-
sorted logic”) to FOF, so that every object has a known type,
and every function and predicate has a known signature.
Monomorphic types are very easy for users to understand
and use. As with programming languages, this increases the
representational reliability because compiler-style tools can
be used to ensure that a representation is well-typed.

Reasoning in principle: TF0 is semi-decidable. TF0 can
be translated to FOF, so the reasoning principles of FOF can
be employed. However, the translation procedure appears
to be only (unpublished) AR reasoning folklore. There are
variants of the translation procedure that lead to different
sets of theorems, which makes a translation-based approach
somehow unreliable. Some early attempts to develop sys-
tems for reasoning directly with TF0, e.g., (Walther 1983;
Cohn 1987), did not work well enough to popularize the
logic, but more recent approaches have been more success-
ful, e.g. (Barrett et al. 2011; Baumgartner and Waldmann
2013).

Reasoning in practice: The first reliable reasoning sys-
tem for TF0 was SNARK (Stickel 2012), but recent im-
plementations of the new approaches mentioned above are
rapidly maturing, e.g., CVC4 (Barrett et al. 2011).

Reliability: The use of types gives TF0 high represen-
tational reliability, and the trajectory of modern reasoning
tools for the logic is towards high reliability. If the logic is
strong enough for a user’s need, TF0 might be optimal.

Typed First-order Logic with Arithmetic (TFA)

Representation: The TFA logic extends TF0 to include
arithmetic over integers, rationals, and reals. A reasonably
rich set of arithmetic functions and relations have been spec-
ified. This increases the representational reliability (com-
pared to the underlying TF0 logic) quite dramatically, be-
cause numbers and arithmetic are a natural part of many do-
mains of interest. This logic provides linkage to SMT logics
such as QF LIA and UFNIRA (Barrett, Stump, and Tinelli
2010).

Reasoning in principle: TFA is undecidable, due to the
inclusion of arithmetic. However, some restricted subsets
of TFA, e.g., using only linear integer arithmetic, are semi-
decidable (Nipkow 2008). The most common technique for
combining the symbolic reasoning of TF0 with the theory
reasoning of arithmetic is to keep them separate, and pass
logical and control information between the two compo-
nents, e.g., as in DPLL(T) (Ganzinger et al. 2004). There
are some approaches that integrate the two aspects more
tightly, but these are largely ad hoc, e.g., as implemented
in SNARK. Both approaches lose completeness for various
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reasons, e.g., some approaches are limited to evaluation of
ground arithmetic expressions.

Reasoning in practice: Associated with the maturing im-
plementations of systems for TF0, there are rapidly matur-
ing systems for TFA, e.g., CVC4. However, the integra-
tion of arithmetic reasoning reduces the reliability due to
(i) the incompleteness of the arithmetic reasoning; (ii) infor-
mal methods for exchanging information between the sep-
arate components; (iii) imprecise implementations of arith-
metic reasoning. These weaknesses are either impossible or
at least very difficult to overcome.

Reliability: TFA has a higher representational reliability
than TF0, but as a result a lower reasoning reliability. In
combination it’s hard to say if the trade-off results in a higher
or lower overall reliability. As reasoning systems for TFA
mature it can be expected that the reasoning reliability will
improve, more so than for TF0. In the future TFA is likely
to be preferred over TF0 because most users will want arith-
metic in their representational language.

Polymorphic-typed First-Order Logic (TF1)

Representation: The TF1 logic is the polymorphic exten-
sion of TF0. This allows for compact reuse of type con-
structs, which is an advantage in many applications, e.g,
in interactive theorem provers and program specification
languages. For naı̈ve users, the representational reliability
might be diminished (relative to TF0), due to the added com-
plexity, but for power users it’s a definite plus.

Reasoning in principle: TF1 is semi-decidable.
Monomorphization can be used to translate TF1 to
TF0, but this is generally incomplete, and hence unreliable.
There are techniques for reliably dealing with polymor-
phism completely within the reasoning process (Bobot et al.
2008).

Reasoning in practice: The only known (at the time of
writing) AR systems for TF1 are Alt-Ergo (Conchon, Iguer-
nelala, and Mebsout 2013), ZenonModulo (Delahaye et al.
2013), and Zipperposition (Cruanes 2015). Alt-Ergo is re-
spected as reliable (since it correctly implements the process
described in (Bobot et al. 2008)) and of reasonably high per-
formance. The lack of diversity of reasoning systems is a
weakness in the reasoning reliability of TF1.

Reliability: TF1 is a reliable logic for users who are able
to master the expressivity, and who use an appropriately re-
liable reasoning tool. In the broader view of AR, this is a
comparatively narrow band of reliability, and further famil-
iarity and development of systems would enhance the relia-
bility of TF1.

Monomorphic Typed Higher-order Logic (TH0)

Representation: The TH0 logic is the simply typed
lambda calculus with Henkin semantics. As such it provides
the useful features of higher-order logics that are not found
in less expressive logics: quantification over functions and
relations, lambda abstraction, logical operators as individu-
als, definite description, etc. (Farmer 2008). As is the case

for TF1, the richness of TH0 might overwhelm some users,
but for power users it provides high representational relia-
bility. In particular, much of mathematics (e.g., set theory
(Benzmüller et al. 2008)) can be elegantly and succinctly
encoded in TH0.

Reasoning in principle: TH0 is semi-decidable. There
are various approaches to reasoning in TH0, including trans-
lation to FOF, encoding with combinators, tableau-based ap-
proaches, and resolution/paramodulation approaches.

Reasoning in practice: The last decade has seen the de-
velopment of significantly more reliable reasoning systems
for TH0, e.g., Satallax (Brown 2012). Many systems par-
tially rely on translation to a less expressive logic and use
of a corresponding reasoning system, which results in some
loss of completeness due to optimizations that aim to make
the translated version easier for the subordinate reasoning
system. The reliability of systems that reason directly in
TH0 has fluctuated as new features have been added to in-
crease their reasoning power but their initial implementa-
tions have introduced bugs. Generally, however, due to the
well-established theory of the logic, the reasoning reliability
is quite high.

Reliability: In principle, the high expressivity of TH0 al-
lows for high representational reliability, and the maturity
of the logic allows for high reasoning reliability. In practice
the complexity of the logic might reduce the representational
reliability for some users, but the relatively recent develop-
ment of fully automated systems for TH0 positively impacts
the reasoning reliability. Finally, TH0 does not provide for
reasoning with arithmetic, which was observed to improve
the representational reliability of TFA over TF0.

Extended Typed Higher-order Logic (THX)

Representation: Some aspects of THX have been de-
signed, but none have been formally added to the TPTP
world. The ‘X’ in the name is meant as a variable, stand-
ing for various areas of logic. At the very least, ‘X’ includes
‘A’ for TH0 with arithmetic, and ‘1’ for polymorphic typed
higher-order logic. Other extensions, e.g., to allow types
as terms and terms as types, tuples, sequents, etc. (Baren-
dregt, Dekkers, and Statman 2013), have also been designed.
These extensions will provide greater (but more complex)
representational reliability.

Reasoning in principle: The THX logics are at best semi-
decidable, but depending on what extensions are included
they might be undecidable. The principles for reasoning in
these rich logics have often emerged in the context of imple-
mentations, and some might be considered rather ad hoc.

Reasoning in practice: Various interactive theorem prov-
ing systems, e.g., Isabelle (Nipkow, Paulson, and Wenzel
2002) and Coq (Bertot and Casteran 2004), support differ-
ent extensions. There has been almost no development of
AR for the extensions, and therefore the reasoning reliabil-
ity is low.

Reliability: The lack of AR systems for the THX logics
means that the reliability cannot be assessed.
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Comparing the Logics

A graphical distribution of the representational and reason-
ing reliability of the logics examined in this paper is given
in Figure 1. The horizontal axis judges the logics for the
representational reliability, and the vertical axis judges them
on their reasoning reliability. The placement of the points
are qualitative judgements based on the observations made
above, but have the strength of the first author’s experience
in the area. The trade-off between representational reliabil-
ity and reasoning reliability is clearly evident. Note that the
representational reliability of each logic is fixed, but over
time the principles and practice of AR for a logic typically
improve, i.e., the slope of the regression line decreases.

It is tempting to claim that the logic whose vector from
the origin is longest is the most reliable logic. However,
for a logic to be generally applicable and useful it needs to
have some minimal representational and reasoning reliabil-
ity. As such the PL and THX might be excluded, despite
their long vectors. At the time of writing, the “sweet spot”
appears to be TF0, but the additional representational relia-
bility of TFA, coupled with rapidly maturing principles and
implementations of reasoning systems for the logic suggest
it might soon become the logic of choice.

Representational Reliability
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Figure 1: Representational and Reasoning Reliability

Conclusions (about the Truth)

This paper has surveyed the TPTP hierarchy of classical log-
ics for representing real-world problems, and the concomi-
tant computational difficultly of reasoning about the prob-
lems in an efficient manner. The quest to reliably repre-
sent a user’s domain of interest, and reliably reason over that
representation, is dependent on features of the chosen logic.
More expressivity typically increases the reliability of repre-
sentation but decreases the reliability of reasoning, and con-
versely less expressivity typically decreases the reliability
of representation but increases the reliability of reasoning.
Currently there is no logic that simultaneously provides very
high representational reliability and very high reasoning re-

liability. Therefore, it might be necessary to let go of the de-
sired “common notion of truth” that is discussed in the intro-
duction, and rather have a “hope for truth”. Thus, instead of
saying “QED” (quod erat demonstrandum – that “which had
to be demonstrated”), we should really say “QSD”: (quod
speramus demonstravisse – that “which we hope to have
demonstrated”).4
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